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Abstract. We show that the nonparametric model generated by independent
observations Xi, i = 1, ..., n, with densities p(x, f(i/n)), i = 1, ..., n, where
f is an ”unknown” function f : [0, 1] → Θ in a smoothness class, can be
approximated, in the sense of the Le Cam deficiency pseudodistance, by a
nonparametric Gaussian shift model.

1. Introduction

Following Brown and Low [1], we say that two sequences of statistical experi-
ments En, n = 1, 2, ... and Gn, n = 1, 2, ... are asymptotically equivalent if

∆ (En,Gn) → 0, as n →∞,

where ∆ (En,Gn) is the Le Cam deficiency pseudo-distance between statistical
experiments En and Gn. From the definition of the Le Cam distance (see Le
Cam [5] or Le Cam and Yang [6]) it follows that asymptotically minimax risks
over bounded loss functions in one sequence of models can be transferred to
the asymptotically equivalent sequence of models, which means that one can
compute the asymptotically minimax risk in non-Gaussian models by computing
it in the accompanying Gaussian models. Thus asymptotic equivalence can be
seen as an analog of the Hajék-Le Cam asymptotic minimax bound in the case
of nonparametric models.

Such an asymptotic equivalence between the white noise model and its discrete
time analog has been first established by Brown and Low [1]. For the density
estimation, Nussbaum [7] found that the accompanying experiment is a white
nose model, where the square root of the density is estimated. The more general
case of generalized linear models was considered in Grama and Nussbaum [3].
However, in all these models it is assumed, essentially, that the noises are from
an exponential family. The purpose of the present work is to extend the area of
applicability of the asymptotic equivalence to the case of regression models with
arbitrary noises.
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2. The results

2.1. The model. We start with a parametric model. Let Θ be an interval (pos-
sibly infinite) in the real line and

E = (X,X , {Pθ : θ ∈ Θ})
be a statistical experiment on the measurable space (X,X ) with the parameter
set Θ and a dominating σ-finite measure µ. For any θ ∈ Θ, denote by

p (x, θ) = Pθ (dx) /µ (dx) , x ∈ X,

the Radon-Nikodym derivative of Pθ w.r.t. µ. For the sake of brevity we set
p(θ) = p(·, θ). We shall assume in the sequel that p (θ) > 0, µ-a.s. on X, for any
θ ∈ Θ, which implies that the measures Pθ, θ ∈ Θ are equivalent: Pθ ∼ Pu, for
θ, u ∈ Θ.

Now we shall introduce our nonparametric model. For any β > 0, let Σβ be
the Hölder ball of functions defined on [0, 1] and with values in Θ, i.e. the set of
functions f : [0, 1] → Θ, which satisfy Hölder’s condition with exponent β and
constant L :

∣∣f (β0) (t)− f (β0) (s)
∣∣ ≤ L |t− s|β1 , t, s ∈ [0, 1] and sup

t∈T
|f (t)| ≤ L,

where the integer β0 and the real 0 < β1 ≤ 1 are so that β = β0 + β1. The non-
parametrically driven model, which we are going to deal with, assumes that we
observe a sequence of independent r.v.’s X1, ..., Xn, with values in the measurable
space (X,X ), so that, for each i = 1, ..., n, the observation Xi has the density
p (x, f (i/n)) , where the function f is unknown and satisfies the smoothness con-
dition f ∈ Σβ. We shall make use of the notation P n

f = Pf(1/n) × ... × Pf(n/n),
where Pθ is the probability measure in the parametric experiment E and f ∈ Σ.

2.2. Regularity assumptions. Assume that β > 1/2. In the sequel we shall
impose, on the density p(x, θ) in the parametric experiment E , the regularity
assumptions (R1-R3), which are assumed to hold true with the same ε > 0.

R1: The function s (θ) =
√

p (θ) is smooth in the space L2 (X,X , µ) : there

is a real number δ ∈ ( 1
2β

, 1) and a map
•
s (θ) : Θ → L2 (X,X , µ) such that

sup
(θ,u)

1

|u− θ|1+δ

(∫

X

(
s (x, u)− s (x, θ)− (u− θ)

•
s (x, θ)

)2

µ (dx)

)1/2

< ∞,

where sup is taken over all pairs (θ, u) satisfying θ, u ∈ Θ, |u− θ| ≤ ε.

It is well-known (see Strasser [8]) that the function
•
s (θ) in condition (R1) can

be written as
•
s (θ) = 1

2

•
l (θ)

√
p (θ), µ-a.s. on X, where

•
l (θ) ∈ L2 (X,X , µ) .

Moreover,
•
l (θ) ∈ L2 (X,X , Pθ) and Eθ

•
l (θ) = 0, θ ∈ Θ, where Eθ is the
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expectation under Pθ. The map
•
l (θ) is called tangent vector at θ. For any θ ∈ Θ,

define an extended tangent vector
•
lθ (u) , u ∈ Θ, by setting

•
lθ (x, u) =





•
l (x, θ) , if u = θ,

2
u−θ

(√
p(x,u)
p(x,θ)

− 1
)

, if u 6= θ.

R2: There is a real number δ ∈ (2β+1
2β−1

,∞) such that

sup
(θ,u)

∫

X

∣∣∣•lθ (x, u)
∣∣∣
2δ

p (x, θ) µ (dx) < ∞,

where sup is taken over all pairs (θ, u) satisfying θ, u ∈ Θ, |u− θ| ≤ ε.

The Fisher information in the local experiment E is

I (θ) =

∫

X

(•
l (x, θ)

)2

p (x, θ) µ (dx) , θ ∈ Θ.

R3: There are two real numbers Imin and Imax such that

0 < Imin ≤ I (θ) ≤ Imax < ∞, θ ∈ Θ.

2.3. Local result. First we state a local Gaussian approximation. For any f ∈
Σβ, denote by Σβ

f (r) the neighborhood of f, shifted to the origin:

Σβ
f (r) =

{
h : |h| ≤ r, f + h ∈ Σβ

}
.

Set

γn = c (β)

(
log n

n

) β
2β+1

,

where c (β) is a constant depending on β. By definition the local experiment

En
f = (Xn,X n, {P n

f+h : h ∈ Σβ
f (γn)})

is generated by the sequence of independent r.v.’s X1, ..., Xn, with values in the
measurable space (X,X ) , so that, for each i = 1, ..., n, the observation Xi has

the density p (x, g (i/n)) , where g = f + h, h ∈ Σβ
f (rn) .

Theorem 2.1. Let β > 1/2 and I (θ) be the Fisher information in the parametric
experiment E . Assume that the density p(x, θ) satisfies the regularity conditions
(R1−R3) . For any f ∈ Σβ, let Gn

f be the local Gaussian experiment, generated
by the observations

Y n
i = h (i/n) + I (f (i/n))−1/2 εi, i = 1, ..., n,

with h ∈ Σβ
f (rn) , where ε1, ..., εn is a sequence of i.i.d. standard normal r.v.’s.

Then, uniformly in f ∈ Σ, the sequence of local experiments En
f , n = 1, 2, ...
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is asymptotically equivalent to the sequence of local Gaussian experiments Gn
f ,

n = 1, 2, ... :

sup
f∈Σβ

∆
(En

f ,Gn
f

) → 0, as n →∞.

2.4. Global result. By definition the global experiment

En =
(
Xn,X n, {P n

f : f ∈ Σβ})

is generated by the sequence of independent r.v.’s X1, ..., Xn, with values in the
measurable space (X,X ) , so that, for each i = 1, ..., n, the observation Xi has
the density p (x, f (i/n)) , where f ∈ Σβ. We shall use the following assumptions:

G1: For any β > 1
2
, there is an estimator f̂n : Xn → Σβ, such that

sup
f∈Σβ

P
(∥∥∥f̂n − f

∥∥∥
∞
≥ cγn

)
→ 0, n →∞,

for any sequence γn ≥ 0 satisfying γ−1
n = o (γ−1

n ) .
G2: The Fisher information I(θ) : Θ → (0,∞) satisfies Hölder’s condition

with exponent α ∈ ( 1
2β

, 1).

The main result of the paper is the following theorem, which states a global
Gaussian approximation for the sequence of experiments En, n = 1, 2, ... in the
sense of the Le Cam distance.

Theorem 2.2. Let β > 1/2 and I (θ) be the Fisher information in the parametric
experiment E . Assume that the density p(x, θ) satisfies the regularity conditions
(R1-R3) and that conditions (G1-G2) are satisfied. Let Gn be the Gaussian ex-
periment generated by the observations

Y n
i = Γ (f (i/n)) + εi, i = 1, ..., n,

with f ∈ Σβ, where ε1, ..., εn is a sequence of i.i.d. standard normal r.v.’s and
Γ (θ) : Θ → R is any function satisfying Γ′ (θ) =

√
I (θ). Then the sequence

of experiments En, n = 1, 2, ... is asymptotically equivalent to the sequence of
Gaussian experiments Gn, n = 1, 2, ... :

∆ (En,Gn) → 0, as n →∞.

An example in Brown and Low [1] shows that asymptotic equivalence, in gen-
eral, fails to hold true when β < 1

2
.

Assumption (G1) is of technical nature. It can be easily checked in the most
particular cases of interest. We refer the reader to Section 3 for some examples.

The function Γ (θ) can be related to so called variance-stabilizing transforma-
tion, which we proceed to introduce. Let X1, ..., Xn be a sequence of real valued
i.i.d. r.v.’s, which depends on the parameter θ ∈ Θ. Let θ be the common mean
and σ(θ) be the common variance. By the central limit theorem,

√
n {Sn − θ} d→ N (0, σ (θ)) ,
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where Sn = (X1 + ... + Xn) /n. The variance-stabilizing transformation is defined
to be a function F on the real line, which stabilize the variance in the limiting
normal law, i.e. such that

√
n {F (Sn)− F (θ)} d→ N (0, 1) .

In this case the function Γ just coincides with the function F : Γ(θ) = F (θ),
θ ∈ Θ. If the parametrization in the model E is so that µ′(θ) = σ(θ) = I(θ),
where µ(θ) =EθX is the mean and σ(θ) =VarθX of an observation X in the
experiment E , then Γ(θ) = F (µ(θ)), θ ∈ Θ.

Theorem 2.2 is proved using the local result in Theorem 2.1 by means of a
globalizing procedure. The main idea of the proof of Theorem 2.1 is to decom-
pose the initial experiment En into a product of independent experiments and to
show that each component can be ”well approximated” by means of its Gauss-
ian counterpart. For the last we develop a general approach according to which
any experiment En, satisfying a nonparametric analog of the local asymptotic
quadraticity (LAQ) condition, can be constructed on the same measurable space
with a Gaussian experiment Gn, such that the Hellinger distance between the
corresponding probability measures converges to 0 at a certain rate, as n → ∞.
The main tool in establishing this result is the functional analog of the Hungar-
ian construction developed in Grama and Nussbaum [2]. Then we are able to
check the nonparametric LAQ conditions for the model under consideration. Our
approach is similar to that in Grama and Nussbaum [3] or Nussbaum [7].

3. Examples

3.1. Linear regression model. Consider the nonparametric regression model
with non-Gaussian noise

(3.1) Xi = f(i/n) + ξi, i = 1, ..., n,

where ξ1, ..., ξn are i.i.d. r.v.’s of means 0 and finite variances, with density p(x)
on the real line, f ∈ Σβ and Σβ is a Hölder ball on [0, 1] with exponent β > 1

2
.

This model is a particular case of the nonparametrically driven model, introduced
in Section 2, when p(x, θ) = p(x− θ) is the shifted density p(x) and θ ∈ R. It is
easy to see that conditions (R1-R3) hold true, if we assume that the density p(x)
obeys the following items:

L1: The function s(x) =
√

p(x) satisfy Hölder’s condition with an exponent
1 + α, where α ∈ ( 1

2β
, 1).

L2: For some δ > 2β+1
2β−1

and ε > 0, we have

sup
|u|≤ε

∫ ∞

−∞
|s′(x + u)/s(x)|2δ

p(x)dx < ∞.
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L3: The Fisher informational number is positive:

I =

∫ ∞

−∞
(p′(x)2/p(x))dx > 0.

It is well-known that a preliminary estimator satisfying condition (G1) exists.
Then, under conditions (L1-L3), the nonparametric linear regression model (3.1)
is asymptotically equivalent to a linear regression with Gaussian noise, in which
we observe

Yi = f(i/n) + I−1/2εi, i = 1, ..., n,

where ε1, ..., εn are i.i.d. standard normal r.v.’s.

3.2. Exponential family model. Other particular cases arise when the para-
metric experiment E = (X,X , {Pθ : θ ∈ Θ}) is an one-dimensional linearly
indexed exponential family, where Θ is a possibly infinite interval on the real
line. The parameter set Θ is assumed to be so that the regularity conditions
(R1)-(R3) are satisfied. The parametrization in the examples below is so that
an observation X in the experiment E has the mean µ(θ) = θ, since this form of
the parametrization makes it easier to compute the function Γ(θ). Note that a
preliminary estimator satisfying condition (G1) in the exponential family model
exists (see Grama and Nussbaum [3]).

Spectral density model. Assume that we are given a sequence of normal ob-
servations X1, ..., Xn with means 0 and standard deviations f(i/n), where the
function f(t), t ∈ [0, 1] satisfies Hölder’s condition with exponent β > 1

2
and is

so that c1 ≤ f(t) ≤ c2, for some positive absolute constants c1 and c2. In this

model the density of the observations has the form p(x, θ) = 1√
2πθ

exp
(
− x2

2θ2

)
,

x ∈ R and the Fisher information is I(θ) = 2θ−2. This gives us Γ(θ) =
√

2 log θ.
Then the model is asymptotically equivalent to the Gaussian model, in which we
observe

Yi =
√

2 log f(i/n) + εi, i = 1, ..., n,

where ε1, ..., εn are i.i.d. standard normal r.v.’s.
Density model. Assume that we are given a sequence of Poisson observations

X1, ..., Xn with ”unknown” intensities f(i/n), where the function f(t), t ∈ [0, 1]
satisfies Hölder’s condition with exponent β > 1

2
and is so that c1 ≤ f(t) ≤ c2, for

some positive absolute constants c1 and c2. In this model p(x, θ) = θx exp (−θ) ,

x ∈ X = {0, 1, ...} and I(θ) = θ−1. This gives us Γ(θ) = 2
√

θ. Then the model is
asymptotically equivalent to the Gaussian model, in which we observe

Yi = 2
√

f(i/n) + εi, i = 1, ..., n,

where ε1, ..., εn are i.i.d. standard normal r.v.’s. We called this model the density
model, since the density model reduces to the last one by using Katz poissoniza-
tion technique (see Nussbaum [7]).
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Binary response model. Assume that we are given a sequence of Bernoulli
observations X1, ..., Xn taking values 0 and 1 with ”unknown” probabilities of
success f(i/n), where the function f(t), t ∈ [0, 1] satisfies Hölder’s condition with
exponent β > 1

2
and is so that c1 ≤ f(t) ≤ c2, for some absolute constants c1 > 0

and c2 < 1. In this model p(x, θ) = θx(1−θ)1−x, x ∈ X = {0, 1} and I(θ) = 1
θ(1−θ)

.

This gives us Γ(θ) = 2 arcsin
√

θ. Then this model is asymptotically equivalent to
the Gaussian model, in which we observe

Yi = 2 arcsin
√

f(i/n) + εi, i = 1, ..., n,

where ε1, ..., εn are i.i.d. standard normal r.v.’s.
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