Feuille de TD 4 : Courbes paramétrées

Exercice 1 On considère la courbe paramétrée $\gamma : \mathbb{R} \to \mathbb{R}^2$; $t \mapsto (\sin(2t), \sin(3t))$.

- 1. Justifier que, pour tout $t \in \mathbb{R}$,
 - (a) $\gamma(t+2\pi) = \gamma(t)$,
 - (b) $\gamma(-t)$ est le symétrique du point $\gamma(t)$ par rapport au point (0,0),
 - (c) $\gamma(\pi t)$ est le symétrique du point $\gamma(t)$ par rapport à l'axe des ordonnées,
 - (d) $\gamma(t+\pi)$ est le symétrique du point $\gamma(t)$ par rapport à l'axe des abscisses.
- 2. Déterminer les points multiples de $C_{\gamma_{|[-\pi,\pi]}}$ d'ordonnée nulle.
- 3. Montrer que la courbe paramétrée γ est de classe \mathcal{C}^{∞} et est régulière i.e. pour tout $t \in \mathbb{R}$, $\gamma'(t) \neq \overrightarrow{0}$.
- 4. Montrer que γ possède un point d'inflexion en 0.
- 5. On note $x: \left[0; \frac{\pi}{2}\right] \to \mathbb{R}$; $t \mapsto \sin(2t)$ et $y: \left[0; \frac{\pi}{2}\right] \to \mathbb{R}$; $t \mapsto \sin(3t)$. Dresser le tableau des variations de x et y.
- 6. Montrer que, si $t \in \left]0; \frac{\pi}{2}\right]$, $\gamma''(t) \notin \text{Vect}\{\gamma'(t)\}$ (on pourra penser à montrer que les vecteurs $\gamma'(t) = (x'(t), y'(t))$ et $\gamma''(t) = (x''(t), y''(t))$ sont linéairement indépendants).
- 7. Construire la courbe C_{γ} .

Exercice 2 On considère la paramétrisation

$$\rho: \begin{array}{ccc} \left] -\frac{\pi}{2}, \frac{3\pi}{2} \right[& \to & \mathbb{R} \\ \theta & \mapsto & \left(\frac{\cos(\theta)}{1 + \sin^2(\theta)}, \frac{\sin(\theta)\cos(\theta)}{1 + \sin^2(\theta)} \right) \end{array}$$

du lemniscate de Bernoulli privé de l'origine.

- 1. Montrer que la courbe paramétrée ρ est de classe \mathcal{C}^{∞} .
- 2. Montrer que ρ est \mathcal{C}^{∞} -équivalente à la courbe paramétrée

$$\gamma: \begin{array}{ccc}]-\pi,\pi[& \to & \mathbb{R} \\ \gamma: & \theta & \mapsto & \left(\frac{\sin(\theta)}{1+\cos^2(\theta)},\frac{\cos(\theta)\sin(\theta)}{1+\cos^2(\theta)}\right) \end{array}$$

3. Montrer que ρ est \mathcal{C}^{∞} -équivalente à la courbe paramétrée

$$\eta: \begin{array}{ccc} \mathbb{R} & \to & \mathbb{R}^2 \\ t & \mapsto & \left(\frac{t+t^3}{1+t^4}, \frac{t-t^3}{1+t^4}\right) \end{array}$$

Exercice 3 1. Montrer que la courbe paramétrée $\gamma : \mathbb{R} \to \mathbb{R}^2$; $t \mapsto (t^5, t^3)$ possède un point d'inflexion en 0 et construire la courbe C_{γ} .

- 2. Montrer que la courbe paramétrée $\eta: \mathbb{R} \to \mathbb{R}^2$; $t \mapsto (2t^2, t^2 t^3)$ possède un point de rebroussement de première espèce en 0 et construire la courbe C_{η} .
- 3. Montrer que la courbe paramétrée $\rho: \mathbb{R} \to \mathbb{R}^2$; $t \mapsto \left(1 + t^2 + \frac{t^3}{2}, t^2 + \frac{t^3}{2} + 2t^4\right)$ possède un point de rebroussement de deuxième espèce en 0 et construire la courbe C_{ρ} .

Exercice 4 Montrer que la courbe paramétrée

$$\gamma: \begin{array}{ccc} [0; +\infty[& \mapsto & \mathbb{R}^2 \\ t & \mapsto & (t, \sqrt{t}) \end{array}$$

possède un vecteur tangent en 0, bien que la fonction racine carrée ne soit pas dérivable en 0.

Exercice 5 On considère la courbe paramétrée

$$\gamma: \begin{array}{ccc} \mathbb{R} & \to & \mathbb{R}^2 \\ \gamma: & & \\ t & \mapsto & \begin{cases} \left(t^4 \cos\left(\frac{1}{t}\right), t^4 \sin\left(\frac{1}{t}\right)\right) & \text{si } t \neq 0, \\ \left(0, 0\right) & \text{si } t = 0. \end{cases}$$

- 1. Montrer que γ est de classe \mathcal{C}^1 .
- 2. Montrer que le point $\gamma(0)$ de la courbe C_{γ} est simple.
- 3. Montrer que γ ne possède pas de vecteur tangent en 0.

Exercice 6 On considère un plan (\mathcal{P}) muni d'un repère orthonormé direct dans lequel les coordonnées sont notées (x,y). On considère ensuite une roue circulaire de rayon $R \in]0; +\infty[$ sur laquelle on a planté un clou. On place cette roue dans le demi-plan supérieur $\{y \geq 0\}$ en posant le clou au point (0,0), puis on la fait rouler à une vitesse constante $v \in]0; +\infty[$ sur la demi-droite $\{x \geq 0\}$ (v est la vitesse du centre de la roue). On souhaite déterminer la trajectoire de la tête du clou dans le plan (\mathcal{P}) .

- 1. On note t le temps passé depuis le départ de la roue et (x(t), y(t)) les coordonnées de la tête du clou à l'instant t. Montrer que, si ω désigne la quantité $\frac{v}{R}$, on a, pour tout $t \in [0; +\infty[$, $x(t) = R\omega t R\sin(\omega t)$ et $y(t) = R R\cos(\omega t)$.
- 2. On note γ la courbe paramétrée

$$\begin{array}{ccc} \mathbb{R} & \to & \mathbb{R}^2 \\ t & \mapsto & (x(t), y(t)) \end{array}$$

Montrer que pour tout $t \in [0; +\infty[, \gamma(t + \frac{2\pi}{\omega}) = \gamma(t) + (2\pi R, 0).$

- 3. Après avoir justifié que γ était de classe \mathcal{C}^{∞} , déterminer les points singuliers de γ .
- 4. Montrer que tous les points réguliers de γ sont des points ordinaires et que tous les points singuliers de γ sont des points de rebroussement de première espèce.
- 5. Etudier la courbe paramétrée restreinte

$$\gamma: \begin{bmatrix} 0; \frac{2\pi}{\omega} \end{bmatrix} \to \mathbb{R}^2$$

$$t \mapsto (x(t), y(t))$$

- 6. Construire la trajectoire du clou (appelée cycloïde).
- 7. Déterminer la distance que parcourt la tête du clou entre deux instants consécutifs où elle touche le sol.

Exercice 7 Soient $R \in]0; +\infty[$ et $\omega \in]0; +\infty[$. On considère la courbe paramétrée

$$\gamma: \begin{bmatrix} 0; \frac{2\pi}{\omega} \end{bmatrix} \to \mathbb{R}^3$$

$$t \mapsto (R\cos(\omega t), R\sin(\omega t), R\omega t)$$

de \mathbb{R}^3 dont le support est une courbe hélicoïdale de rayon R.

- 1. Justifier que γ est rectifiable et déterminer la longueur de γ .
- 2. Déterminer ω pour que γ soit une courbe paramétrée normale.

Exercice 8 On considère la courbe paramétrée

$$\gamma: \begin{bmatrix} 0; \frac{1}{2} \end{bmatrix} \to \mathbb{R}^2$$

$$t \mapsto \left(t, \sqrt{1 - t^2} \right)$$

- 1. Après avoir justifié que γ est de classe \mathcal{C}^1 , déterminer l'abscisse curviligne de γ à partir de 0.
- 2. Montrer que γ est régulière.
- 3. Déterminer une paramétrisation normale de C_{γ} par longueurs d'arc.

Exercice 9 Soit $d \in \mathbb{N} \setminus \{0\}$ et Soit $\gamma : I \to \mathbb{R}^d$ une courbe paramétrée de \mathbb{R}^d . Montrer que γ est rectifiable et $L(\gamma) = 0$ ssi γ est stationnaire i.e. γ est constante.