Université de Bretagne-Sud

L3 Mathématiques, parcours Statistique

Statistique Mathématique Travaux Dirigés - Partie 4

Exercice 1

Notons $X = (X_1, ..., X_n)$ un échantillon i.i.d. associé à une v.a. de densité ou fonction de masse $f_{\theta}(x)$. Dans chacun des cas suivants, monter que la statistique $u(X) = u(X_1, ..., X_n)$ est exhaustive pour θ et trouver les fonctions f et g appropriés dans le théorème de factorisation.

- 1. Les X_i suivent la loi de Poisson $\mathcal{P}(\theta)$ et $u(X) = \sum_{i=1}^n X_i$.
- 2. Les X_i sont de densité $A(\theta)B(x_i)$, $0 < x_i < \theta$ (et 0 partout ailleurs), où $\theta > 0$, et $u(X) = \max_i X_i$. Cas particulier : Les X_i sont uniformément réparties entre 0 et θ , $A(\theta) = 1/\theta$, $B(x_i) = 1$ sur $[0, \theta]$.
- 3. Les X_i suivent une loi géométrique de paramètre θ , c'est-à-dire que si θ est la probabilité de succès lors d'une épreuve de Bernoulli, $\mathbb{P}_{\theta}(X_i = x) = f_{\theta}(x) = (1 \theta)^x \theta$ est la probabilité qu'il y ait x échecs avant le premier succès; $u(X) = \sum_{i=1}^n X_i$.
 - 4. Les X_i sont de densité exponentielle $(1/\theta)e^{-x/\theta}$, x > 0 et $u(X) = \sum_{i=1}^n X_i$.
- 5. Les X_i sont de densité beta de première espèce de paramètres $p=\theta$ et q=2, et $u(X)=\prod_{i=1}^n X_i$.

6. Les X_i sont de densité gamma de paramètres $\alpha=\theta,\,\beta>0$ (quelconque) et $u(X)=\prod_{i=1}^n X_i$.

Exercice 2

Soit X une variable aléatoire d'espérance nulle pour toutes les valeurs possibles du paramètre θ . Par exemple, X peut être distribuée selon une loi uniforme sur $[-\theta, \theta]$, ou suivre la loi normale $\mathcal{N}(0, \theta)$.

Donner un exemple de statistique exhaustive pour θ qui n'est pas complète.

Exercice 3

Soit $f_{\theta}(x) = \exp[-(x - \theta)]$, $\theta < x < \infty$ et 0 partout ailleurs. Montrer que la statistique $Y_1 = \min_i X_i$ est exhaustive complète pour θ et déterminer un estimateur USBVM de θ .

Exercice 4

Soit $f_{\theta}(x) = \theta x^{\theta-1}$, 0 < x < 1 avec $\theta > 0$. Montrer que $u(X_1, \dots, X_n) = [\prod_{i=1}^n X_i]^{1/n}$ est une statistique exhaustive complète pour θ et que l'estimateur du maximum de vraisemblance $\widehat{\theta}$ est fonction de $u(X_1, \dots, X_n)$.

Exercice 5

La densité $f_{\theta}(x) = \theta^2 x e^{-\theta x}$, x > 0, avec $\theta > 0$, appartient à la famille exponentielle et $Y = \sum_{i=1}^{n} X_i$ est une statistique exhaustive complète pour θ . Calculer l'espérance de 1/Y et en déduire l'estimateur USBVM de θ .

Exercice 6

Soit Y_1 une v.a.r. de loi $\mathcal{B}(n,\theta)$, somme de n v.a.r. i.i.d. de Bernoulli : $Y_1 = \sum_{i=1}^n X_i, X_i \sim \mathcal{B}(\theta)$. La loi de Bernoulli et la loi binomiale appartiennent à la famille exponentielle et Y_1 est une statistique exhaustive complète pour θ . Comme $\mathbb{E}_{\theta}(Y_1) = n\theta, Y_1/n$ est un estimateur USBVM de θ .

Soit à présent $Y_2 = (X_1 + X_2)/2$.

Déterminer $\mathbb{E}(Y_2|Y_1)$ de façon simple.

Exercice 7

Soit $X \sim \mathcal{N}(0, \theta)$. Alors, $Y = \sum_{i=1}^{n} X_i^2$ est une statistique exhaustive complète pour θ . Déterminer la loi de Y/θ et en déduire l'estimateur USBVM de θ^2 .

Exercice 8

Soit $\theta = (\theta_1, \theta_2)$ et $f_{\theta}(x) = (1/\theta_2) \exp[(x - \theta_1)/\theta_2]$, $x > \theta_1$ (et 0 partout ailleurs), où θ_1 est un réel quelconque et où $\theta_2 > 0$.

Montrer que la statistique vectorielle $(\min_i X_i, \sum_{i=1}^n X_i)$ est exhaustive pour θ .