
The Object Oriented Programming for
Queuing System

I.Grama G.Mishkoy

February 15, 1993

Abstract

The object oriented programming approach for priority service sys-
tems with orientation is developed. It provides fast evaluation of the
characteristics.

1 Introduction

Priority systems with orientation have been the subject of most intensive
investigation for the past decade. In particular in [1] a class of systems
of this type with non-zero orientation time of the service device as well as
with its various strategies in free state have been studied. The necessity and
significance of the analysis of these systems have been pointed out by various
scientists (see, for example [2], [3], [4], [5]) and have been caused by the
entire set of requirements to the development of priority systems theory (the
need of studying more common models and obtaining of new more common
mathematical results) and by actual practice need.

In the applied aspect a number of problems of real-time systems, infor-
mation and computation systems and a number of problems of other systems
are well described by models of these systems.

The main peculiarity of the mentioned models is that they allow taking
into account time losses during different kinds of works, switchings and so on,
taking place in real systems and having an accidental character. For exam-
ple, these are losses within the switching of computer process in scheduling
algorithms, within the information exchange while requesting the memory of

1

exchange, within writing and restoring in the interrupt computer systems,
etc.

New approaches and conception for solving such topical applied problems
can be suggested on the basis of the results of this class of systems. For
example, on the basis of the results of priority systems with orientation the
conception of functional designing of computation complexes has been worked
out and realized [5]. New technical solution can be suggested too.

It must be noted that the mathematical results were obtained in terms
of the generating function, the Laplace and the Laplace-Stieltjes transforms
and some recurrent functional equations. For practical needs it is neces-
sary to create the software which allows us to evaluate the characteristics
of the priority systems. It includes methods solving the recurrent functional
equations, inverting the Laplace and Laplace-Stieltjes transform and so on.

Earlier a version of this software was worked out in [8]. The aim of the
paper is to present a new approach to the priority systems software based on
the object oriented programming (OOP).

2 Analytical means

According to the mathematical theory of priority systems it is supposed that
the switching process from one class to another one takes place instantly (for
example, see [6]). But this assumption is not fulfilled for a considerable part
of real systems since switching always takes some time. The systems which
take into account the switching process are called the priority service systems
with orientation (PSSO) and the switching time is called orientation time.

We shall present some results describing the behavior of the PSSO. It
should be pointed out that difficulties arise with their implementation for
practical needs, since there are not efficient algorithms for evaluating its
characteristics.

While making the statement, we shall keep the terminology and notations
adopted in [1] and formulate the results for Mr|Gr|1 priority model involving
orientation and absolute priority.

The arrival of the higher priority requests in the device, busy with queu-
ing orientation or servicing the lower priority request, interrupts both the
orientation and the service. It is supposed that when the PSSO becomes free
of the higher priority requests the interrupted orientation will be continued,

2

while the interrupted service is restarted.
As far as the strategy of the device in the idle state is concerned, let us

assume that its orientation gets instantly annulled (reset) as soon as the busy
period is completed.

2.1 Distribution of the busy period

Let us denote by Bi(t), Cj(t) and Π(t) the distribution functions of duration
of service of requests of the i-th priority class, duration of orientation of the
device for servicing the requests of j-th class, i 6= j, i = 1, ..., r and busy
period, respectively. Let ai be the parameter of the arriving Poisson flow of
priority i and σk = a1 + ... + ak, σ0 = 0, σ = σr. Let βi(s), cj(s), π(s) be the
Laplace-Stieltjes transforms of the distribution functions Bi(t), Cj(t), and
Π(x) respectively i.e.

βi(s) =
∫ ∞

0
e−stdBi(t),

Statement 1 The Laplace-Stieltjes transform of the distribution function of
a busy period is determined from the system of recurrent functional equations.

σkπk(s) = σk−1πk−1(s + ak)

+σk−1{πk−1(s + ak(1− π̄kk(s)))− πk−1(s + ak)} (1)

×νk(s + ak(1− πk(s))) + akπkk(s),

πkk(s) = νk(s + ak(1− π̄kk(s)))π̄kk(s), (2)

π̄kk(s) = hk−1(s + ak(1− π̄kk(s))), (3)

hk(s) =
βk(s + σk−1)

1− σk−1

s+σk−1
[1− βk(s + σk−1)]νk(s)

, (4)

νk(s) = ck(s + σk−1[1− πk−1(s)]). (5)

Functions πk(s),...,νk(s) included in expression (1)-(5) are the Laplace-Stieltjes
transforms of distribution functions Πk(t),...,Nk(s) of the supplementary in-
tervals of the k-th period,..., the k-th orientation cycle having rather deter-
mined independent meaning. Thus, (4) is nothing but the distribution of the
total time of the priority request k occurrence in the device. Let us denote
by βk1, ci1, πk1,..., νk1 the first moments of the distribution functions Bk(t),

3

Ck(t), Πk(t),..., Nk(t), respectively. Let

ρk =
k∑

i=1

aibi,

where

b1 =
β11 + c11

1 + a1c11

,

bi = Φ1 . . . Φi−1
1

σi−1

[
1

βi(σi−1)
− 1](1 + σi−1ci1),

Φ1 = 1, Φi = 1 + (σi − σi−1πi−1(ai))ci1, i = 2, ..., k.

Statement 2 If ρk < 1 then

σkπk1 =
Φ2 . . . Φk + ρk−1

1− ρk

,

π̄k1 =
bk

1− ρk

,

hk1 =
bk

1− ρk−1

,

νk1 =
Φ2 . . . Φk−1

1− ρk

ck1.

2.2 Probabilities of the →j-state

In the process of functioning of a queuing priority system with orientation
the servicing device can be in one of the following states:

• busy with servicing a request,

• busy with orientation for servicing,

• free from orientation for servicing or servicing itself.

In the case when the device is busy with servicing, the question arises as
what priority class of requests is servicing and in the case if the device is
busy with orientation to what priority class of requests is it orienting in the
time under consideration ?

4

Let
→
Pj(s) denote the probability that at the time instant t ∈ [0,∞) the

device is busy with orientation for servicing of a request of the j-th priority
class, j = 1, ..., r. Furthermore, let us denote

→pj(s) =
∫ ∞

0
e−st →

Pj(t)dt.

Statement 3 The Laplace transform →pj(s) satisfies the following
equality

→pj(s) =
σ →

jπ(s)

s + σ − σπ(s)
,

where

σk
→
jπk(s) = {ψj(s)γj−1(s)

+
Gj(s)σj−1πj−1(s)ψj(s)Qj(s)

1− hj(s)
}

×
k∏

i=j+1

{1 + ψi(s)γi−1(s)

+
[1 + σi−1πi−1(s)ψi(s)]Gi(s)Qi(s)

1− hi(s)
}, j < k,

σk
→
kπk(s) = {ψk(s)γk−1(s)

+
Gk(s)σk−1πk−1(s)ψk(s)Qk(s)

1− hk(s)
}, j = k,

Qj(s) = γj−1(s)νj(s)− σj−1πj−1(s + aj)− σjπj(s),

γi−1(s) = σi−1[πi−1(s)− πi−1(s + ai)] + ai,

ψj(s) =
1− cj(s + σj−1[1− πj−1(s)])

s + σj−1[1− πj−1(s)]

Gj(s) =
1− βj(s + σj−1)

s + σj−1[1− βj(s + σj−1)]πj−1(s)νj(s)
.

Functions πj(s), νj(s), hj(s) are determined from the expressions (1)-(5).

5

2.3 Probabilities of ∗j-state
Let

∗
Pj(t) be the probability that at the instant t the device is busy with

servicing the requests of the class j,j = 1, ..., r. Let

∗pj(s) =
∫ ∞

0
e−st ∗Pj(t)dt.

Statement 4 The Laplace transform ∗pj(s) satisfies the following
equality

∗pj(s) =
σ ∗

jπ(s)

s + σ − σπ(s)
,

σk
∗
jπk(s) =

Gj(s)ψj(s)Qj(s)

1− hj(s)

×
k∏

i=j+1

{1 + ψi(s)γi−1(s)

+
[1 + σi−1πi−1(s)ψi(s)]Gi(s)Qi(s)

1− hi(s)
}, j < k,

σk
∗
jπk(s) =

Gk(s)ψk(s)Qk(s)

1− hk(s)
, j = k.

Functions Qj(s), ..., Gj(s) are determined above.

Let
∗
Pj and

→
Pj be the stationary probabilities of the →j-th and ∗j-th

state.

Statement 5 If ρr < 1 then

∗
Pj =

σ ∗
jπ(0)

1 + σπ1

,

→
Pj =

σ →
j π(0)

1 + σπ1

,

where π1 = πr1 is determined (at k = r) from statement 2.

6

3 Object oriented programming for queuing

systems. The basic objects.

The basic principles of OOP for queuing system will be presented in the
sequel. Through this compartment we follow the convenience adopted in the
programming language PASCAL 6.0 stating that any object has at most one
ancestor.

We begin the description of the queuing system in terms of object oriented
programming by finding its most simple structure unit. From the Probability
Theory’s point of view the simplest structure element in some queuing system
is the random variable (r.v.). This is so because all quantities involved in
the description of the model of the queuing system are some characteristics
of positive r.v..

For the sake of definiteness we worked out two examples. So the equa-
tions (1)-(5) are written in terms of the Laplace-Stieltjes transforms of the
distribution functions (d.f.) of such time periods as πk, πkk, π̄kk, hk, νk pe-
riods. In their turn all these time periods are positive r.v.. For the second
example we have the probabilities of →j-state

→
Pj(s) and ∗j-state

∗
Pj(s)

which are understood as the distribution of the r.v. with the discrete values
1, 2, ..., r.

3.1 Object type RV

In this section we describe the object type RV corresponding to the abstract
r.v. with the continuous d.f..

We begin by selecting three different possibilities to define a r.v.. The
first one is to define r.v. by means of their d.f. DistrF (t). The second one
is to describe a r.v. by using the density function (ds.f.) DensityF (t) if it
exists. Interdependence of these two methods of defining a r.v. are given by
the relations

DistrF (t) =
∫ t

0
DensityF (s)ds,

DensityF (s) = DistrF
′
(t).

For the third possibility we recall that the basic equations (1)-(5) describing
PSSO are in terms of the Laplace-Stieltjes transform of d.f. of some r.v..
Therefore we have to describe a r.v. also in terms of the Laplace-Stieltjes

7

transform LaplaceF (t) of their d.f.. In order to establish the connection
between two functions DistrF (t) and LaplaceF (t) we have to mention that
there exists a one-to-one application from the set of d.f. onto the set of
their Laplace-Stieltjes transforms. This gives us the possibility to describe
completely a r.v. knowing only the Laplace-Stieltjes transform as well.

The above mentioned allows us to understand a r.v. as the collection
of three functions: DistrF (t), DensityF (t), LaplaceF (t). For the rea-
sons which we will explain just now it is convenient to specify the func-
tion DistrF (t) to be the inversion formula of the Laplace-Stieltjes transform
LaplaceF (t)

DistrF (t) =
1

2πi

∫

C

LaplaceF (s)

s
estds,

C – being the integration contour C = {z is complex number with Re z >
0}, the DensityF (t) to be the inversion formula of the Laplace transform
LaplaceF (t)

DensityF (t) =
1

2πi

∫

C
LaplaceF (s)estds,

C – being the above integration contour and LaplaceF (t) to be the Laplace-
Stieltjes transform formula

LaplaceF (t) =
∫ ∞

0
e−stdDistrF (s).

We argue such choice in the following manner. In case we have known for
instance only the r.v.’s function LaplaceF (t) then we cover the inherited
method LaplaceF (t) by new a method which can explicitly calculate it while
for unknown characteristics DistrF (t) and DensityF (t) the inherited meth-
ods will provide approximation formulae.

So we introduce the object type RV corresponding to the r.v. as follows:
Object type

RV =

Ancestor :
Fields :
Methods : Init;

Done;virtual;

DistrF(t);virtual;

DensityF(t);virtual;

LaplaceF(t);virtual;

Description:

8

• Init, Done: empty constructor and detractor,

• DistrF(t): method calculating the inversion of the Laplace-
Stieltjes transform of LaplaceF(t),

• DensityF(t): method calculating the inversion of the Laplace trans-
form of LaplaceF(t),

• LaplaceF(t): method calculating the Laplace-Stieltjes transform of
DistrF(t).

The just described object type RV does not represent a really existing r.v..
We only need the object type RV to construct the object types related with
the r.v. of the desired kind to be used in modeling the queuing system.

We shall present an example of an object type corresponding to the r.v.
with the known Laplace-Stieltjes transform f(t, a), a being some parameter:

Object type

TMyRV =

Ancestor : RV;

Fields : a;

Methods : LaplaceF(t);virtual;

Description:

• a is the value of parameter of f(t, a),

• LaplaceF(t) = f(t, a).

If variable MyRV is of type TMyRV then to access the value of its d.f. DistrF(t)
we write simply MyRV.DistrF(t) to call the implemented method inverting
the Laplace-Stieltjes transform of
MyRV.LaplaceF(t).

Now we proceed describing some types of useful r.v.. We present the
description of the object types related to the r.v. with exponential and
Erlang d.f.. The structures of these object types are as follows:

Object type

ExpRV =

Ancestor : RV;

Fields : a;

Methods : DistrF(t);virtual;

DensityF(t);virtual;

LaplaceF(t);virtual;

9

Description:

• a: parameter,

• DistrF(t)= 1− e−at,

• DensityF(t)= ae−at,

• LaplaceF(t)= a/(a + t).

Object type

ErlRV =

Ancestor : RV;

Fields : a,k;

Methods : DistrF(t);virtual;

DensityF(t);virtual;

LaplaceF(t);virtual;

Description:

• a, k: parameters,

• DensityF(t) = ak tk−1

(k−1)!
e−at,

• LaplaceF(t) = ak

(a+t)k .

3.2 Object type Queue

In this section we describe the object type related with the exponential input
of requests. To this end let us explain the structure of input queue. The input
queue is formed by all arriving requests while the PSSO is busy. It includes
r flows corresponding to the priorities 1,...,r. The time length between two
consecutive arrivals of requests of the same flow is the exponential r.v. with
parameters ai.

In order to define the flow we use the object type Flow with the following
structure:

Object type

Flow =

Ancestor : ExpRV;

Fields :
Methods : SetIntensity(a);

GetIntensity;

Description:

10

• SetIntensity(a): sets the value of the parameter of exponential r.v.,

• GetIntensity: gets the value of the parameter of exponential r.v..

Since the input queue contains r flows we can understand it as a collection
of r r.v.. Corresponding to the input queue we introduce the object type
Queue. Its structure is presented as follows:

Object type

Queue =

Ancestor :
Fields : Flow;

Methods : Init(r);

Done(r);virtual;

DistrF(k,t);virtual;

DensityF(k,t);virtual;

LaplaceF(k,t);virtual;

SetIntensity(k,a);

Intensity(k);

11

Description:

• Flow: the pointer to the array of objects of type Flow,

• Init(r): creates the dynamic array of dimension r of objects of type
Flow and set the pointer to this array in Flow,

• Done(r): disposes the dynamic array of dimension r of objects of type
Flow at the pointer Flow,

• DistrF(k,t), DensityF(k,t), LaplaceF(k,t): return the values DistrF(t),
DensityF(t), LaplaceF(t) of the k-th flow,

• SetIntensity(k,a), Intensity(k): set and return the intensity ak

of the k-th flow.

3.3 Object types Orient and Service

This section deal with the object types related to the orientation and service
periods.

Recall that before proceeding to serve the request of priority k the PSSO
needs an orientation time period for preparing, if the previous request’s pri-
ority differ of k. This time period is actually a positive r.v.. The orientation
times corresponding to different priorities are distinct, so in order to de-
scribe the orientations process we need a collection of r r.v.. The object type
Orient is created to keep this r.v. and to provide their treatment.

Object type

Orient =

Ancestor :
Fields : Time;

Methods : Init(r);

Done(r);

SetRV(k,OrientTime);

DistrF(k,t);

DensityF(k,t);

LaplaceF(k,t);

12

Description:

• Time: the pointer to the array of objects of type RV,

• Init(r): creates the dynamic array of dimension r of pointers of type
RV and sets the pointer to this array in Time,

• Done(r): disposes the dynamic array of dimension r of objects of type
RV at the pointer Time,

• SetRV(k,OrientTime): sets the pointer Time[k] to point to the object
of type RV wanted to be the k-th orientation time,

• DistrF(k,t), DensityF(k,t), LaplaceF(k,t): return the values LaplaceF(t),
DistrF(t), DensityF(t) of the k-th orientation time.

After the orientation the PSSO device proceeds to serve the request. Again
the PSSO device need a random time period to serve the request. So a
collection of r r.v. fully describe the service times. Object type Service

is destined to handle these service times and is defined in the same way as
object type Orient.

3.4 Object type Status

At this point we have to create an object for the state of the PSSO.
The PSSO state is determined by two parameters we call Scheme and

Regime respectively (see [8]). The first one is a bidimensional vector with
components OrientDisc and ServiceDisc each oh them describing the dis-
ciplines of orientation and service respectively. Parameter Scheme takes the
values in the following table

1.1 (1, 2) (1, 3) (1, 4)

2.1 (2, 2) (2, 3) (2, 4)

3.1 (3, 2) (3, 3) (3, 4)

Schemes (1,1),...,(2,3) represent six types of the absolute priority Abs1, Abs2,
Abs3, Abs4, Abs5, Abs6. Schemes (3,1),...,(3,3) represent three types of the
semiabsolute priority SemiAbs1, SemiAbs2, SemiAbs3. Schemes (1,4),(2,4)

13

represent two types of the semirelative priority SemiRel1, SemiRel2. Scheme
(3,4) represents the relative priority Rel.

The parameter Regime set the behavior of the PSSO while the system is
not busy. There are three alternatives Reset, LookAhead, WaitMostProb.

The object type Status provides a handle for the parameters
Dimension, OrientDisc, ServiceDisc and Regime.

Object type

Status =

Ancestor :
Fields : Dimension;

OrientDisc; ServiceDisc;

Regime;

Methods : Init; Done;virtual;

SetDimension(Dim);virtual;

GetDimension;virtual;

SetServiceDisc(ServiceD);virtual;

GetServiceDisc;virtual;

SetOrientDisc(OrientD);virtual;

GetOrientDisc;virtual;

SetRegime(Reg);virtual;

GetRegime;virtual;

SetPriority(Prior);virtual;

GetPriority;virtual;

Description:

• Dimension: the numbers of priorities r,

• OrientDisc: keeps the orientation discipline,

• ServiceDisc: keeps the service discipline,

• Regime: keeps the parameter Regime,

• Init: installs the default values for all fields,

• Done: destroys the object,

• All other methods install or return the values of corresponding param-
eters.

14

3.5 Object type MG

Having defined the object types Queue, Service, Orient and Status we can
construct now the object type MG containing the full background information
on the PSSO.

Object type

MG =

Ancestor : Status;

Fields : Queue;

Service;

Orient;

Methods : Init(Dim);

Done;virtual;

Description:

• Queue: the object of type Queue,

• Service: the object of type Service,

• Orient: the object of type Orient,

• Init, Done: call the Init, Done methods of the objects Queue, Service,
Orient and Status.

3.6 Object type PSSO

Object type PSSO is introduced to provide a background for PSSO charac-
teristics. It includes the procedures Fast and FastIter which are of crucial
importance in the calculation of all characteristics.

Object type

PSSO =

Ancestor : MG;

Fields : a, sigma;
cnt, InitpkkDimension, Initpkk;

pks, bpkk, pk1s1, pk1s2;

Methods : Fast(k,s);

FastIter(k,s);

n(k,s,x);

h(k,s,x,y);

Description:

15

• a,sigma: the arrays of input intensities and their partial sums,

• cnt, InitpkkDimension, Initpkk: some quantities for use in meth-
ods Fast and FastIter,

• pks, bpkk, pk1s1, pk1s2: the values πk(s), π̄kk(s), πk−1(s+ak), πk−1(s+
ak(1− π̄kk(s))) respectively,

• Fast, FastIter, n, h: produce background calculation for all PSSO
characteristics,

3.7 Object types related with PSSO characteristics

We treat any PSSO characteristic as a r.v. related to some object of type
PSSO. This allows the characteristic to access the fields and methods of the
object for its own use. First we introduce the abstract type PSSOChar which
include the common feature of all characteristics, i.e. the property to access
the object of type PSSO.

Object type

PSSOChar =

Ancestor : RV;

Fields : k;

PSSOptr;

Methods : Init(PSSO);

SetLevel(i);

16

Description:

• k: selected priority,

• PSSOptr: pointer to the object of type PSSO,

• Init(PSSO): sets PSSOptr=PSSO,

• SetLevel(i): sets k=i,

Now we proceed defining object types corresponding to some concrete PSSO
characteristics. To do this we only need to redefine the inherited method
LaplaceF of the object type PSSOChar in the proper way.

First we define the object type of the characteristic πk(s).
Object type

pk =

Ancestor : PSSOChar;

Fields :
Methods : LaplaceF(t);

Description:

• LaplaceF(t) runs the procedure Fast(k,t) of the object to which
PSSOptr points and returns the value pks.

Now let us present the object type of the characteristic πkk.
Object type

pkk =

Ancestor : PSSOChar;

Fields :
Methods : LaplaceF(t);

Description:

• LaplaceF(t) runs the procedure Fast(k-1,t) of the object to which
PSSOptr points and returns the value n(k,t,pks).

For other characteristics the similar object types are available.

17

The connection between object types is presented in the figure below.

RV

ExpRV MyRV1 MyRV2

Flow

Queue Service Orient Status

MG

PSSO

pk pkk nk hk

PSSOChar

The thin line shows the origin of the object while the thick line shows what
objects it contains .

4 Numerical results

The above object types were used to evaluate the characteristics πk, πkk, π̄kk,
nk, hk. In the following tables we present some numerical results. The first
number inside each column represents the value of the corresponding charac-
teristic, the second one being the processing time in msec . All calculations
were performed at the computer IBM PC 286.

18

t πk πkk π̄kk nk hk

.00001 1.000 61 1.000 61 1.000 61 1.000 22 1.000 16
.1 .8551 66 .8601 66 .9136 71 .9571 22 .9365 22
.5 .6039 44 .6111 44 .7441 44 .8467 17 .7788 22

1.23 .4156 33 .4205 27 .5956 33 .7300 11 .6253 11
3.45 .2088 22 .2102 22 .3986 22 .5442 11 .4156 11
5.67 .1310 16 .1316 17 .3066 16 .4415 06 .3176 06
10.12 .0670 16 .0671 16 .2124 17 .3233 05 .2182 06
20.34 .0250 11 .0250 16 .1259 17 .2015 06 .1281 05

References

[1] Klimov, G.P. and Mishkoy, G.K. (1979): Priority service systems with
orientations. Moscow State University, (Russian).

[2] Jaiswal, N.K. (1968): Priority queues. Academic Press, New York.

[3] Bronstein, O.I. and Dukhovny, I.M. (1976): Priority models in computer
systems. Nauka, Moscow, (Russian).

[4] Lipaev, V.V. (1979): Allocation of resources in computer systems. Sta-
tistica, Moscow, 1979, (Russian).

[5] Kabalevsky, A.N. (1986): Personal computers. Nauka, Moscow, (Rus-
sian).

[6] Gnedenko, B.V. et al. (1973): Priority service systems. Moscow State
University, (Russian).

[7] Mishkoy, G.K. (1990): Priority queuing involving orientation and the
problems of their software implementation. Computers Math.Applic. vol
19, no1, pp. 109-113.

[8] Mishkoy, G.K. etc. (1990): Software for priority systems with orientation.
Stiintsa, Kishinev, (Russian).

19

I.Grama, G.Mishkoy Received September 15, 1992
Institute of Mathematics,
Academy of Sciences of Moldova,
5 Academiei str.,
Chişinău, 277028, Moldova

20

