Chapitre 3 : Constructibilité à la règle et au compas des polygones réguliers

On se place dans un plan (\mathcal{P}) .

On se place dans un plan (P).

Soit \mathcal{E} un ensemble de points du plan contenant deux points distincts O et A et soit B tel que le triplet (O,A,B) forme un repère orthonormal. On note (x,y) les coordonnées dans ce repère.

On se place dans un plan (\mathcal{P}) .

Soit \mathcal{E} un ensemble de points du plan contenant deux points distincts O et A et soit B tel que le triplet (O,A,B) forme un repère orthonormal. On note (x,y) les coordonnées dans ce repère.

Soit $n \in \mathbb{N} \setminus \{0; 1; 2\}$.

On se place dans un plan (\mathcal{P}) .

Soit \mathcal{E} un ensemble de points du plan contenant deux points distincts O et A et soit B tel que le triplet (O,A,B) forme un repère orthonormal. On note (x,y) les coordonnées dans ce repère.

Soit $n \in \mathbb{N} \setminus \{0;1;2\}$. On note \mathcal{R}_n le polygone régulier à n côtés de centre O et de sommet A.

On se place dans un plan (\mathcal{P}) .

Soit \mathcal{E} un ensemble de points du plan contenant deux points distincts O et A et soit B tel que le triplet (O,A,B) forme un repère orthonormal. On note (x,y) les coordonnées dans ce repère.

Soit $n \in \mathbb{N} \setminus \{0; 1; 2\}$. On note \mathcal{R}_n le polygone régulier à n côtés de centre O et de sommet A. Nous allons montrer le résultat suivant :

On se place dans un plan (P).

Soit \mathcal{E} un ensemble de points du plan contenant deux points distincts O et A et soit B tel que le triplet (O,A,B) forme un repère orthonormal. On note (x,y) les coordonnées dans ce repère.

Soit $n \in \mathbb{N} \setminus \{0; 1; 2\}$. On note \mathcal{R}_n le polygone régulier à n côtés de centre O et de sommet A. Nous allons montrer le résultat suivant :

Théorème de Gauss-Wantzel

Le polygone régulier \mathcal{R}_n est constructible à partir de $\{O,A\}$ ssi

On se place dans un plan (P).

Soit \mathcal{E} un ensemble de points du plan contenant deux points distincts O et A et soit B tel que le triplet (O,A,B) forme un repère orthonormal. On note (x,y) les coordonnées dans ce repère.

Soit $n \in \mathbb{N} \setminus \{0; 1; 2\}$. On note \mathcal{R}_n le polygone régulier à n côtés de centre O et de sommet A. Nous allons montrer le résultat suivant :

Théorème de Gauss-Wantzel

Le polygone régulier \mathcal{R}_n est constructible à partir de $\{O,A\}$ ssi n est le produit d'une puissance de deux et

On se place dans un plan (\mathcal{P}) .

Soit \mathcal{E} un ensemble de points du plan contenant deux points distincts O et A et soit B tel que le triplet (O,A,B) forme un repère orthonormal. On note (x,y) les coordonnées dans ce repère.

Soit $n \in \mathbb{N} \setminus \{0; 1; 2\}$. On note \mathcal{R}_n le polygone régulier à n côtés de centre O et de sommet A. Nous allons montrer le résultat suivant :

Théorème de Gauss-Wantzel

Le polygone régulier \mathcal{R}_n est constructible à partir de $\{O,A\}$ ssi n est le produit d'une puissance de deux et de nombres de Fermat <u>premiers</u> et deux à deux distincts.

On se place dans un plan (\mathcal{P}) .

Soit \mathcal{E} un ensemble de points du plan contenant deux points distincts O et A et soit B tel que le triplet (O,A,B) forme un repère orthonormal. On note (x,y) les coordonnées dans ce repère.

Soit $n \in \mathbb{N} \setminus \{0; 1; 2\}$. On note \mathcal{R}_n le polygone régulier à n côtés de centre O et de sommet A. Nous allons montrer le résultat suivant :

Théorème de Gauss-Wantzel

Le polygone régulier \mathcal{R}_n est constructible à partir de $\{O,A\}$ ssi n est le produit d'une puissance de deux et de nombres de Fermat premiers et deux à deux distincts.

Si $m \in \mathbb{N}$,

On se place dans un plan (P).

Soit \mathcal{E} un ensemble de points du plan contenant deux points distincts O et A et soit B tel que le triplet (O,A,B) forme un repère orthonormal. On note (x,y) les coordonnées dans ce repère.

Soit $n \in \mathbb{N} \setminus \{0; 1; 2\}$. On note \mathcal{R}_n le polygone régulier à n côtés de centre O et de sommet A. Nous allons montrer le résultat suivant :

Théorème de Gauss-Wantzel

Le polygone régulier \mathcal{R}_n est constructible à partir de $\{O,A\}$ ssi n est le produit d'une puissance de deux et de nombres de Fermat <u>premiers</u> et deux à deux distincts.

Si $m \in \mathbb{N}$, le m^{ème} nombre de Fermat est le nombre $F_m := 1 + 2^{2^m}$.

Soit
$$z = a + ib \in \mathbb{C}$$
.

Soit
$$z = a + ib \in \mathbb{C}$$
.

Définition 1

On dit que z est constructible à partir de \mathcal{E} si $(a,b) \in \mathcal{K}_{\mathcal{E}}$.

Soit
$$z = a + ib \in \mathbb{C}$$
.

Définition 1

On dit que z est constructible à partir de \mathcal{E} si $(a,b) \in \mathcal{K}_{\mathcal{E}}$.

On note $\mathcal{F}_{\mathcal{E}}$ l'ensemble des nombres complexes constructibles à partir de \mathcal{E} .

Soit $z = a + ib \in \mathbb{C}$.

Définition 1

On dit que z est constructible à partir de \mathcal{E} si $(a,b) \in \mathcal{K}_{\mathcal{E}}$.

On note $\mathcal{F}_{\mathcal{E}}$ l'ensemble des nombres complexes constructibles à partir de $\mathcal{E}.$

Proposition 2

 $\mathcal{F}_{\mathcal{E}}$ est un sous-corps de \mathbb{C} contenant $\mathbb{Q}(\mathcal{E})$.

Soit $z = a + ib \in \mathbb{C}$.

Définition 1

On dit que z est constructible à partir de \mathcal{E} si $(a,b) \in \mathcal{K}_{\mathcal{E}}$.

On note $\mathcal{F}_{\mathcal{E}}$ l'ensemble des nombres complexes constructibles à partir de $\mathcal{E}.$

Proposition 2

 $\mathcal{F}_{\mathcal{E}}$ est un sous-corps de $\mathbb C$ contenant $\mathbb Q(\mathcal{E})$. De plus, si $z\in\mathcal{F}_{\mathcal{E}}$ et si $\omega\in\mathbb C$ vérifie $\omega^2=z$,

Soit $z = a + ib \in \mathbb{C}$.

Définition 1

On dit que z est constructible à partir de $\mathcal E$ si $(a,b)\in\mathcal K_{\mathcal E}.$

On note $\mathcal{F}_{\mathcal{E}}$ l'ensemble des nombres complexes constructibles à partir de \mathcal{E} .

Proposition 2

 $\mathcal{F}_{\mathcal{E}}$ est un sous-corps de \mathbb{C} contenant $\mathbb{Q}(\mathcal{E})$. De plus, si $z \in \mathcal{F}_{\mathcal{E}}$ et si $\omega \in \mathbb{C}$ vérifie $\omega^2 = z$, alors $\omega \in \mathcal{F}_{\mathcal{E}}$.

De la proposition 2 et du critère nécessaire et suffisant de constructibilité à partir de \mathcal{E} , on déduit :

De la proposition 2 et du critère nécessaire et suffisant de constructibilité à partir de \mathcal{E} , on déduit :

Théorème 3

 $z \in \mathcal{F}_{\mathcal{E}}$ ss'il existe une suite

$$K_0 \subset \cdots \subset K_N$$
,

 $N \in \mathbb{N}$, de sous-corps de \mathbb{C}

De la proposition 2 et du critère nécessaire et suffisant de constructibilité à partir de \mathcal{E} , on déduit :

Théorème 3

 $z \in \mathcal{F}_{\mathcal{E}}$ ss'il existe une suite

$$K_0 \subset \cdots \subset K_N$$
,

 $N \in \mathbb{N}$, de sous-corps de \mathbb{C} telle que

- $K_0 = \mathbb{Q}(\mathcal{E})$,
- $z \in K_N$,
- si $N \ge 1$, pour tout $i \in \{1, ..., N\}$, $[K_i : K_{i-1}] \in \{1, 2\}$.

De la proposition 2 et du critère nécessaire et suffisant de constructibilité à partir de \mathcal{E} , on déduit :

Théorème 3

 $z \in \mathcal{F}_{\mathcal{E}}$ ss'il existe une suite

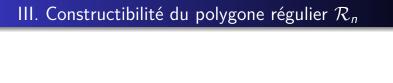
$$K_0 \subset \cdots \subset K_N$$

 $N \in \mathbb{N}$, de sous-corps de \mathbb{C} telle que

- $K_0 = \mathbb{Q}(\mathcal{E})$,
- $z \in K_N$,
- si $N \ge 1$, pour tout $i \in \{1, ..., N\}$, $[K_i : K_{i-1}] \in \{1, 2\}$.

Corollaire 4 (Critère de Wantzel)

Si $z \in \mathcal{F}_{\mathcal{E}}$, alors z est algébrique sur $\mathbb{Q}(\mathcal{E})$ de degré une puissance de deux.



Lemme 5

 \mathcal{R}_n est constructible à partir de $\{O,A\}$

Lemme 5

 \mathcal{R}_n est constructible à partir de $\{O,A\}$ ssi $\zeta_n:=e^{\frac{2i\pi}{n}}\in\mathcal{F}_{\{O,A\}}.$

Lemme 5

 \mathcal{R}_n est constructible à partir de $\{\mathcal{O},A\}$ ssi $\zeta_n:=e^{\frac{2i\pi}{n}}\in\mathcal{F}_{\{\mathcal{O},A\}}.$

Remarque:

Lemme 5

 \mathcal{R}_n est constructible à partir de $\{\mathit{O},\mathit{A}\}$ ssi $\zeta_n:=e^{\frac{2i\pi}{n}}\in\mathcal{F}_{\{\mathit{O},\mathit{A}\}}.$

 $\underline{\mathsf{Remarque}} : \zeta_n \text{ est alg\'ebrique sur } \mathbb{Q} = \mathbb{Q}(\{O,A\}).$

Lemme 5

 \mathcal{R}_n est constructible à partir de $\{O,A\}$ ssi $\zeta_n:=e^{\frac{2i\pi}{n}}\in\mathcal{F}_{\{O,A\}}.$

Remarque : ζ_n est algébrique sur $\mathbb{Q} = \mathbb{Q}(\{O,A\})$.

On note

$$\Phi_n := \prod_{\substack{1 \le k \le n \\ \operatorname{pgcd}(k,n)=1}} \left(X - \zeta_n^k\right) = \prod_{\substack{1 \le k \le n \\ \operatorname{pgcd}(k,n)=1}} \left(X - e^{\frac{2ik\pi}{n}}\right) \in \mathbb{C}[X]$$

Lemme 5

 \mathcal{R}_n est constructible à partir de $\{O,A\}$ ssi $\zeta_n:=e^{\frac{2i\pi}{n}}\in\mathcal{F}_{\{O,A\}}.$

Remarque : ζ_n est algébrique sur $\mathbb{Q} = \mathbb{Q}(\{O,A\})$.

On note

$$\Phi_n := \prod_{\substack{1 \le k \le n \\ \operatorname{pgcd}(k,n) = 1}} \left(X - \zeta_n^k \right) = \prod_{\substack{1 \le k \le n \\ \operatorname{pgcd}(k,n) = 1}} \left(X - e^{\frac{2ik\pi}{n}} \right) \in \mathbb{C}[X]$$

le nème polynôme cyclotomique.

Lemme 5

 \mathcal{R}_n est constructible à partir de $\{O,A\}$ ssi $\zeta_n:=e^{\frac{2i\pi}{n}}\in\mathcal{F}_{\{O,A\}}.$

Remarque : ζ_n est algébrique sur $\mathbb{Q} = \mathbb{Q}(\{O,A\})$.

On note

$$\Phi_n := \prod_{\substack{1 \le k \le n \\ \operatorname{pgcd}(k,n) = 1}} \left(X - \zeta_n^k \right) = \prod_{\substack{1 \le k \le n \\ \operatorname{pgcd}(k,n) = 1}} \left(X - e^{\frac{2ik\pi}{n}} \right) \in \mathbb{C}[X]$$

le n^{ème} polynôme cyclotomique.

Rappel:

Lemme 5

 \mathcal{R}_n est constructible à partir de $\{O,A\}$ ssi $\zeta_n:=e^{\frac{2i\pi}{n}}\in\mathcal{F}_{\{O,A\}}.$

Remarque : ζ_n est algébrique sur $\mathbb{Q} = \mathbb{Q}(\{O,A\})$.

On note

$$\Phi_n := \prod_{\substack{1 \leq k \leq n \\ \operatorname{pgcd}(k,n)=1}} \left(X - \zeta_n^k\right) = \prod_{\substack{1 \leq k \leq n \\ \operatorname{pgcd}(k,n)=1}} \left(X - e^{\frac{2ik\pi}{n}}\right) \in \mathbb{C}[X]$$

le n^{ème} polynôme cyclotomique.

$$\underline{\mathsf{Rappel}} : \Phi_n \in \mathbb{Z}[X]$$

Lemme 5

 \mathcal{R}_n est constructible à partir de $\{O,A\}$ ssi $\zeta_n:=e^{\frac{2i\pi}{n}}\in\mathcal{F}_{\{O,A\}}.$

Remarque : ζ_n est algébrique sur $\mathbb{Q} = \mathbb{Q}(\{O,A\})$.

On note

$$\Phi_n := \prod_{\substack{1 \le k \le n \\ \operatorname{pgcd}(k,n)=1}} \left(X - \zeta_n^k \right) = \prod_{\substack{1 \le k \le n \\ \operatorname{pgcd}(k,n)=1}} \left(X - e^{\frac{2ik\pi}{n}} \right) \in \mathbb{C}[X]$$

le n^{ème} polynôme cyclotomique.

Rappel: $\Phi_n \in \mathbb{Z}[X]$ et Φ_n est irréductible sur \mathbb{Q} .

Lemme 5

 \mathcal{R}_n est constructible à partir de $\{O,A\}$ ssi $\zeta_n:=e^{\frac{2i\pi}{n}}\in\mathcal{F}_{\{O,A\}}.$

Remarque : ζ_n est algébrique sur $\mathbb{Q} = \mathbb{Q}(\{O,A\})$.

On note

$$\Phi_n := \prod_{\substack{1 \le k \le n \\ \operatorname{pgcd}(k,n)=1}} \left(X - \zeta_n^k \right) = \prod_{\substack{1 \le k \le n \\ \operatorname{pgcd}(k,n)=1}} \left(X - e^{\frac{2ik\pi}{n}} \right) \in \mathbb{C}[X]$$

le n^{ème} polynôme cyclotomique.

Rappel: $\Phi_n \in \mathbb{Z}[X]$ et Φ_n est irréductible sur \mathbb{Q} .

Proposition 6

On a
$$\mu_{\zeta_n,\mathbb{Q}} = \Phi_n$$
:

Lemme 5

 \mathcal{R}_n est constructible à partir de $\{O,A\}$ ssi $\zeta_n:=e^{\frac{2i\pi}{n}}\in\mathcal{F}_{\{O,A\}}.$

Remarque : ζ_n est algébrique sur $\mathbb{Q} = \mathbb{Q}(\{O,A\})$.

On note

$$\Phi_n := \prod_{\substack{1 \le k \le n \\ \operatorname{pgcd}(k,n) = 1}} \left(X - \zeta_n^k \right) = \prod_{\substack{1 \le k \le n \\ \operatorname{pgcd}(k,n) = 1}} \left(X - e^{\frac{2ik\pi}{n}} \right) \in \mathbb{C}[X]$$

le n^{ème} polynôme cyclotomique.

Rappel : $\Phi_n \in \mathbb{Z}[X]$ et Φ_n est irréductible sur \mathbb{Q} .

Proposition 6

On a $\mu_{\zeta_n,\mathbb{Q}} = \Phi_n : \zeta_n$ est donc algébrique sur \mathbb{Q} de degré $\varphi(n)$

Lemme 5

 \mathcal{R}_n est constructible à partir de $\{O,A\}$ ssi $\zeta_n:=e^{\frac{2i\pi}{n}}\in\mathcal{F}_{\{O,A\}}.$

Remarque : ζ_n est algébrique sur $\mathbb{Q} = \mathbb{Q}(\{O,A\})$.

On note

$$\Phi_n := \prod_{\substack{1 \le k \le n \\ \operatorname{pgcd}(k,n) = 1}} \left(X - \zeta_n^k \right) = \prod_{\substack{1 \le k \le n \\ \operatorname{pgcd}(k,n) = 1}} \left(X - e^{\frac{2ik\pi}{n}} \right) \in \mathbb{C}[X]$$

le nème polynôme cyclotomique.

Rappel : $\Phi_n \in \mathbb{Z}[X]$ et Φ_n est irréductible sur \mathbb{Q} .

Proposition 6

On a $\mu_{\zeta_n,\mathbb{Q}} = \Phi_n : \zeta_n$ est donc algébrique sur \mathbb{Q} de degré $\varphi(n)$ (où φ est la fonction indicatrice d'Euler).

IV. Théorème de Gauss-Wantzel : sens direct

On commence par montrer :

IV. Théorème de Gauss-Wantzel : sens direct

On commence par montrer:

Proposition 7

Si \mathcal{R}_n est constructible à partir de $\{O,A\}$, alors n est le produit d'une puissance de deux et de nombres de Fermat premiers deux à deux distincts.

IV. Théorème de Gauss-Wantzel : sens direct

On commence par montrer:

Proposition 7

Si \mathcal{R}_n est constructible à partir de $\{O,A\}$, alors n est le produit d'une puissance de deux et de nombres de Fermat premiers deux à deux distincts.

La preuve de la proposition 7 utilise :

IV. Théorème de Gauss-Wantzel : sens direct

On commence par montrer:

Proposition 7

Si \mathcal{R}_n est constructible à partir de $\{O,A\}$, alors n est le produit d'une puissance de deux et de nombres de Fermat premiers deux à deux distincts.

La preuve de la proposition 7 utilise :

Lemme 8

Soit $k \in \mathbb{N} \setminus \{0\}$ tel que l'entier $1 + 2^k$ soit premier.

IV. Théorème de Gauss-Wantzel : sens direct

On commence par montrer:

Proposition 7

Si \mathcal{R}_n est constructible à partir de $\{O,A\}$, alors n est le produit d'une puissance de deux et de nombres de Fermat premiers deux à deux distincts.

La preuve de la proposition 7 utilise :

Lemme 8

Soit $k \in \mathbb{N} \setminus \{0\}$ tel que l'entier $1 + 2^k$ soit premier. Alors k est une puissance de 2 et $1 + 2^k$ est donc un nombre de Fermat.

Nous allons ensuite montrer:

Nous allons ensuite montrer:

Théorème 9

Si n est le produit d'une puissance de deux et de nombres de Fermat premiers deux à deux distincts, alors \mathcal{R}_n est constructible à partir de $\{O,A\}$.

Preuve:

Preuve: On suppose que

$$n=2^d\prod_{s=1}^M F_{m_s},$$

avec $d \in \mathbb{N}$, $m_1, \ldots, m_s \in \mathbb{N}$ deux à deux distincts et, pour tout $s \in \{1, \ldots, M\}$, F_{m_s} premier.

Preuve: On suppose que

$$n=2^d\prod_{s=1}^M F_{m_s},$$

avec $d \in \mathbb{N}$, $m_1, \ldots, m_s \in \mathbb{N}$ deux à deux distincts et, pour tout $s \in \{1, \ldots, M\}$, F_{m_s} premier.

On a:

Preuve: On suppose que

$$n=2^d\prod_{s=1}^M F_{m_s},$$

avec $d \in \mathbb{N}$, $m_1, \ldots, m_s \in \mathbb{N}$ deux à deux distincts et, pour tout $s \in \{1, \ldots, M\}$, F_{m_s} premier.

On a:

Lemme 10

Soient k_1 et k_2 deux entiers naturels non nuls premiers entre eux.

Preuve: On suppose que

$$n=2^d\prod_{s=1}^M F_{m_s},$$

avec $d \in \mathbb{N}$, $m_1, \ldots, m_s \in \mathbb{N}$ deux à deux distincts et, pour tout $s \in \{1, \ldots, M\}$, F_{m_s} premier.

On a:

Lemme 10

Soient k_1 et k_2 deux entiers naturels non nuls premiers entre eux. Alors $\zeta_{k_1k_2} \in \mathcal{F}_{\{O,A\}}$ ssi $\zeta_{k_1}, \zeta_{k_2} \in \mathcal{F}_{\{O,A\}}$.

Preuve: On suppose que

$$n=2^d\prod_{s=1}^M F_{m_s},$$

avec $d \in \mathbb{N}$, $m_1, \ldots, m_s \in \mathbb{N}$ deux à deux distincts et, pour tout $s \in \{1, \ldots, M\}$, F_{m_s} premier.

On a:

Lemme 10

Soient k_1 et k_2 deux entiers naturels non nuls premiers entre eux. Alors $\zeta_{k_1k_2} \in \mathcal{F}_{\{O,A\}}$ ssi $\zeta_{k_1}, \zeta_{k_2} \in \mathcal{F}_{\{O,A\}}$.

Et:

Preuve: On suppose que

$$n=2^d\prod_{s=1}^M F_{m_s},$$

avec $d \in \mathbb{N}$, $m_1, \ldots, m_s \in \mathbb{N}$ deux à deux distincts et, pour tout $s \in \{1, \ldots, M\}$, F_{m_s} premier.

On a:

Lemme 10

Soient k_1 et k_2 deux entiers naturels non nuls premiers entre eux. Alors $\zeta_{k_1k_2} \in \mathcal{F}_{\{O,A\}}$ ssi $\zeta_{k_1}, \zeta_{k_2} \in \mathcal{F}_{\{O,A\}}$.

Et:

Lemme 11

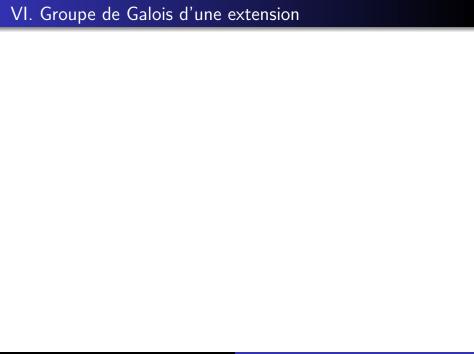
 $\forall m \in \mathbb{N}, \ \zeta_{2^m} \in \mathcal{F}_{\{O,A\}}.$

On est ainsi ramené à montrer :

On est ainsi ramené à montrer :

Théorème 12

Soit p un entier de Fermat premier, alors $\zeta_p \in \mathcal{F}_{\{O,A\}}.$



Soient L un corps et K un sous-corps de L.

Soient L un corps et K un sous-corps de L. Soit $\psi:L\to L$ une application.

Soient L un corps et K un sous-corps de L. Soit $\psi:L\to L$ une application.

Définition 13

On dit que ψ est un endomorphisme de L sur K si

Soient L un corps et K un sous-corps de L. Soit $\psi:L\to L$ une application.

Définition 13

On dit que ψ est un endomorphisme de L sur K si

ullet ψ est un morphisme de corps,

Soient L un corps et K un sous-corps de L. Soit $\psi:L\to L$ une application.

Définition 13

On dit que ψ est un endomorphisme de L sur K si

- ullet ψ est un morphisme de corps,
- ψ est une application K-linéaire.

Soient L un corps et K un sous-corps de L. Soit $\psi:L\to L$ une application.

Définition 13

On dit que ψ est un endomorphisme de L sur K si

- ullet ψ est un morphisme de corps,
- ψ est une application K-linéaire.

On dit que ψ est un automorphisme de L sur K

Soient L un corps et K un sous-corps de L. Soit $\psi:L\to L$ une application.

Définition 13

On dit que ψ est un endomorphisme de L sur K si

- ullet ψ est un morphisme de corps,
- ψ est une application K-linéaire.

On dit que ψ est un automorphisme de L sur K si ψ est un endomorphisme de L sur K bijectif,

Soient L un corps et K un sous-corps de L. Soit $\psi:L\to L$ une application.

Définition 13

On dit que ψ est un endomorphisme de L sur K si

- ullet ψ est un morphisme de corps,
- ullet ψ est une application K-linéaire.

On dit que ψ est un <u>automorphisme de L sur K si ψ est un endomorphisme de L sur K bijectif, et on note $\operatorname{Gal}(L/K)$ l'ensemble des automorphismes de L sur K.</u>

Soient L un corps et K un sous-corps de L. Soit $\psi:L\to L$ une application.

Définition 13

On dit que ψ est un endomorphisme de L sur K si

- ullet ψ est un morphisme de corps,
- ullet ψ est une application K-linéaire.

On dit que ψ est un <u>automorphisme de L sur K si ψ est un endomorphisme de L sur K bijectif, et on note $\operatorname{Gal}(L/K)$ l'ensemble des automorphismes de L sur K.</u>

Remarque:

Soient L un corps et K un sous-corps de L. Soit $\psi:L\to L$ une application.

Définition 13

On dit que ψ est un endomorphisme de L sur K si

- ullet ψ est un morphisme de corps,
- ullet ψ est une application K-linéaire.

On dit que ψ est un <u>automorphisme de L sur K si ψ est un endomorphisme de L sur K bijectif, et on note $\operatorname{Gal}(L/K)$ l'ensemble des automorphismes de L sur K.</u>

Remarque:

• Si $[L:K] < \infty$, ψ est un endomorphisme de L sur K ssi $\psi \in \operatorname{Gal}(L/K)$.

Soient L un corps et K un sous-corps de L. Soit $\psi:L\to L$ une application.

Définition 13

On dit que ψ est un endomorphisme de L sur K si

- ullet ψ est un morphisme de corps,
- ullet ψ est une application K-linéaire.

On dit que ψ est un <u>automorphisme de L sur K si ψ est un endomorphisme de L sur K bijectif, et on note $\operatorname{Gal}(L/K)$ l'ensemble des automorphismes de L sur K.</u>

Remarque:

- Si $[L:K] < \infty$, ψ est un endomorphisme de L sur K ssi $\psi \in \operatorname{Gal}(L/K)$.
- ψ est un endomorphisme de L sur K ssi $\forall k \in \mathbb{N}$, $\forall P \in K[X_1, \dots, X_k], \forall a_1, \dots, a_k \in L$,

Soient L un corps et K un sous-corps de L. Soit $\psi:L\to L$ une application.

Définition 13

On dit que ψ est un endomorphisme de L sur K si

- ullet ψ est un morphisme de corps,
- ullet ψ est une application K-linéaire.

On dit que ψ est un <u>automorphisme de L sur K si ψ est un endomorphisme de L sur K bijectif, et on note $\operatorname{Gal}(L/K)$ l'ensemble des automorphismes de L sur K.</u>

Remarque:

- Si $[L:K] < \infty$, ψ est un endomorphisme de L sur K ssi $\psi \in \operatorname{Gal}(L/K)$.
- ψ est un endomorphisme de L sur K ssi $\forall k \in \mathbb{N}$, $\forall P \in K[X_1, \dots, X_k], \forall a_1, \dots, a_k \in L$,

$$\psi(P(a_1,\ldots,a_k))=P(\psi(a_1),\ldots,\psi(a_k)).$$

Supposons que ψ soit un endomorphisme de L sur K . Alors :

Supposons que ψ soit un endomorphisme de L sur K. Alors :

• Si $L = K(a_1, \ldots, a_l)$, alors ψ est déterminé par $\psi(a_1), \ldots, \psi(a_l)$,

Supposons que ψ soit un endomorphisme de L sur K. Alors :

- Si $L = K(a_1, \ldots, a_l)$, alors ψ est déterminé par $\psi(a_1), \ldots, \psi(a_l)$,
- Si P(x) = 0 avec $P \in K[X]$ et $x \in L$, alors $P(\psi(x)) = 0$.

Supposons que ψ soit un endomorphisme de L sur K. Alors :

- Si $L = K(a_1, \ldots, a_l)$, alors ψ est déterminé par $\psi(a_1), \ldots, \psi(a_l)$,
- Si P(x) = 0 avec $P \in K[X]$ et $x \in L$, alors $P(\psi(x)) = 0$.

Proposition et Définition 14

 $(\operatorname{Gal}(L/K), \circ)$ est un groupe,

Supposons que ψ soit un endomorphisme de L sur K. Alors :

- Si $L = K(a_1, \ldots, a_l)$, alors ψ est déterminé par $\psi(a_1), \ldots, \psi(a_l)$,
- Si P(x) = 0 avec $P \in K[X]$ et $x \in L$, alors $P(\psi(x)) = 0$.

Proposition et Définition 14

 $(Gal(L/K), \circ)$ est un groupe, appelé groupe de Galois de L sur K.

Supposons que ψ soit un endomorphisme de L sur K. Alors :

- Si $L = K(a_1, \ldots, a_l)$, alors ψ est déterminé par $\psi(a_1), \ldots, \psi(a_l)$,
- Si P(x) = 0 avec $P \in K[X]$ et $x \in L$, alors $P(\psi(x)) = 0$.

Proposition et Définition 14

 $(\operatorname{Gal}(L/K), \circ)$ est un groupe, appelé groupe de Galois de L sur K.

Soit $n \in \mathbb{N} \setminus \{0\}$.

Supposons que ψ soit un endomorphisme de L sur K. Alors :

- Si $L = K(a_1, \ldots, a_l)$, alors ψ est déterminé par $\psi(a_1), \ldots, \psi(a_l)$,
- Si P(x) = 0 avec $P \in K[X]$ et $x \in L$, alors $P(\psi(x)) = 0$.

Proposition et Définition 14

 $(\operatorname{Gal}(L/K), \circ)$ est un groupe, appelé groupe de Galois de L sur K.

Soit $n \in \mathbb{N} \setminus \{0\}$.

Théorème 15

Le groupe $\operatorname{Gal}(\mathbb{Q}(\zeta_n)/\mathbb{Q})$ est isomorphe à $(\mathbb{Z}/n\mathbb{Z})^{\times}$.

Conséquence : Soit $p=1+2^{2^m}$ un nombre de Fermat premier, $m\in\mathbb{N}.$

Conséquence : Soit
$$p=1+2^{2^m}$$
 un nombre de Fermat premier, $m\in\mathbb{N}$. Alors
$$\operatorname{Gal}\left(\mathbb{Q}(\zeta_p)/\mathbb{Q}\right)$$

est cyclique d'ordre p-1.

Conséquence : Soit
$$p=1+2^{2^m}$$
 un nombre de Fermat premier, $m\in\mathbb{N}$. Alors $\operatorname{Gal}\left(\mathbb{Q}(\zeta_p)/\mathbb{Q}\right)$

est cyclique d'ordre p-1.

Soit ρ un générateur de $\operatorname{Gal}(\mathbb{Q}(\zeta_p)/\mathbb{Q})$.

Conséquence : Soit $p=1+2^{2^m}$ un nombre de Fermat premier, $m\in\mathbb{N}$. Alors

$$\operatorname{Gal}\left(\mathbb{Q}(\zeta_p)/\mathbb{Q}\right)$$

est cyclique d'ordre p-1.

Soit ρ un générateur de $\operatorname{Gal}(\mathbb{Q}(\zeta_p)/\mathbb{Q})$. On note

$$G_k := \langle \rho^{2^k} \rangle$$

pour $k \in \{0, \dots, 2^m\}$,

Conséquence : Soit $p = 1 + 2^{2^m}$ un nombre de Fermat premier, $m \in \mathbb{N}$. Alors

$$\operatorname{Gal}\left(\mathbb{Q}(\zeta_{\rho})/\mathbb{Q}\right)$$

est cyclique d'ordre p-1.

Soit ρ un générateur de $\operatorname{Gal}(\mathbb{Q}(\zeta_p)/\mathbb{Q})$. On note

$$G_k := \langle \rho^{2^k} \rangle$$

pour $k \in \{0, \dots, 2^m\}$, et on a

$$\left\{\mathrm{id}_{\mathbb{Q}(\zeta_p)}\right\} = G_{2^m} \subset G_{2^m-1} \subset \cdots \subset G_1 \subset G_0 = \mathrm{Gal}\left(\mathbb{Q}(\zeta_p)/\mathbb{Q}\right).$$

Proposition 16

Soit $S \subset Gal(L/K)$.

Proposition 16

Soit $S \subset \operatorname{Gal}(L/K)$. L'ensemble

$$L^{S} := \{ x \in L \mid \forall \psi \in S, \psi(x) = x \}$$

est un sous-corps de L contenant K.

Proposition 16

Soit $S \subset Gal(L/K)$. L'ensemble

$$L^{S} := \{ x \in L \mid \forall \psi \in S, \psi(x) = x \}$$

est un sous-corps de L contenant K.

Conséquence :

Proposition 16

Soit $S \subset \operatorname{Gal}(L/K)$. L'ensemble

$$L^{S} := \{ x \in L \mid \forall \psi \in S, \psi(x) = x \}$$

est un sous-corps de L contenant K.

Conséquence : On avait

$$\left\{\mathrm{id}_{\mathbb{Q}(\zeta_p)}\right\} = G_{2^m} \subset G_{2^m-1} \subset \cdots \subset G_1 \subset G_0 = \mathrm{Gal}\left(\mathbb{Q}(\zeta_p)/\mathbb{Q}\right).$$

Proposition 16

Soit $S \subset Gal(L/K)$. L'ensemble

$$L^{S} := \{ x \in L \mid \forall \psi \in S, \psi(x) = x \}$$

est un sous-corps de L contenant K.

Conséquence : On avait

$$\left\{\mathrm{id}_{\mathbb{Q}(\zeta_p)}\right\} = \textit{G}_{2^m} \subset \textit{G}_{2^m-1} \subset \cdots \subset \textit{G}_1 \subset \textit{G}_0 = \mathrm{Gal}\left(\mathbb{Q}(\zeta_p)/\mathbb{Q}\right).$$

Si l'on note

$$L_i := \mathbb{Q}(\zeta_p)^{G_i}$$

pour $i \in \{0, ..., 2^m\}$,

Proposition 16

Soit $S \subset Gal(L/K)$. L'ensemble

$$L^{S} := \{ x \in L \mid \forall \psi \in S, \psi(x) = x \}$$

est un sous-corps de L contenant K.

Conséquence : On avait

$$\left\{\mathrm{id}_{\mathbb{Q}(\zeta_p)}\right\} = \textit{G}_{2^m} \subset \textit{G}_{2^m-1} \subset \cdots \subset \textit{G}_1 \subset \textit{G}_0 = \mathrm{Gal}\left(\mathbb{Q}(\zeta_p)/\mathbb{Q}\right).$$

Si l'on note

$$L_i := \mathbb{Q}(\zeta_p)^{G_i}$$

pour $i \in \{0, ..., 2^m\}$, on obtient une suite

$$L_0 \subset L_1 \subset \cdots \subset L_{2^m-1} \subset L_{2^m} = \mathbb{Q}(\zeta_p)$$

de sous-corps de $\mathbb{Q}(\zeta_p)$ contenant \mathbb{Q} .

On considère la suite d'extensions

$$L_0 \subset L_1 \subset \cdots \subset L_{2^m-1} \subset L_{2^m} = \mathbb{Q}(\zeta_p).$$

On considère la suite d'extensions

$$L_0 \subset L_1 \subset \cdots \subset L_{2^m-1} \subset L_{2^m} = \mathbb{Q}(\zeta_p).$$

Théorème 17

On considère la suite d'extensions

$$L_0 \subset L_1 \subset \cdots \subset L_{2^m-1} \subset L_{2^m} = \mathbb{Q}(\zeta_p).$$

Théorème 17

•
$$L_0 = \mathbb{Q} (= \mathbb{Q}(\{O,A\})),$$

On considère la suite d'extensions

$$L_0 \subset L_1 \subset \cdots \subset L_{2^m-1} \subset L_{2^m} = \mathbb{Q}(\zeta_p).$$

Théorème 17

- $L_0 = \mathbb{Q} (= \mathbb{Q}(\{O,A\})),$
- $\bullet \ \zeta_p \in L_{2^m} = \mathbb{Q}(\zeta_p),$

On considère la suite d'extensions

$$L_0 \subset L_1 \subset \cdots \subset L_{2^m-1} \subset L_{2^m} = \mathbb{Q}(\zeta_p).$$

Théorème 17

- $L_0 = \mathbb{Q} (= \mathbb{Q}(\{O, A\})),$
- $\zeta_p \in L_{2^m} = \mathbb{Q}(\zeta_p)$,
- pour tout $i \in \{1, \ldots, 2^m\}$, $[L_i : L_{i-1}] = 2$.

On considère la suite d'extensions

$$L_0 \subset L_1 \subset \cdots \subset L_{2^m-1} \subset L_{2^m} = \mathbb{Q}(\zeta_p).$$

Théorème 17

On a

- $L_0 = \mathbb{Q} (= \mathbb{Q}(\{O, A\})),$
- $\zeta_p \in L_{2^m} = \mathbb{Q}(\zeta_p)$,
- pour tout $i \in \{1, ..., 2^m\}$, $[L_i : L_{i-1}] = 2$.

Conséquence : $\zeta_p \in \mathcal{F}_{\{O,A\}}$.

Théorème de Gauss-Wantzel

Soit $n \in \mathbb{N} \setminus \{0; 1; 2\}$. Le polygone régulier \mathcal{R}_n est constructible à partir de $\{O, A\}$ ssi n est le produit d'une puissance de deux et de nombres de Fermat premiers et <u>deux à deux distincts</u>.

Théorème de Gauss-Wantzel

Soit $n \in \mathbb{N} \setminus \{0; 1; 2\}$. Le polygone régulier \mathcal{R}_n est constructible à partir de $\{O, A\}$ ssi n est le produit d'une puissance de deux et de nombres de Fermat premiers et <u>deux à deux distincts</u>.

Exemples:

• Le triangle équilatéral est constructible.

Théorème de Gauss-Wantzel

Soit $n \in \mathbb{N} \setminus \{0; 1; 2\}$. Le polygone régulier \mathcal{R}_n est constructible à partir de $\{O, A\}$ ssi n est le produit d'une puissance de deux et de nombres de Fermat premiers et <u>deux à deux distincts</u>.

- Le triangle équilatéral est constructible.
- Le carré est constructible.

Théorème de Gauss-Wantzel

Soit $n \in \mathbb{N} \setminus \{0; 1; 2\}$. Le polygone régulier \mathcal{R}_n est constructible à partir de $\{O, A\}$ ssi n est le produit d'une puissance de deux et de nombres de Fermat premiers et <u>deux à deux distincts</u>.

- Le triangle équilatéral est constructible.
- Le carré est constructible.
- Le pentagone régulier est constructible.

Théorème de Gauss-Wantzel

Soit $n \in \mathbb{N} \setminus \{0; 1; 2\}$. Le polygone régulier \mathcal{R}_n est constructible à partir de $\{O, A\}$ ssi n est le produit d'une puissance de deux et de nombres de Fermat premiers et deux à deux distincts.

- Le triangle équilatéral est constructible.
- Le carré est constructible.
- Le pentagone régulier est constructible.
- L'hexagone régulier est constructible.

Théorème de Gauss-Wantzel

Soit $n \in \mathbb{N} \setminus \{0; 1; 2\}$. Le polygone régulier \mathcal{R}_n est constructible à partir de $\{O, A\}$ ssi n est le produit d'une puissance de deux et de nombres de Fermat premiers et deux à deux distincts.

- Le triangle équilatéral est constructible.
- Le carré est constructible.
- Le pentagone régulier est constructible.
- L'hexagone régulier est constructible.
- L'heptagone régulier n'est pas constructible.

Théorème de Gauss-Wantzel

Soit $n \in \mathbb{N} \setminus \{0; 1; 2\}$. Le polygone régulier \mathcal{R}_n est constructible à partir de $\{O, A\}$ ssi n est le produit d'une puissance de deux et de nombres de Fermat premiers et <u>deux à deux distincts</u>.

- Le triangle équilatéral est constructible.
- Le carré est constructible.
- Le pentagone régulier est constructible.
- L'hexagone régulier est constructible.
- L'heptagone régulier n'est pas constructible.
- L'octogone régulier est constructible.

Théorème de Gauss-Wantzel

Soit $n \in \mathbb{N} \setminus \{0; 1; 2\}$. Le polygone régulier \mathcal{R}_n est constructible à partir de $\{O, A\}$ ssi n est le produit d'une puissance de deux et de nombres de Fermat premiers et deux à deux distincts.

- Le triangle équilatéral est constructible.
- Le carré est constructible.
- Le pentagone régulier est constructible.
- L'hexagone régulier est constructible.
- L'heptagone régulier n'est pas constructible.
- L'octogone régulier est constructible.
- Le nonagone (ou ennéagone) régulier n'est pas constructible.

Théorème de Gauss-Wantzel

Soit $n \in \mathbb{N} \setminus \{0; 1; 2\}$. Le polygone régulier \mathcal{R}_n est constructible à partir de $\{O, A\}$ ssi n est le produit d'une puissance de deux et de nombres de Fermat premiers et deux à deux distincts.

- Le triangle équilatéral est constructible.
- Le carré est constructible.
- Le pentagone régulier est constructible.
- L'hexagone régulier est constructible.
- L'heptagone régulier n'est pas constructible.
- L'octogone régulier est constructible.
- Le nonagone (ou ennéagone) régulier n'est pas constructible.
- Le décagone régulier est constructible.

- Le hendécagone régulier n'est pas constructible.
- Le dodécagone régulier est constructible.
- Le tridécagone régulier n'est pas constructible.
- Le tétradécagone régulier n'est pas constructible.
- Le pentadécagone régulier est constructible.
- L'hexadécagone régulier est constructible.
- L'heptadécagone régulier est constructible.
- L'octadécagone régulier n'est pas constructible.
- L'ennéadécagone régulier n'est pas constructible.
- L'icosagone régulier est constructible.