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Abstract - This paper explains the biophysical principles which, according to us, govern the Proteus

mirabilis swarm phenomenon. Then, this explanation is translated into a mathematical model, essentially

based on partial differential equations. This model is then implemented using numerical methods of the

finite volume type in order to make simulations. The simulations show most of the characteristics which are

observed in situ and in particular the terrace generation.
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1 Introduction

Proteus mirabilis is a pathogenic bacterium of the urinary tract. Under specific conditions, within
a Proteus mirabilis colony grown on a solid substratum, some bacteria, the standard form of which
is a short cell, called “swimmer” or “vegetative”, undergo differentiation into elongated cells, called
“swarmer” cells, capable of translocation. Having this translocation ability, those swarmer cells may
begin to colonize the surrounding medium. After a given period of time, the swarm phenomenon
stops and the swarmer cells de-differentiate to produce vegetative cells which would, later on, be
able to differentiate again and resume colonization.
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Figure 1: Proteus mirabilis: Short vegetative cells (A); swarmer cells (B); periphery of a colony (C)
and a swarm colony with terraces (D). Scales : (A): bar = 0.5 µm; (B): bar = 5 µm; (C): bar = 10
µm and (D): colony radius = 3 cm.

This swarm phenomenon is illustrated in Figures 1 and 2. In Figure 1, the Proteus mirabilis
cells can be seen in their standard vegetative forms (A). They are about 2 µm long. The elongated
swarmer cells which range between 10 to 25 µm and which are covered by hundreds of flagella can
also be seen (B). The third panel (C) displays a close up of the peripheral edge of a bacterial colony
on an agar medium filling a Petri dish. The area around the edge is the theater of fast motion of
swarmer cell flagella making it moves while the medium is gradually colonized. The last panel (D)
shows a colony after several hours of swarming. It forms a thin film showing the specific pattern:
concentric rings called terraces. Those rings are made by variations in the colony’s thickness.

Figure 2 which displays three snapshots of the colony expansion on agar during an active mi-
gration phase. The expansion process is clearly seen from the progression of the colony’s edge. The
central inoculum is located in the bottom right of each picture.

For a precise and synthetic description of Proteus mirabilis swarm phenomenon, we refer to
Rauprich et al. [38] and Matsuyama et al. [33]. Among all aspects described in those references,
periodic alternation of swarm phases and of consolidation phases, without any motion, seem to be the
most typical one. This alternation gives rise to terraces as a resulting effect. The second one concerns
the cell size distribution and was pointed out in Matsuyama et al. [33]. As for space distribution at
a given time, the swarming front is essentially constituted by long cells and the proportion of shorter
cells grows while moving towards the colony interior. Concerning time distribution at a given place,
the colonization starts with long hyperflagellated cells and then the proportion of shorter cells grows.
The third typical fact, pointed out in Lahaye et al. [24, 25] is that the consolidation phase begins
even though swarmer cells are still present in the colony front.
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Figure 2: Active swarming phase on agar. The figure shows three snapshots 30 min apart during a
migration phase on agar.

Proteus mirabilis swarm phenomenon has fascinated micro-biologists and other scientists for over
a century, since Hauser [20] first described it. This fascination certainly comes from the fact that
bacteria are often considered as very primitive organisms and from the astonishing fact that such
primitive living forms are able to generate such nice regular structures. This phenomenon certainly
played an important role in morphogenesis and fractal theories (see Thom [51], Mandelbrot [30],
Falconer [14] and references in them) that highlighted in a very resounding way that very simple
principles may generate very complex shapes. On the other hand, as explained by Kaufmann [22],
phenomena of the Proteus mirabilis swarm kind seem to belong to an intermediary step between
unicellular organisms and multicellular organisms. As a mater of fact, key elements to the under-
standing of evolution of life can certainly be found within the understanding of those phenomena.

Collective behaviour of bacteria colonies has been widely observed, described and studied. For
instance, Hoeniger [21] delineated the Proteus mirabilis swarm phenomenon and Budrene & Berg
[10] pointed out the ability that bacteria colonies have to draw complex patterns. Shapiro [42, 43, 44]
and more recently Rauprich et al. [38] and Matsuyama et al. [33] made a wide observation campaign
to precisely analyze the phenomenon.

This research effort pointed out that the swarm phenomenon has to be seen as an emergent
property leading to the consideration of bacteria as multicellular organisms (see Shapiro & Dworkin
[49], Shapiro [45, 48] and Dworkin [12]).

Research has mainly tackled the problems of origin and of regulation of bacterial collective
behaviour with a genetic or a bio-chemical slant (see Shapiro [40, 41, 46, 47], Belas [7], Manos &
Belas [31], Schneider et al. [39] and Gué et al. [17]) .

The goal of the present paper is to add a bio-physical slant concerning the swarm phenomenon.
More precisely, we exhibit the main physical phenomena of the bacteria to achieve their colonization.
What we have chosen to do is to make assumptions about the physical principles governing the bac-
teria behaviour and controlling the swarm and to translate those assumptions into a mathematical
model involving partial differential equations. Then, this model is implemented in Matlab R©7 lan-
guage. Using the resulting program, we make several simulations with several values of parameters
involved in the model. We finally observe that macroscopic colony behaviours may be recovered
by the simulations leading to the conclusion that our assumptions are not entirely unreasonable.
Beyond this conclusion, the scientific approach consisting in using modelling and simulation in or-
der to test assumptions, is another important contribution of this paper. We plan to apply it, in
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forthcoming works, in order to refine Proteus mirabilis swarm explanation.

Using modelling, mathematical analysis and simulation to describe or understand biological
systems is not unusual nowadays. For an introduction to these topics, we refer to Murray [37]. Those
kinds of mathematical methods were applied in the context of collective behaviour of bacteria. For
a description of this, we refer to Matsuschita [32] and Ben-Jacob & Cohen [8].

Esipov & Shapiro [13] set out a kinetic model describing the swarm of Proteus mirabilis at the
colony scale recovering the main behaviours of a real colony: time alternation of swarming phases
and consolidation phases, time alternation of colony radius increases and stops and terraces. The key
ingredient causing their model to produce good results is the introduction of an age structuring of the
bacterial population as is suggested in Gurtin [18] and Gurtin & Mac Camy [19]. This introduction
allows one to take into consideration the age of the swarmer cells when looking at their behaviour.
This model was studied from mathematical and numerical analysis viewpoints in Esipov & Shapiro
[13], Medvedev, Kapper & Koppel [35], Ayati [1, 2, 3, 4], Ayati & Dupont [5], Frénod [16], Ayati
& Klapper [6] and Laurençot & Walker [26, 27]. In particular, Ayati [3] showed the importance of
using age structured model to reproduce the cell size distribution pointed out by Matsuyama et al.
[33].

The existing models describing colonization by bacteria generally contain an advection or dif-
fusion term allowing one to define the direction in which the colony expands conformal to reality.
This makes the model behave in a way which conforms to reality. But the factors in front of these
advection and diffusion terms which control the beginning, velocity, and ending of the swarm are
mainly set from phenomenological considerations.

As for the research of physical principles explaining bacterial collective behaviour we mention
Mendelson, Salhi & Li [36].

Acknowledgements - We thank James Shapiro and Bruce Ayati who pointed out lacks in the
first version of the paper and suggested ways to remedy them. We also thank Joanna Ropers for
proofreading this paper.

2 Explanation of the principles governing the swarm

From a long in situ observation campaign of Proteus mirabilis colonies (see Gué et al. [17], Keirsse
et al. [23], Lahaye et al. [24, 25]) and knowledge of physical phenomena arising within complex
fluids, we are convinced that the main physical explanations of Proteus mirabilis swarm come from
the properties of the extra cellular matrix which is the complex fluid smothering the bacteria of the
colony. More than ten years ago, Rauprich et al. [38] hypothesised the key role of relative osmotic
activities at the agar colony interface. More recently, Berg [9] and Chen et al. [11] further supported
hypothesis of Lahaye et al. [24, 25] claiming that the preservation of a critical water concentration
allowing swarming of bacteria colonies was due to an osmotic agent.

In short, two properties seem to play an important role: the thickness of the colony and the
water concentration within the extra cellular matrix.

The colony thickness plays a role in controlling the growth rate of cells in their vegetative form:
once a given thickness is reached, the cell division ends, stopping vegetative population growth.

The extra cellular matrix is compounded with water, polysaccharides and lipids. When the
water concentration of this matrix is low, polysaccharides and lipids auto-organize which results
in semi-crystallinity and visco-elastic properties. When it is high, polysaccharides and lipid auto-
organization is lost, due to efficient solvent competition with solute-solute interactions, decreasing
thereby the visco-elastic properties of the extra cellular matrix.
It has been well established that the translocation ability of the colony is a consequence of the
rotation and oscillation the hundreds of flagella of a large number of swarmer cells. On the other
hand, observations have put into light that consolidation phases begin despite numbers of swarmer
cells are present and moving but without any effect on colony displacement.
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Hence, we may infer that water concentration rules the swarm phenomenon in the following way.
When it is low, swarmer cells interacting with visco-elastic properties of the extra cellular matrix
produce colony expansion. When the matrix water concentration is high, the visco-elastic properties
are lost. Then swarmer cell agitation, when it occurs, does not produce a swarm.

The differentiation process may be assumed to be a kind of dysfunction in the cell division process:
for a small proportion of vegetative bacteria, the cell division is not brought to completion. It is also
consistent to suppose that a cell having undergone this differentiation goes on elongating, as long as
water concentration is low, until it reaches a maximum length depending on water concentration.
Once this maximum length is reached, the cell oscillation and rotation begin. At this stage, the
swarmer cells become almost metabolically dormant (see for instance Stickler [50], Mc Coy et al.
[34] and Falkinham and Hoffman [15]) and then do not consume extra fuel from the extra cellular
matrix during their migration. Then we may suppose that their life duration, in this stage, is
finite and linked to their length. After their life duration, the metabolism-frozen swarmer cells
de-differentiate to produce new vegetative cells.

In a given place of the colony, the evolution of water concentration of the extra cellular matrix
is influenced by the density of bacteria, which need water to achieve metabolism, and by the dis-
placement of swarmer cells which bring with them a part of their surrounding medium. The third
factor influencing matrix water concentration is the water concentration in the agar medium with
which it exchanges water and the corresponding transfer properties at the agar - colony interface.

3 Translation of the principles into a model

In this section, we translate the principles explained in the previous section into a model, in the
simplest manner possible, and even in an oversimplified manner.

The model set out in Esipov & Shapiro [13] coupled two equations. The first of them was
an ordinary differential equation describing the evolution of the vegetative cell biomass density.
The swarmer cells were modelled by an age-structured density which was the solution to a partial
differential equation describing aging, but also de-differentiation and swarming, both being age
dependent processes.

The model we have set out in the present paper, involves three equations. The first concerns
vegetative cells. To be able to take into account that the differentiated cells undergo an elongation
phase, followed by a swarming phase with no metabolism, we consider an equation modelling the
evolution of the elongating cells and another one modelling the evolution of swarmer cells having
stopped their metabolism, both of them involving age-structured functions.

We begin by considering the evolution of the vegetative cells. For this, we introduce the function
Q(t, x) which is the vegetative cell biomass density at time t ∈ [0, T ) and in a given position x ∈ R

2.
It is supposed to be the solution to the following ordinary differential equation:

∂Q

∂t
=

1− ξ

τ
Q χ

(E − E

E

)

χ
(Q−Q

Q

)

+

∫ +∞

0

ρ(t, a, κa, x) ea/τ da. (3.1)

The time evolution of Q is the result of cell division, described by the first term on the right-hand
side of the equation (3.1), and of the de-differentiation products quantified by the second term. In
the first term, τ stands for the growth rate of the cell division process, ξ, 0 ≤ ξ ≤ 1, is the proportion
of cells undergoing differentiation, and then 1− ξ is the proportion of cells bringing their division to
completion. The function χ has the following definition χ(E) = 0 if E < 0 and = 1 otherwise. Then
the factor χ((E − E)/E), where E = E(t, x) is swarm colony thickness at t in x , takes into account
the above evoked control of colony thickness on the cell division process in the following way: when
E ≥ E , the term is set to 0. The factor χ((Q − Q)/Q) precludes the growth of Q by cell division
when Q is too low, i.e. when Q < Q.
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In the second term, ρ(t, a, b, x), at time t ∈ [0, T ), stands for the density of swarmer cells in position
x ∈ R

2, having been freezing their metabolism at an age a ∈ [0, +∞), for a period of time b. Since
the life duration of the the swarmer cells in this state is supposed to be linked to their length and
since the length of a given swarmer cell is linked to the duration during which it elongated, we set
that the life duration of a swarmer cell having stopped metabolism at an age a is κa. The growth
rate of the biomass of the elongating cells is the same as the one of the vegetative cells. Hence the
biomass density in position x of swarmer cells having been stopping their metabolism at an age a,
for a period of time b is ρ(t, a, b, x) ea/τ and the integral in the second term on the right-hand side
of (3.1) is nothing but the biomass density of cells that de-differentiate at time t.

The biomass density of vegetative cells at time t = 0 is given by the following initial data:

Q(0, x) = Q0(x). (3.2)

The description of the evolution of elongating cell population involves the following age-structured
function ζ(t, a, x), which stands, at time t ∈ [0, T ), for the density of elongating cells of age a ∈
[0, +∞) in x ∈ R

2. The evolution of this density is due to aging and to the transformation of
elongating cells into swarmer cells. We assume that this transformation in a given position x takes
place according to a transformation rate µ(a, H) depending on age a of the considered bacteria and
on water concentration H = H(t, x) of the matrix. The dependence of µ with respect to H takes
into account that the lower H is, the larger the existence duration expectancy of elongating cells is.

The equation modelling the evolution of ζ is:

∂ζ

∂t
+

∂ζ

∂a
= −µ(a, H)ζ. (3.3)

Since the proportion ξ of vegetative cells that differentiate generates elongating cells with age 0,
equation (3.1) and (3.3) are linked by the following transfer condition,

ζ(t, 0, x) =
ξ

τ
Q(t, x) χ

(E − E

E

)

χ
(Q−Q

Q

)

. (3.4)

The elongating cell density at the initial time is given by:

ζ(0, a, x) = ζ0(a, x), (3.5)

Now we turn to the modelling of the evolution of the swarmer cells which have stopped their
metabolism.
We consider that the velocity of swarmer cells is the consequence of the interaction of their agitation
with the visco-elastic properties of the matrix when water concentration is low. Then we introduce
a function c(H) which is non-zero for the small value of H and with value 0 for the large value of H .
Then, as the global motion of swarmer cells, when it exists, is the consequence of cell agitation it
is reasonable to consider that their velocity is in proportion with the colony thickness gradient ∇E ,
the proportion coefficient being c(H). In other words, we consider that the swarmer cell velocity in
a given position x is c(H(t, x))∇E(t, x).
The definition of ρ(t, a, b, x) defined for t ∈ [0, T ), a ∈ [0, +∞), b ∈ [0, κa) and x ∈ R

2 was already
given. In view of this definition, if S is a regular set of R

2 and b1 < b2 ≤ κa are two numbers,

∫

S×[b1,b2]

ρ(t, a, b, x) dbdx, (3.6)

is, at time t, the density of bacteria having stopped their metabolism at an age a, for a time larger
than b1 and smaller than b2 and situated in S. The time evolution of this quantity is linked to the
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aging fluxes in b1 and b2 and to the swarming flux on the boundary ∂S of S which has the following
expression

∫

∂S×[b1,b2]

(

c(H)∇E ρ
)

· n dbdl, (3.7)

where n stands for vector with norm 1, orthogonal to S and pointing outwards and where dl is the
Lebesgue measure on ∂S. Hence we deduce the following equation:

d
(

∫

S×[b1,b2]

ρ dbdx
)

dt
=

∫

S

ρ(t, a, b1, x) dx−

∫

S

ρ(t, a, b2, x) dx −

∫

∂S×[b1,b2]

(

c(H)∇E ρ
)

· n dbdl.

(3.8)

Using the divergence operator ∇· to transform flux integral into integral over S and noticing that
∇ · (c(H)∇E ρ) = c(H)∇E · ∇ρ + ρ∇ · (c(H)∇E), we finally obtain the partial differential equation
ρ satisfies:

∂ρ

∂t
+

∂ρ

∂b
= −c(H)∇E · ∇ρ− ρ∇ · (c(H)∇E). (3.9)

Since the elongating cells that stop metabolism at an age a become swarmer cells, we have the
following transfer condition

ρ(t, a, 0, x) = µ(a, H)ζ, (3.10)

and the following initial condition

ρ(t, 0, b, x) = ρ0(t, b, x), (3.11)

to provide (3.9) with.

The thickness E of the colony in a given position is in direct proportion to the biomass density
value at this point. In other words we set

E = Q +M+N , (3.12)

where

M(t, x) =

∫ +∞

0

ζ(t, a, x) ea/τ da, (3.13)

is the biomass density of elongating cells. Notice that Q +M is the biomass density of metabolic
cells; and N , defined as

N (t, x) =

∫ +∞

0

∫ κa

0

ρ(t, a, b, x) ea/τ dadb, (3.14)

is the density of metabolically dormant cells.

We now turn to the description of water concentration evolution. We first consider the water
concentration of agar gel near the contact surface. Let G(t, x), defined for t ∈ [0, T ), x ∈ R

2, be
the value of this water concentration at time t and in position x. We consider that it evolves due
to water transfers from and to the extra cellular matrix and that those transfers are proportional to
the water concentration difference between the two media and to a colony thickness function. We
name γt the proportion factor. There are also water exchanges between the agar layers close to the
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contact surface and the deeper layers. We model those exchanges by a simple ability to relax to the
concentration value being worth 1 with a velocity γd. In other words, we consider that G evolves
according to the following equation:

∂G

∂t
= −γtT (E)(G −H) + γd(1−G), (3.15)

where T (E) = E if E ≤ 1 and T (E) = 1 otherwise. Equation (3.15) is equipped with the following
initial data

G(0, x) = G0(x), (3.16)

giving water concentration of agar at initial time.

Since it is easier to model water quantity transfer as water concentration transfer, we introduce
h(t, x), defined for t ∈ [0, T ) and x ∈ R

2 which is the water density contained within the matrix in
position x at time t. This density is clearly proportional to the thickness of the colony times the
water concentration, with a proportion factor η that is linked to the part of the swarm colony the
matrix constitutes, i.e. h = ηEH .
If S is a regular subset of R

2 with boundary ∂S equipped with the vector field n with norm 1
orthogonal to S and pointing outwards and with the Lebesgue measure dl, the quantity

∫

S

h dx, (3.17)

is the water quantity contained in the swarm colony over S. This quantity evolves according to

d
(

∫

S

h dx
)

dt
= −

∫

S

(

α−

(

1− χ
(E − E

E

)

χ
(Q−Q

Q

)

)

α′

)

Q dx−

∫

S

αM dx

+

∫

S

γtT (E)(G −H) dx−

∫

∂S

(

c(H)∇E ηNH
)

· n dl. (3.18)

The second term of the right-hand side of this equation quantifies the amount of water the elongating
cells use for metabolism. This quantity is proportional, with a factor α, to the biomass density of
elongating cells. The first term quantifies the amount of water used for metabolism by vegetative
cells. This quantity is proportional to the biomass density of vegetative cells. The proportion factor
is α when vegetative cells undergo cell division and is α−α′ when they do not undergo cell division,
i.e. when χ((E − E)/E)χ((Q − Q)/Q) = 0. Since the swarmer cells are metabolically dormant, we
consider they do not intervene in water consumption. The third term models the water exchanges
with agar. The last term gives the flux of water carried by the swarmer cells. In it, c(H)∇E is
the velocity of the swarmers and then of the medium they carry with them; ηNH is the water
quantity carried by the swarmer cells, it is proportional to the swarmer biomass and to the water
concentration in the matrix.

Using the divergence operator, we deduce from (3.18) that h is solution to

∂h

∂t
= −

(

α−

(

1− χ
(E − E

E

)

χ
(Q−Q

Q

)

)

α′

)

Q− αM

+ γtT (E)(G−H)− ηc(H)∇E · ∇(NH)− ηNH ∇ · (c(H)∇E), (3.19)

endowed with the following initial data

h(0, x) = h0(x), (3.20)
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describing the water density at time t = 0.
From the link between H and h, we deduce

∂h

∂t
= η

(

H
∂E

∂t
+ E

∂H

∂t

)

, (3.21)

and then, from equation (3.19), an equation for H

∂H

∂t
= −

H

E

∂E

∂t
−

1

η

(

α−

(

1− χ
(E − E

E

)

χ
(Q−Q

Q

)

)

α′

)

Q

E

−
α

η

M

E
+

γtT (E)

ηE
(G−H)−

c(H)

E
∇E · ∇(NH)−

N

E
H ∇ · (c(H)∇E), (3.22)

H(0, x) = H0(x) =
h0(x)

ηE
. (3.23)

4 Implementation

From the model just set out, we write a Biomass Preserving Finite Volume-like numerical scheme
(see LeVeque [28, 29]) and then we implement it.

In this section, to simplify matters, we consider the swarm of a Proteus mirabilis population
whose distribution remains independent of the second position variable and an agar medium which
is also independent of the second position variable. This means that the position space is considered
nothing but a segment, say [0, xmax], of R. We introduce a time step ∆t, and age steps ∆a and ∆b
with the following link ∆b = ∆a = ∆t. We also define a position step ∆x such that, I∆x = xmax,
for an integer I. We then define, for n ∈ N, tn = n∆t, for k ∈ N

∗, ak = (k − 1/2)∆a (see Figure 3),
for p ∈ N

∗, bp = (p− 1/2)∆b, and, for i ∈ {1, . . . , I}, xi = (i− 1/2)∆x (see Figure 4).

For every tn, the function Q(tn, .) is approximated by a function with a constant value, defined
as Qn

i , on every interval (xi−1/2, xi+1/2), where xi−1/2 = xi − ∆x/2 = (i − 1)∆x and xi+1/2 =
xi + ∆x/2 = i∆x for i ∈ {1, . . . , I}. Consistently, the approximation of initial data (3.2) is:

Q0
i =

1

∆x

∫ xi+1/2

xi−1/2

Q0(x) dx. (4.1)
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Equation (3.1) is approximated by

Qn+1
i = Qn

i + ∆t

(

1− ξ

τ
Qn

i χ
(E − En

i

E

)

χ
(Qn

i −Q

Q

)

+Dn
i

)

, (4.2)

where En
i and Dn

i are approximations of the mean values of E(tn, .) and of
∫ +∞

0
ρ(tn, a, κa, .) ea/τ da

over (xi−1/2, xi+1/2), supposed to be available and defined in the sequel.

The function ζ(tn, ., .) is then approached by a function ζ̃(tn, ., .), which is constant, with worth
ζn
k,i, on any rectangle Rk,i = (ak−1/2, ak+1/2) × (xi−1/2, xi+1/2), where ak−1/2 = ak − ∆a/2 =

(k − 1)∆a and ak+1/2 = ak + ∆a/2 = k∆a, such that

∫

Rk,i

ζ̃(tn, a, x) ea/τdadx = ∆x
(

ek∆a/τ − e(k−1)∆a/τ
)

τ ζn
k,i

is supposed to be close to

∫

Rk,i

ζ(tn, a, x) ea/τ dadx, (4.3)

for k ∈ N
∗ and i ∈ {1, . . . , I}. Then, the approximation of initial data (3.5) reads

ζ0
k,i =

1

∆x (ek∆a/τ − e(k−1)∆a/τ )τ

∫

Rk,i

ζ0(a, x) ea/τ dadx. (4.4)

At each time step tn, ζn
0,i for i ∈ {1, . . . , I} are used for the biomass transfer from vegetative cells.

Hence we translate condition (3.4) into:

ζn
0,i =

∆t

(e∆a/τ − 1)τ

ξ

τ
Qn

i χ
(E − En

i

E

)

χ
(Qn

i −Q

Q

)

. (4.5)

We introduce a non increasing function A(H), ranging in the interval [Aw, Ad] with A(0) = Ad and
A(1) = Aw, and before approximating (3.3) we assume that for any value of H , function µ(., H) is
0 when a ≤ A(H) and increases very quickly after this value, as illustrated in Figure 5. In other
words, we assume that at a given value H of the water concentration, the elongating cells remain in
there state until an age A(H) and that they become swarmer cells very soon after this age. With
this assumption and since ∆a = ∆t, equation (3.3) may be approximated by:

ζn+1
k,i = ζn

k−1,i, for every i ∈ {1, . . . , I} and every k ∈ N
∗ such that (k − 1/2)∆a ≤ A(Hn

i ), (4.6)

ζn+1
k,i = 0, for every i ∈ {1, . . . , I} and every k ∈ N

∗ such that (k − 1/2)∆a > A(Hn
i ), (4.7)
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where Hn
i is an approximation of H near xi at time tn to be defined hereafter.

We now turn to the swarmer cells. We approximate their density ρ(tn, ., .) by a function ρ̃ which
is constant on any parallelepiped Pk,p,i = (ak−1/2, ak+1/2)× (bp−1/2, ap+1/2)× (xi−1/2, xi+1/2). The
value ρn

k,p,i is defined as being such that ∆b ρn
k,p,i is the value of ρ̃ on this parallelepiped. Consistent

with this definition, initial data (3.11) is approximated by

ρ0
k,p,i =

1

∆x(ek∆a/τ − e(k−1)∆a/τ )τ

∫

Pk,p,i

ρ0(a, b, x) ea/τ dadbdx. (4.8)

Transfer condition (3.10) is approached by:

ρn+1
k,0,i =

∑

(k−1/2)∆a>A(Hn
i )

ζn
k,i, (4.9)

for every i ∈ {1, . . . , I}, this last relation balancing (4.7).
To be able to obtain a biomass preserving scheme, we chose to discretize the form (3.8) of the
equation giving the evolution of ρ. We make a splitting that consists in sequentially processing
aging, the action of which is quantified by the two first terms on the right-hand side of equation
(3.8), and, translocation modelled by the last term.
The first step of the splitting that takes into account aging, consists simply in introducing a sequence

(ρ
n+1/2
k,p,i ) for k ∈ N

∗, p ∈ N
∗ and i ∈ {1, . . . , I} defined by

ρ
n+1/2
k,p,i = ρn

k,p−1,i. (4.10)

For the second step of the splitting we need an approximation of the flux velocity c(H)∇E at all
points xi−1/2 = (i − 1)∆x which are defined for i ∈ {1, . . . , I + 1}, and which are the interfaces
between the discretization interval (xi−1/2, xi+1/2) of the position space. Calling V n

i−1/2 the value of

this approximation, we set i ∈ {2, . . . , I}

V n
i−1/2 = c

(

2
1

Hn
i−1

+ 1
Hn

i

)

1

∆x
(En

i − E
n
i−1), (4.11)

that allows one to minimize retrograde polluting propagation of the flux in regions where its velocity
is zero. We set V n

1/2 = 0 and V n
I+1/2 = V n

I−1/2 which makes the swarmer cells go out of the domain
boundary once they have reached it.
From those flux velocities, we define the swarmer fluxes Fn

k,p,i−1/2 in all interfaces xi−1/2. In an
interface where the velocity is non negative, the value of the swarmer density just before the interface
is taken into account. In an interface where the velocity is non positive, the value of the swarmer
density just after the interface is taken into account. In other words we set:

Fn
k,p,i−1/2 = V n

i−1/2 ρ
n+1/2
k,p,i if V n

i−1/2 ≤ 0,

Fn
k,p,i−1/2 = V n

i−1/2 ρ
n+1/2
k,p,i−1 if V n

i−1/2 > 0.
(4.12)

Once the fluxes are computed, not forgetting that ρ is defined for values of b smaller than κa and
that swarmer cells at an age b = κa de-differentiate to produce vegetative cells, the values of the
swarmer density approximation for the next time step is given, for every i ∈ {1, . . . , I}, by

ρn+1
k,p,i =ρ

n+1/2
k,p,i +

∆t

∆x
(Fn

k,p,i−1/2 − Fn
k,p,i+1/2),

for every p ∈ N
∗ and k ∈ N

∗ such that (p− 1/2)∆b ≤ κ(k − 1/2)∆a, (4.13)

ρn+1
k,p,i =0, for every p ∈ N

∗ and k ∈ N
∗ such that (p− 1/2)∆b > κ(k − 1/2)∆a, (4.14)
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and the approximation Dn+1
i of

∫ +∞

0
ρ(tn+1, a, κa, .) ea/τ da available for the next time step, by

Dn+1
i =

∑

(p−1/2)∆b>κ(k−1/2)∆a

(

ρ
n+1/2
k,p,i +

∆t

∆x
(Fn

k,p,i−1/2 − Fn
k,p,i+1/2)

)

(

ek∆a/τ − e(k−1)∆a/τ
)

τ.

(4.15)

In every formula above the approximation (En
i ) of the thickness E is given, for i ∈ {1, . . . , I}, by

En
i = Qn

i +Mn
i +Nn

i , (4.16)

Mn
i =

∑

k∈N∗

(

ek∆a/τ − e(k−1)∆a/τ
)

τ ζn
k,i, (4.17)

Nn
i =

∑

(p−1/2)∆b≤κ(k−1/2)∆a

(

ek∆a/τ − e(k−1)∆a/τ
)

τ ρn
k,p,i, (4.18)

in accordance with (3.12), (3.13) and (3.14).
Function G(tn, ·) is approximated by a function which is constant on each interval (xi−1/2, xi+1/2).

Equation (3.15) and initial data (3.16) are approached by

Gn+1
i = Gn

i −∆t γtT (En
i )(Gn

i −Hn
i ) + ∆t γd(1−Gn

i ), (4.19)

G0
i =

1

∆x

∫ xi+1/2

xi−1/2

G0(x) dx. (4.20)

Finally, we approximate the evolution of the water quantity by

hn+1
i = hn

i −∆t

(

α−

(

1− χ
(E − En

i

E

)

χ
(Qn

i −Q

Q

)

)

α′

)

Qn
i −∆t αMn

i

+ ∆t γtT (En
i )(Gn

i −Hn
i ) +

∆t

∆x
(F̃n

i−1/2 − F̃n
i+1/2) (4.21)

where, V n
i−1/2 being defined by (4.11),

F̃n
i−1/2 = η V n

i−1/2N
n
i Hn

i if V n
i−1/2 ≤ 0,

F̃n
i−1/2 = η V n

i−1/2N
n
i−1H

n
i−1 if V n

i−1/2 > 0,
(4.22)

and where hn
i is the value of the constant by interval approximation of h(tn, ·) on (xi−1/2, xi+1/2).

We then get Hn+1
i by

Hn+1
i =

hn+1
i

η En+1
i

. (4.23)

The scheme just built was implemented in Matlab R©7 language.

5 Simulations

In this section we present several simulations for various values of the given parameters Those sim-
ulations lead to the conclusion that characteristics of the Proteus mirabilis colony can be recovered
by the model just built.
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Figure 6: Simulation 1 - Generation of two terraces with different time steps.

5.1 Simulation 1

The goal of this first simulation is to show the ability of the model to generate terraces and to study
the stability of terrace generation with respect to time step. We set the following values of the
parameters

ξ = 0.1, τ = 1, E = 1, Q = 0.2, γt = 0.5, γd = 0.9,

η = 0.5, Aw = 1, Ad = 3.5 κ = 2, α = 0.3, α′ = 0.28,
(5.1)

we take as coefficient c(H) involved in swarmer cell velocity

c(H) = 0.2 if H < 0.5 and 0 if H ≥ 0.5, (5.2)

as position domain [0, xmax] = [0, 1.5], and as initial functions

Q0(x) = 0.1 if x ≤ 0.6 and 0 otherwise, (5.3)

ζ0(a, x) = 0 for all a ∈ [0, +∞) and x ∈ [0, 1.5], (5.4)

ρ0(a, b, x) = 0 for all a ∈ [0, +∞), b ∈ [0, +∞) and x ∈ [0, 1.5]. (5.5)

The initial water concentration in the extra cellular matrix is set to 0.7 and the initial water con-
centration in agar is set to 1. The position step is set to ∆x = 0.15 leading to a value of I = 11
and simulations are done with values of ∆t set to 0.04, 0.02 and 0.01, with ∆a = ∆b = ∆t. The
results associated with those values of ∆t are given in figure 6 (line 1 gives the result for ∆t = 0.04,
line 2 gives the result for ∆t = 0.02 and line 3 gives the result for ∆t = 0.01). In each frame of this
figure, the horizontal axis is the position axis and the vertical one gives the biomass densities. The
solid line is the vegetative cell density Q, the dotted line represents the sum of the vegetative cell
density and of the elongating cell biomass density Q +M if the latter is non zero. The dashed line
is the sum of the vegetative cell density, of the elongating cell biomass density and of the swarmer
cell biomass density Q +M+N , if the latter is non zero.

We see that for the three values of the time step, the dynamics of the colony and its final shape
are similar. The more significant differences (see last column) are located near x = 1.5. Those
differences are due to the influence of the boundary condition and certainly also to a numerical drift
linked to the fact that this part of the colony is generated after a long term evolution.
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Moreover, from a quantitative point of view, if En
i (∆t = 0.01) denotes the thickness of the colony

at time tn and in position xi for the simulation made with ∆t = 0.01, we have

∆x

xmax

√

√

√

√

I
∑

i=1

(

E25
i (∆t = 0.02)− E25

i (∆t = 0.04)
)2

= 0.0284, (5.6)

∆x

xmax

√

√

√

√

I
∑

i=1

(

E25
i (∆t = 0.01)− E25

i (∆t = 0.02)
)2

= 0.0181, (5.7)

suggesting that when values of time step has an order of magnitude of 0.01 or 0.02 we are not far
from the stability of the swarm colony dynamics with respect to time step.

5.2 Simulation 2

The second simulation we present, consists in setting the following values of the parameters

ξ = 0.007, τ = 1, E = 1, Q = 0.05, γt = 0.03, γd = 0.07,

η = 0.3, Aw = 1, Ad = 6.3 κ = 2.5, α = 0.02, α′ = 0.0194,
(5.8)

in taking as coefficient c(H) involved in swarmer cell velocity the function defined by (5.2), in taking
as position domain [0, xmax] = [0, 4.5], and in taking as initial functions

Q0(x) = 0.7 if x ≤ 0.6 and 0 otherwise, (5.9)

ζ0(a, x) = 0 for all a ∈ [0, +∞) and x ∈ [0, 4.5], (5.10)

ρ0(a, b, x) = 0 for all a ∈ [0, +∞), b ∈ [0, +∞) and x ∈ [0, 4.5]. (5.11)

The initial water concentration in the extra cellular matrix is set to 0 and the initial water concen-
tration in agar is set to 1.

Concerning the discretization parameters, ∆t = ∆a = ∆b = 0.05, ∆x = 0.15 leading to a value
of I = 30. The simulation is provided over 3000 time steps or, in other words, over the time interval
[0, 150].

The beginning of the swarm phenomenon is summarized in Figure 8. This figure is divided into
six pictures which are in turn divided into three frames. The top frame shows the biomass densities
at the time given just above it. The horizontal axis is the position axis and the vertical one gives
the biomass densities. The solid line is the vegetative cell density Q, the dotted line represents the
sum of the vegetative cell density and of the elongating cell biomass density Q +M if the latter is
non zero. The dashed line is the sum of the vegetative cell density, of the elongating cell biomass
density and of the swarmer cell biomass density Q +M+N , if the latter is non zero. As a matter
of fact, for instance, in the second picture the amount between the solid line and the dashed line
has to be interpreted as the elongating cell biomass density; and, in the third picture the amount
between the solid line and the dotted line has to be interpreted as the swarmer cell biomass density.
The middle frame gives the water concentration H , ranging between 0 and 1, in the extra cellular
matrix. The bottom frame shows the water concentration G in agar.

The first picture shows the situation at time 0.45. From the initial time on, the vegetative cell
density has increased which has induced a water consumption proportional to the vegetative cell
density with the proportion factor being α. As a consequence, at that time, the extra cellular matrix
is very dry. Hence, the elongating cells which are created have a long existence duration expectancy.
At the given time, the thickness just reaches 1. Hence the cell division stops and the only way for the
colony thickness to grow is to increase the elongating cell biomass density. This is made possible by
the elongation of each elongating cell, the mass of which then grows, and by the fact that elongating
cells have a large life expectancy.
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Figure 7: Simulation 2 - Beginning of the swarm phenomenon: generation of the first terrace.
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The second picture shows the situation at time 4.45. Since time 0.45, the elongating cell biomass
density, and the colony thickness have been increasing. The water concentration in agar has de-
creased little due to exchange with the extra cellular matrix. In the extra cellular matrix, the water
consumed by vegetative cells is proportional to the vegetative cell density with the proportion factor
being α−α′. The water consumed by elongating cells is proportional to the elongating cell biomass
density with the proportion factor being α. As a result of the water consumption and exchanges,
at this particular time, the extra cellular matrix is little hydrated. Soon after time 4.45, elongating
cells become swarmer cells and, as the extra cellular matrix water concentration is low, the first
swarm step begins.

The situation at time 5.45 (see third picture) is the following: the first swarm step is taking
place and then swarmer cells move towards the positive x−axis. At the same time, the extra cellular
matrix water concentration near x = 0.8, i.e. near the colony edge, is increasing faster than near the
colony center. As a consequence, soon after time 5.45 the extra cellular matrix water concentration
near the colony edge goes beyond the threshold H = 0.5 stopping swarmer cells, and then jamming
the first swarm step.

Between time 5.45 and time 13.45 (see fourth picture), the swarm colony shape has not evolved
a great deal. This period of time has to be interpreted as the first consolidation phase. The space
distribution of the cell size, in accordance with Matsuyama et al. [33], shows a large proportion of
long cells in the colony front and a smaller proportion in the colony interior. On the other hand, the
extra cellular matrix water concentration has grown. In particular the threshold H = 0.5 has been
overtaken in the colony center, which will prevent the swarm from going towards the colony center
while the next swarm step begins.

At time 17.45 the first consolidation phase ends (see fifth picture). Since time 13.45, every
swarmer cell has been de-differentiating to produce new vegetative cells, making the proportion of
short cells to increase gradually, always in accordance with Matsuyama et al. [33]. As the total
biomass density (or the thickness), near the colony edge, is low the cell division process may happen
giving rise to an increase of vegetative cell density. At the same time, as the water consumption is
important (proportional to the vegetative cell density with proportion factor α), the water concen-
tration of the extra cellular matrix decreases fast.

At time 22.95 (see sixth picture), near x = 1, the extra cellular matrix water concentration is
low. Hence the elongating cell existence duration expectancy is long. This leads to an increase in
thickness, despite that the thickness is larger than 1. Elongating cells turn into swarmer cells which
cannot go towards the colony center because of the high extra cellular matrix water concentration
in this region. Hence they go towards positive x−axis, beginning the second swarm step.

Figure 8 depicts the generation of a terrace in the middle of the swarm phenomenon.
The situation in the first picture (time 60.65) is very similar to the one in the sixth picture of

Figure 7: thickness is larger than 1, thickness increases due to elongating cells, elongating cells turn
into swarmer cells, relative dryness of the extra cellular matrix near the colony edge and relative
wetness of the extra cellular matrix while going towards the colony center which prevent swarming
in that direction.

The second picture (time 63.45) shows the situation at the end of the swarm step, i.e. at the
beginning of the consolidation phase. The characteristics of this moment are: wetness of the extra
cellular matrix near the colony edge and in the colony center, relative dryness with increasing water
concentration of the extra cellular matrix between the colony edge and the the colony center.

The colony shape has not evolved much between time 63.45 and time 73.45 (third picture) but
the extra cellular matrix water concentration has increased. At time 73.45 the de-differentiation of
swarmer cells is just beginning and producing vegetative cells, the population of which is growing
by cell division. Here again, in accordance with Matsuyama et al. [33], a large proportion of long
cells is present in the colony front and gradually this proportion decreases with time.

The water consumption is linked to the increase yield of a relatively dry extra cellular matrix
near the colony edge, preparing the next swarm step beginning at time 75.45 (see forth picture).
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Figure 8: Simulation 2 - Generation of a terrace in the middle of the swarm phenomenon.
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Figure 9: Simulation 2 - End of the colonization.

Figure 10: Simulation 2 - Summarize of the swarm phenomenon.

In the third and forth pictures we can see that a remaining hump around x = 1.7 has been
created during the time period covered by the pictures of Figure 8. This hump constitutes a terrace.

This colonization goes on until the whole position domain is conquered. Figure 9 shows the
situation at time 100.45 and close to the end of the colonization process. The relative regularity of
the terraces can be observed in these two pictures. We can also notice that the water concentration
in agar and in the matrix slowly goes to 1.

Figure 10 summarizes the swarm phenomenon over the time period [0, 150] i.e. from 0 to the
3000th time step. The horizontal axis going backward shows the time (in time step units) and the
horizontal axis going to the right shows the position. The vertical axis represents the total biomass
or thickness Q +M+N . This figure illustrates the relative regularity of the phenomenon, in time
and position.

Moreover, it also allows one to visualize how the terraces are formed: a large hump is generated.
Then it drains towards the colony edge but only partially, giving rise to a remaining hump which
makes a terrace.

Finally, the first frame of Figure11 shows the same object as in Figure 10 but restrained to time
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Figure 11: Simulation 2 - Visualization of the relative positions of terraces, matrix water concentra-
tion maxima and agar water concentration minima.

interval [1000∆t, 2000∆t] = [50, 100]. The second frame shows the water concentration in the extra
cellular matrix and the third one shows the water concentration in agar.

This figure shows that, during the terrace formation, in front of the hump, the water concentration
in the extra cellular matrix is high; and that, at the back of the hump, the water concentration in
agar is low.

5.3 Simulation 3

The third simulation we present is carried out with the same position domain as before, with:

ξ = 0.008, τ = 1, E = 1, Q = 0.05, γt = 0.37, γd = 0.13,

η = 0.3, Aw = 1.2, Ad = 5.5, κ = 2.5, α = 0.42, α′ = 0.41,
(5.12)

Q0(x) = 0.2 if x ≤ 0.6 and 0 otherwise, (5.13)

function ζ0 given by (5.10), ρ0 by (5.11) and c by (5.2). The initial water concentration in the extra
cellular matrix is set to 0.8 and the initial water concentration in agar is set to 1.

The steps are ∆t = ∆a = ∆b = 0.05, ∆x = 0.15 leading to a value of I = 30. The simulation is
provided over 4400 time steps or over the time interval [0, 220].

Some parameters are quite different from the previous simulation. But the main significant
difference is that here γt is larger than γd. This has the following consequence, as is visible in Figure
12 which shows a terrace generation: the water which is contained in agar is used more. Apart from
this difference, the way a terrace is created is very similar to simulation 1.

The first picture shows the situation at a moment when swarmer cells are de-differentiating and
producing vegetative cells which are growing by cellular division. This is drying the extra cellular
matrix.

The second picture shows a colony thickness, near the colony edge, larger than 1. Then thickness
increases thanks to elongating cells which are turning into swarmer cells. The extra cellular matrix
near the colony edge is dry, while towards the colony center it is wet.

The third picture shows the situation at the beginning of the consolidation phase. At this
moment, the extra cellular matrix near the colony edge and in the colony center is wet. Between the
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Figure 12: Simulation 3 - Generation of a terrace.
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Figure 13: Simulation 3 - End of the colonization.

Figure 14: Simulation 3 - Summarize of the swarm phenomenon.

colony edge and the the colony center the water concentration of the extra cellular matrix increases.
The swarm colony shape does not evolve much until the moment of the third picture but the

extra cellular matrix water concentration increases.
The fifth picture shows the moment when the de-differentiation begins which will soon lead to

the situation in the sixth picture.
The situation in the sixth picture is similar to the one in the first picture but with a colony edge

which has moved towards the right.
Figure 13 shows the situation at the end of the colonization. Here again, as in Figures 14 and

15 we may observe the relative regularity of the terraces.

6 Conclusion

In this paper, we add a bio-physical slant in the Proteus mirabilis swarm description. The scientific
method we use for this is as follows. We first express the bio-physical principles on which, according
to us, the swarm phenomenon could be based. Then, we translate those principles into a model
which is implemented. Simulations show that the model behaviour may recover many of the aspects
observed in situ and listed in the introduction. This leads to the conclusion that the previously
expressed bio-physical principles are certainly the right ones to contribute to a swarm explanation.
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Figure 15: Simulation 3 - Visualization of the relative positions of terraces, matrix water concentra-
tion maxima and agar water concentration minima.

Or, more modestly, those bio-physical principles are first way-marks on the path leading to a bio-
physical understanding of the swarm phenomenon.

However, many questions need to be tackled. From the modelling point of view, we notice that
the model built here is dimensionless. This means that variables have no physical unit and that
fields are of magnitude order 1. Therefore, even if the model built here can qualitatively recover the
swarm phenomenon, we are far from a model which can give quantitative results. In order to build
a model for quantitative simulations, we need to take into account the physical magnitudes of the
phenomenon and to analyze physical constant ratios.

From the mathematical point of view, it would be nice to set out an existence result for the
solution of the model built here. Moreover, we may notice that this model is instable. In particular,
it has been difficult to find values of the parameters that have led to simulations showing terraces.
The stability properties, with respect to terrace generation or to short-term evolution or to long-term
behaviour of the model is certainly a very interesting topic which may bring out biological answers.

From the numerical point of view, the organic assumption concerning age and time steps: ∆b =
∆a = ∆t, which is needed to make the numerical scheme to be biomass preserving, will certainly
result in bad computational results if the present method is applied for operational simulations.
Indeed, the simulation of a real Proteus mirabilis swarm experiment requires a time step which is
much smaller than the ageing characteristic time to resolve the dynamics in space. Hence, it is
important to find ways to reduce the induced cost.

The first way that can be considered, consists in noticing that the biomass preservation property
is always realised if the ageing process is done only every ν time steps, for an integer ν, setting
∆b = ∆a = ν∆t and modifying the method in the following way. Initializing formula (4.1), (4.4),
(4.8) and (4.20) are left unchanged.
Then for values of n ∈ νN

∗, formula (4.2) is applied removing term Dn
i and replacing ∆t by ν∆t

and formula (4.5) is applied replacing ∆t by ν∆t. Formula (4.6) to (4.19) and (4.21) to (4.23) are
applied in state.
For values of n /∈ νN, formula (4.2) is replaced by

Qn+1
i = Qn

i +Dn
i if n ∈ (νN

∗ + 1) and Qn+1
i = Qn

i otherwise , (6.1)
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formula (4.5) is not applied, formula (4.6) and (4.7) are replaced by

ζn+1
k,i = ζn

k,i for every i and every k, (6.2)

transfer condition (4.9) is not applied, (4.10) is replaced by

ρ
n+1/2
k,p,i = ρn

k,p,i, (6.3)

and (4.13) and (4.14) are replaced by

ρn+1
k,p,i = ρ

n+1/2
k,p,i +

∆t

∆x
(Fn

k,p,i−1/2 − Fn
k,p,i+1/2), for every p and k, (6.4)

with fluxes given by (4.12) and (4.11). The definitions (4.16) to (4.18) remain the same (but we can
notice thatMn

i do not evolve). Finally (4.19), (4.21), (4.22) and (4.23) are applied in state.
The second way that needs to be investigated, consists in following the method set out in Ayati

[1] and which consists in deducing from equations (3.3) and (3.9) evolution equations for functions
ζ(t, a + t, x) and ρ(t, a + t, b + t, x). From those equations we will be able to build age discrete
equations involving age discretization possibly time dependant and not requiring an organic link
between time and age steps.

From the biological point of view, it would be of great interest to enrich the model in order to
take into account genetic or chemical events. In particular, it would be nice to understand how gene
expressions may regularize terrace generation.
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