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Abstract - From a scale analysis of hydrodynamic phenomena having a significant action on the drift

of an object in coastal ocean waters, we deduce equations modeling the associated hydrodynamic fields over

a time period of several weeks. These models are essentially non linear hyperbolic systems of PDE involving

a small parameter. Then from the models we extract a simplified and nevertheless typical one for which we

prove that its classical solution exists on a time interval which is independent of the small parameter. We

then show that the solution weak−∗ converges as the small parameter goes to zero and we characterize the

equation satisfied by the weak−∗ limit.
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1 Introduction

This paper is part of a work program concerning the modeling of object drift in near coastal ocean
waters over a several week time period.

The final target of this program is to develop methods to forecast the drift of things like con-
tainers, lost objects or oil spill over long periods of time in near coastal ocean areas. Such methods
would be of interest for services in charge of maritime safety, environmental studies or pollution
impact assessment. To reach this target, several research topics need to be further investigated.
For instance, improvements are needed in the field of the numerical methods to simulate long term
drift, in the modeling and simulation of the near coastal ocean waters, in the understanding of
ocean-object and ocean-spill interactions and, of course, in the integration of all those aspects to
move toward a coherent theory.

In the previous paper of this work program, Ailliot, Frénod and Monbet [2] considered the
numerical method facet. We built a numerical method coupling a two scale expansion method,
explored in [10], and a stochastic wind simulator, in the spirit of [1, 3, 25], in order to estimate
probability of events that may happen to the considered object, such as running aground in a given
area. In [2], the simplified model was supposed to describe the object dynamic in the ocean. It
involved an ocean velocity field which was decomposed into a sum of a velocity due to the tide wave
and of a perturbation. Both of them were periodic of the tide period and with modulated amplitude
and the fields used for the numerical simulations were not realistic.

The present paper deals with the modeling of near coastal ocean. The sea velocity and the
fluctuation of the sea level due to the tide wave are well known in many coastal areas of the world.
Those main fields are perturbed by fields with a smaller order of magnitude having a net long-term
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†LMAM et Lemel, Université de Bretagne Sud, Centre Yves Coppens, Campus de Tohannic, F-56000, Vannes
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result. Such perturbations, which are produced by meteorological factors, propagate and interact
with the main fields. The precise aim of the present paper is to make a first step toward the set
up of a modeling procedure in order to establish partial differential equation systems describing the
evolution of those perturbations and to suggest ideas to solve them.

The paper is organized as follows. In section 2, we summarize the main mathematical results.
Then, in section 3, we set up the previously evoked modeling procedure. The models which

are built in this section are deduced from the Shallow Water Equations via a scale analysis of the
geophysical phenomena concerned and of the geometrical size of the concerned domain. As for
the size of the coastal domain and the characteristic order of magnitude of the wind velocity, we
consider several possibilities giving rise to several models. They are all essentially hyperbolic systems
of partial differential equations with a singular perturbation involving a small parameter.

From those models, in section 4, we extract a simplified one which is nevertheless typical. For
it, adapting classical methods for hyperbolic systems (see Kato [18], Majda [23], Klainerman and
Majda [19, 20], Schochet [33, 34], and Metivier and Schochet [24]), we prove that its classical solution
exits with a time existence independent of the small parameter.

In section 5, using a homogenisation method (see Tartar [37], Bensoussan, Lions and Papanico-
laou [6], Sanchez-Palencia [31] and Lions [21]), we set that this classical solution weak−∗ converges
to a function. Keeping within the mind frame of Frénod [9], Frénod and Hamdache [11], Frénod,
Raviart and Sonnendrücker [12], Joly, Métivier and Rauch [17] or Schochet [35] we finally look for
the form of this function and establish the equations allowing for its computation.

Finally, in section 6 we conclude and give some perspectives.

acknowledgments - The authors want to thank Joanna Roppers for proofreading the manuscript.

2 Results

In this section we present the main results. We first present one of the models, involving a small
parameter, set out in this paper. Then we state a Theorem claiming the existence of the solution
to a simplified version of this model. Finally, we exhibit the asymptotic behavior of this solution as
the small parameter goes to zero.

The model we present now, and which is set out among others in section 3, describes the evolution,
over a several months time period, of the perturbation of the sea velocity and of the sea level in
an ocean domain above the continental shelf at a latitude about 45o and with stormy weather
conditions.

The small parameter involved in this model is the ratio tide duration on observation time scale.
The first one is about 13 hours and the second is about three months. Hence the involved small
parameter is:

ε =
1

200
. (2.1)

Variables and fields involved are all rescaled; rescaled meaning that the order of magnitude of those
variables and fields is one and that they have no physical dimension.

The rescaled velocity of the sea M̃ and the water depth H̃ induced by the tide wave are considered
as known and periodic with modulated amplitude. In other words, t being the rescaled time and x

the rescaled position,

M̃(t,x) = M(t,
t

ε
,x) and H̃(t,x) = H(t,

t

ε
,x), (2.2)

where M and H are regular functions and where θ 7→ (M(t, θ,x),H(t, θ,x)) is 1−periodic.
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The model says that the total sea velocity, expressed in km/h, writes 0.5(M̃+ εÑ) and that the
total sea level is 3

2ε(E + 2εH̃ + 2ε2Ĩ), where E is the rescaled mean sea level and where Ñ and Ĩ

are rescaled perturbations. Moreover, (Ĩ, Ñ) is solution to

∂Ĩ

∂t
+ ∇(

1

ε
E + 2H̃) · Ñ + (

1

ε
E + 2H̃)∇ · Ñ + 2(∇Ĩ) · M̃ + 2Ĩ(∇ · M̃)

+2ε
(

(∇Ĩ) · Ñ + Ĩ(∇ · Ñ)
)

= 0,

(2.3)

∂Ñ

∂t
+ 2(∇Ñ)M̃ + 2(∇M̃)Ñ + 2ε(∇Ñ)Ñ +

π

2ε
Ñ⊥ +

1

4ε
∇Ĩ − 13ε4∆M̃ − 13ε5∆Ñ

−13ε4
(∇M̃)∇(E + 2εH̃)

E + 2εH̃ + 2ε2Ĩ
− 26ε6

(∇M̃)∇Ĩ

E + 2εH̃ + 2ε2Ĩ
− 13ε5

(∇Ñ)∇(E + 2εH̃)

E + 2εH̃ + 2ε2Ĩ

−26ε7
(∇Ñ)∇Ĩ

E + 2εH̃ + 2ε2Ĩ

+
3

ε

1
E+2εH̃+2ε2Ĩ

1 + 0.8
ε2 (E + 2εH̃ + 2ε2Ĩ)

M̃ + 3

1
E+2εH̃+2ε2Ĩ

1 + 0.8
ε2 (E + 2εH̃ + 2ε2Ĩ)

Ñ =

6

1
E+2εH̃+2ε2Ĩ

1 + 1.5
ε (E + 2εH̃ + 2ε2Ĩ)

(
1

ε
W̃ − M̃) − 6ε

1
E+2εH̃+2ε2Ĩ

1 + 1.5
ε (E + 2εH̃ + 2ε2Ĩ)

Ñ.

(2.4)

In this system, W̃ is the rescaled wind velocity, Ñ⊥ = (−Ñ2, Ñ1), ∆ stands for the laplacian, ∇· for
the divergence operator and ∇ stands for the gradient of scalar fields and for the Jacobian matrix
of bi-dimensional fields.

Motivated by this system, we consider a simplified version of it which consists in considering that
the ocean bottom is flat, i.e. E ≡ 1, in forgetting all the power of ε greater than 1 and in setting all
constants to 1:

∂Ĩ

∂t
+ (∇H̃) · Ñ + (

1

ε
+ H̃)(∇ · Ñ) + (∇Ĩ) · M̃ + Ĩ(∇ · M̃) + ε

(

(∇Ĩ) · Ñ + Ĩ(∇ · Ñ)
)

= 0, (2.5)

∂Ñ

∂t
+ (∇Ñ)M̃ + (∇M̃)Ñ + ε(∇Ñ)Ñ +

1

ε
Ñ⊥ +

1

ε
∇Ĩ = W̃. (2.6)

In this system, t ∈ [0, T ], x = (x1, x2) ∈ R
2. The unknowns are Ĩ ≡ Ĩ(t,x) and Ñ ≡ Ñ(t,x). Their

evolution is influenced by M̃ and H̃ for which we assume (2.2) and by W̃ for which we also assume

W̃(t,x) = W(t,
t

ε
,x), (2.7)

with function W regular and with θ 7→ W(t, θ,x) being 1−periodic. This assumption is not really
convenient for real wind velocity time series but is comfortable from a mathematical point of view
(see Ailliot, Frénod and Monbet [2] for a more detailed discussion). Moreover, we equip this system
with the following initial conditions

Ĩ|t=0 = Ĩ0, Ñ|t=0 = Ñ0, (2.8)

and we can claim the following Theorem.

Theorem 2.1 Under assumptions (2.2) and (2.7), if (Ĩ0, Ñ0) ∈ (Hs(R2))3 with s > 3, then there
exists a time T , not depending on ε, such that the classical solution (Ĩ, Ñ) ∈ (C([0, T ], (Hs(R2))3)∩
(C1([0, T ], (Hs−1(R2))3)) of (2.5), (2.6) and (2.8) exits and is unique. Moreover this solution sat-
isfies

sup
t∈[0,T ]

‖(Ĩ, Ñ)‖s ≤ c, (2.9)
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for a constant c not depending on ε, where ‖ ‖s stands for the norm in (Hs(R2))3.

Concerning the asymptotic behavior of (Ĩ, Ñ), as ε goes to zero, we have the following result.

Theorem 2.2 Under the assumptions of Theorem 2.1, there exist functions I ≡ I(t,x) ∈ C([0, T ],
Hs(R2)) and N ≡ N(t,x) ∈ C([0, T ], (Hs(R2))2), such that as ε goes to 0, the solution (Ĩ, Ñ) of
(2.5), (2.6) and (2.8) weak−∗ converges to (I,N) in L∞([0, T ], (Hs(R2))3). Moreover, I and N

are linked by

N1(t,x) = −
∂I

∂x2
(t,x), N2(t,x) =

∂I

∂x1
(t,x), (2.10)

and I is solution to

∂
(

I − ∆I
)

∂t
+ M · ∇I −

∂
(

M1
∂2I

∂x2
1

)

∂x1
−
∂
(

M2
∂2I

∂x1∂x2

)

∂x1

−
∂
(

M1
∂2I

∂x1∂x2

)

∂x2
−

∂
(

M2
∂2I

∂x2
2

)

∂x2
− (∇H)⊥ · ∇I + (∇ · M)I

+
∂
(∂M2

∂x1

∂I

∂x2

)

∂x1
−
∂
(∂M2

∂x2

∂I

∂x1

)

∂x1
−
∂
(∂M1

∂x1

∂I

∂x2

)

∂x2
+
∂
(∂M1

∂x2

∂I

∂x1

)

∂x2

=
∂W1

∂x2
−
∂W2

∂x1
, (2.11)

where M =

∫ 1

0

M dθ, H =

∫ 1

0

H dθ and W =

∫ 1

0

W dθ, and equipped with initial conditions

(

I − ∆I
)

|t=0
= Ĩ0 +

∂(Ñ0)1
∂x1

−
∂(Ñ0)2
∂x2

. (2.12)

Remark 2.1 As we shall see in the proof of this Theorem, (I,N) is also the 1−periodic two scale
limit, that does not depend on the oscillating variable, of (Ĩ, Ñ) and .

3 Models

In this section, we first consider a reference model. It consists in removing the ocean level and the
ocean velocity which are induced by the tide wave from the Shallow Water Equations. This gives
rise to a system of equations governing the time evolution of the ocean level perturbation and of
the ocean velocity perturbation. Then, we analyse the scale of the variables and fields involved in
the problem we want to describe. Rescaling the reference model in view of this scale analysis finally
yields the desired models.
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Figure 1: Fields h, hb, E, H̃ and Ĩ

3.1 Reference model

It is generally admitted that the evolution of the ocean level h ≡ h(t,x) and of the ocean velocity
m ≡ m(t,x) is well described by the following Shallow Water Equations

∂h

∂t
+ ∇(h− hb) · m + (h− hb)∇ · m = 0, (3.1)

∂m

∂t
+

(

∇m
)

m + fm⊥ + g∇h− c∆m − c

(

∇m
)

∇(h− hb)

h− hb
+

κ
h−hb

1 + κ
c (h− hb)

m =

µ
h−hb

1 + µ
c (h− hb)

(W̃ − m) + F,

(3.2)

equipped with ad-hoc initial and boundary conditions. This system was introduced by Saint-Venant
[29]. For an exhaustive explanation concerning ocean modeling and the construction of this model we
refer for instance to Pedlosky [28], Nihoul [27], Lions, Temam and Wang [22], Stoker [36], Whitham
[39] or Johnson [16]. For a deduction of the Shallow Water Model taking into account viscosity, being
able to model the consequences of wind and bottom friction actions, which is considered here, we refer
to Gerbeau and Perthame [15]. In system (3.1)-(3.2), hb ≡ hb(x) is the depth of the ocean bottom,
f is the Coriolis parameter, g is the gravity acceleration and c is the water viscosity. The friction
coefficient on the bottom is κ and the air-water friction coefficient is µ. Lastly, W̃ ≡ W̃(t,x) is the
wind velocity and F may take into account the action of other meteorological factors like atmospheric
pressure.

Now we isolate the action of the tide wave. In other words, we consider that the ocean depth
variation H̃ ≡ H̃(t,x) around the mean water height E ≡ E(x) and the ocean velocity M̃ ≡ M̃(t,x)
which are induced by the tide wave are known. We consider that (E + H̃, M̃) is the solution to

∂H̃

∂t
+ ∇(E + H̃) · M̃ + (E + H̃)∇ · M̃ = 0, (3.3)

∂M̃

∂t
+

(

∇M̃
)

M̃ + fM̃⊥ + g∇(E + H̃ + hb) = 0, (3.4)

with initial and boundary conditions imposed by the tide wave.
A brief parameter size analysis, that will be confirmed in the next sections, shows that the terms

−c∆m− c

(

∇m

)

∇(h−hb)

h−hb
+

κ

h−h
b

1+ κ

c
(h−hb)

m have a very small influence on the sea movement. Hence we

have chosen to put them in the equations for the perturbations hereafter.

Now we introduce the perturbations Ĩ and Ñ which are defined such that h = hb + E + H̃ + Ĩ
and m = M̃ + Ñ (see Figure 1).
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Replacing h and m by these expressions in (3.1)-(3.2) and removing the terms appearing in
(3.3)-(3.4) leads to the equations for Ĩ and Ñ. Then we obtain the following reference system which
is the starting point of our scale analysis.

∂Ĩ

∂t
+ ∇(E + H̃)) · Ñ + (E + H̃)(∇ · Ñ) + (∇Ĩ) · M̃ + Ĩ(∇ · M̃) + (∇Ĩ) · Ñ + Ĩ(∇ · Ñ) = 0, (3.5)

∂Ñ

∂t
+ (∇Ñ)M̃ + (∇M̃)Ñ + (∇Ñ)Ñ + fÑ⊥ + g∇Ĩ − c∆M̃ − c∆Ñ

−c

(

∇M̃
)

∇(E + H̃)

E + H̃ + Ĩ
− c

(∇M̃)∇Ĩ

E + H̃ + Ĩ
− c

(∇Ñ)∇(E + H̃)

E + H̃ + Ĩ
− c

(∇Ñ)∇Ĩ

E + H̃ + Ĩ

+

κ
E+H̃+Ĩ

1 + κ
c (E + H̃ + Ĩ)

M̃ +

κ
E+H̃+Ĩ

1 + κ
c (E + H̃ + Ĩ)

Ñ =

µ

E+H̃+Ĩ

1 + µ
c (E + H̃ + Ĩ)

(W̃ − M̃) −

µ

E+H̃+Ĩ

1 + µ
c (E + H̃ + Ĩ)

Ñ + F.

(3.6)

3.2 Rescaled variables and fields

We introduce a reference time t, two reference lengths L and l. Those reference values, as well as
the other ones introduced hereafter, will represent characteristic values (mean or maximum values
for example) of the physical quantities under consideration. We consider the rescaled variables t′

and x′ =(x′
1, x′

2) expressing time and position in unit t, L and l. They are defined as

t = tt′,x1 = Lx′
1 and x2 = lx′

2. (3.7)

If the reference values are chosen as evoked above, the order of magnitude of the rescaled variables are
1. Then we define M andN as the characteristic velocity of the tide wave and its perturbation; E the
characteristic value of the mean water depth, H the characteristic tidal range and I the characteristic
value of its perturbation. W is the characteristic wind velocity and F the characteristic scale of the
field F. The rescaled fields have the following definitions:

M̃′(t′,x′) =
1

M
M̃(tt′, Lx′

1, lx
′
2), Ñ′(t′,x′) =

1

N
Ñ(tt′, Lx′

1, lx
′
2), (3.8)

E′(x′) =
1

E
E(Lx′

1, lx
′
2), (3.9)

H̃′(t′,x′) =
1

H
H̃(tt′, Lx′

1, lx
′
2), Ĩ ′(t′,x′) =

1

I
Ĩ(tt′, Lx′

1, lx
′
2), (3.10)

W̃′(t′,x′) =
1

W
W(tt′, Lx′

1, lx
′
2), F′(t′,x′) =

1

F
F(tt′, Lx′

1, lx
′
2). (3.11)

Lastly, we introduce ω the tide wave frequency and we assume that M̃ and H̃ are 1/ω−periodic
function with modulated amplitude. In other words, we assume

M̃′(t′,x′) = M′(t′, ωtt′,x′), H̃′(t′,x′) = H′(t′, ωtt′,x′), (3.12)

where θ 7→ (M′(t′, θ,x′),H′(t′, θ,x′)) is 1−periodic.
From system (3.5)-(3.6), we deduce the following rescaled equations for Ñ′, and I ′ with known
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fields M′, E′, W′ and F′:

∂Ĩ ′

∂t′
+
H

I

Nt

L

[









E

H

∂E′

∂x′1
+
∂H̃′

∂x′1
L

l
(
E

H

∂E′

∂x′2
+
∂H̃′

∂x′2
)









· Ñ′ + (
E

H
E′ + H̃′)

(∂Ñ′
1

∂x′1
+
L

l

∂Ñ′
2

∂x′2

)

]

+
Mt

L

[









∂Ĩ ′

∂x′1
L

l

∂Ĩ ′

∂x′2









· M̃′

+ Ĩ ′
(∂M̃′

1

∂x′1
+
L

l

∂M̃′
2

∂x′2

)

]

+
Nt

L

[









∂Ĩ ′

∂x′1
L

l

∂Ĩ ′

∂x′2









· Ñ′ + Ĩ ′
(∂Ñ′

1

∂x′1
+
L

l

∂Ñ′
2

∂x′2

)

]

= 0,

(3.13)

∂Ñ′

∂t′
+
Mt

L

[

(∂Ñ′

∂x′1
,
L

l

∂Ñ′

∂x′2

)

M̃′ +
(∂M̃′

∂x′1
,
L

l

∂M̃′

∂x′2

)

Ñ′

]

+
Nt

L

(∂Ñ′

∂x′1
,
L

l

∂Ñ′

∂x′2

)

Ñ′ + ftÑ′⊥

+
gt

N

I

L









∂Ĩ ′

∂x′1
L

l

∂Ĩ ′

∂x′2









−
ct

L
2

M

N
(
∂2M̃′

∂x′1
2 +

L
2

l
2

∂2M̃′

∂x′2
2 ) −

ct

L
2 (
∂2Ñ′

∂x′1
2 +

L
2

l
2

∂2Ñ′

∂x′2
2 )

−
ct

L
2

M

N

(∂M̃′

∂x′1
,
L

l

∂M̃′

∂x′2

)









∂E′

∂x′1
+
H

E

∂H̃′

∂x′1
L

l
(
∂E′

∂x′2
+
H

E

∂H̃′

∂x′2
)









E′ + H
E
H̃′ + I

E
Ĩ ′

−
ct

L
2

M

N

I

E

(∂M̃′

∂x′1
,
L

l

∂M̃′

∂x′2

)









∂Ĩ ′

∂x′1
L

l

∂Ĩ ′

∂x′2









E′ + H
E
H̃′ + I

E
Ĩ ′

−
ct

L
2

(∂Ñ′

∂x′1
,
L

l

∂Ñ′

∂x′2

)









∂E′

∂x′1
+
H

E

∂H̃′

∂x′1
L

l
(
∂E′

∂x′2
+
H

E

∂H̃′

∂x′2
)









E′ + H
E
H̃′ + I

E
Ĩ ′

−
ct

L
2

I

E

(∂Ñ′

∂x′1
,
L

l

∂Ñ′

∂x′2

)









∂Ĩ ′

∂x′1
L

l

∂Ĩ ′

∂x′2









E′ + H
E
H̃′ + I

E
Ĩ ′

+
κt

E

M

N

1

E′+ H

E
H̃′+ I

E
Ĩ′

1 + κE
c (E′ + H

E
H̃′ + I

E
Ĩ ′)

M̃′ +
κt

E

1

E′+ H

E
H̃′+ I

E
Ĩ′

1 + κE
c (E′ + H

E
H̃′ + I

E
Ĩ ′)

Ñ′ =

µt

E

1

E′+ H

E
H̃′+ I

E
Ĩ′

1 + µE
c (E′ + H

E
H̃′ + I

E
Ĩ ′)

(
W

N
W̃′ −

M

N
M̃′) −

µt

E

1

E′+ H

E
H̃′+ I

E
Ĩ′

1 + µE
c (E′ + H

E
H̃′ + I

E
Ĩ ′)

Ñ′ +
Ft

N
F′.

(3.14)

3.3 Parameter size and rescaled equations

In this subsection, we fix the characteristic values. As set out in the previous subsection, we shall
choose mean values or maximal values of the concerned physical quantities. The parameter t is the

7



observation time scale. We consider that it is about several months. Then we set

t ∼ 100 days ∼ 2400h, (3.15)

beside this ω is the tide frequency, meaning 1/ω is the tide duration, i.e.:

1

ω
∼ 13h. (3.16)

Hence we exhibit a small parameter:

ε =
1

tω
∼

1

200
. (3.17)

Then, we make a strong assumption, which is that Ñ and Ĩ are really perturbations. In other
words, we consider that

N

M
∼

I

H
∼ ε. (3.18)

Concerning the Coriolis parameter, for latitudes about 45◦ f ∼ π/day ∼ 4 10−5/s, then ft ∼
π/2ε. Concerning the other parameters of physical meaning, several choices are possible, according
to the turbulence action, the nature of the ocean bottom, the shape of the ocean free surface
and so on. We focus on one of those choices, being aware that others, that would lead to other
models, are also reasonable. For the viscosity, we chose the value of the water viscosity at 20◦C,
i.e. c ∼ 10−2cm2/s ∼ 10−7km2/day, then ct ∼ 10−5km2. Concerning the friction coefficients, the
bottom friction coefficient is κ ∼ 10−4m/s ∼ 10−2km/day and the air-water friction coefficient is
µ ∼ 10−6m/s ∼ 10−4km/day. Those values are consistent with the ones used, for instance, in
Dawson and Proft [8] or Gerbeau and Perthame [15]. Then κt ∼ 1km, µt ∼ 10−2km, κ/c ∼ 105/km
and µ/c ∼ 103/km. We also have g ∼ 10m/s2 ∼ 106km/day2 and gt ∼ 108km/day.

We now turn to the ratios determining the asymptotic analysis we have to realize. Having in
mind our final target, i.e. the drift of things in the ocean over long time periods, we notice that
such a drift may take place relatively far from the coast, above the continental shelf. It may also
take place in a large and relatively closed bay, with a long residence time of the ocean water. Such a
domain will be called coastal zone. As was the case in 1999 / 2000 for the Erika oil slick along the
French Atlantic coast, the drift may occur for weeks along a thin layer following the coast. Those
remarks guide the choices concerning the geometrical assumptions we consider further.

L and l represent the characteristic lengths of the domain where the drift takes place and M/ω
the characteristic distance the water covers in the tide duration. Following Salomon and Breton
[30], C̆etina, Rajar and Povinec [38], Bao, Gao and Yan [5] or Cai, Huang and Long [7], we can
state that this distance is about a few kilometers (from 5 to 20) in the cases we are interested in. If
the domain under consideration is a continental shelf, the characteristic sea water velocity M is
about 0.5km/h and then, we have

M

ω
∼ 5km, (3.19)

and if we set L ∼ l ∼ 500km, E ∼ 300m and H ∼ 3m, then

M
ω

L
∼ 2ε,

H

E
∼ 2ε. (3.20)

We also have N ∼ εM ∼ 2.5 10−3km/h ∼ 6 10−2km/day, then we get gt/N ∼ 1.7 109. Since
I ∼ εH ∼ 1.5 10−2m, we obtain I/L ∼ 3 10−8. Hence

gt

N

I

L
∼ 50 ∼

1

4ε
. (3.21)
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Moreover

ct

L
2 ∼

10−5

25 104
∼ 13ε5, (3.22)

κt

E
∼

1

0.3
∼ 3.3 ∼ 3,

κE

c
∼ 3 104 ∼

0.8

ε2
(3.23)

µt

E
∼

10−2

0.3
∼ 3.3 10−2 ∼ 6ε,

µE

c
∼ 3 102 ∼

1.5

ε
. (3.24)

Concerning the wind velocity, when the weather is calm, 10km/h is a relevant characteristic value,
while 100km/h may be a good choice in stormy conditions. Hence, we shall consider

M

W
∼

0.5

10
∼

1

20
, (3.25)

in calm weather regime, and,
M

W
∼

0.5

100
∼ ε, (3.26)

in storm regime. Expressing now the following ratios

Mt

L
∼ tω

M
ω

L
,

Nt

L
∼
Mt

L

N

M
, (3.27)

and moreover setting Ft ∼ N and removing the ’ for clarity, we can write the rescaled equation
(3.13)-(3.14) in the case of a continental shelf:

∂Ĩ

∂t
+ ∇(

1

ε
E + 2H̃)) · Ñ + (

1

ε
E + 2H̃)∇ · Ñ + 2(∇Ĩ) · M̃ + 2Ĩ(∇ · M̃)

+2ε
(

(∇Ĩ) · Ñ + Ĩ(∇ · Ñ)
)

= 0,

(3.28)

∂Ñ

∂t
+ 2(∇Ñ)M̃ + 2(∇M̃)Ñ + 2ε(∇Ñ)Ñ +

π

2ε
Ñ⊥ +

1

4ε
∇Ĩ − 13ε4∆M̃ − 13ε5∆Ñ

−13ε4
(∇M̃)∇(E + 2εH̃)

E + 2εH̃ + 2ε2Ĩ
− 26ε6

(∇M̃)∇Ĩ

E + 2εH̃ + 2ε2Ĩ
− 13ε5

(∇Ñ)∇(E + 2εH̃)

E + 2εH̃ + 2ε2Ĩ

−26ε7
(∇Ñ)∇Ĩ

E + 2εH̃ + 2ε2Ĩ

+
3

ε

1
E+2εH̃+2ε2Ĩ

1 + 0.8
ε2 (E + 2εH̃ + 2ε2Ĩ)

M̃ + 3

1
E+2εH̃+2ε2Ĩ

1 + 0.8
ε2 (E + 2εH̃ + 2ε2Ĩ)

Ñ =

6

1
E+2εH̃+2ε2Ĩ

1 + 1.5
ε (E + 2εH̃ + 2ε2Ĩ)

(γW̃ − M̃) − 6ε

1
E+2εH̃+2ε2Ĩ

1 + 1.5
ε (E + 2εH̃ + 2ε2Ĩ)

Ñ + F.

(3.29)

where γ = 20 = 1/(10ε) in calm weather regime. In storm regime, which is what it is supposed for
model (2.3)-(2.4) presented in the introduction, γ = 1/ε.

If the domain is a coastal zone, M ∼ 1km/h

M

ω
∼ 10km, (3.30)

and we set L ∼ l ∼ 5km, E ∼ 50m et H ∼ 10m. In this case

M
ω

L
∼ 2,

H

E
∼

1

5
. (3.31)
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We also have N ∼ εM ∼ 1.2 10−1km/day, then we get gt/N ∼ 8 108. Since I ∼ εH ∼ 5 10−2m
we obtain I/L ∼ 10−5. Hence

gt

N

I

L
∼ 8 103 ∼

0.2

ε2
. (3.32)

Moreover

ct

L
2 ∼

10−5

25
∼ 0.6ε3, (3.33)

κt

E
∼

1

0.05
∼ 20 ∼

1

10ε
,

κE

c
∼ 5 103 ∼

1

10ε2
, (3.34)

µt

E
∼

10−2

0.05
∼ 0.2,

µE

c
∼ 50 ∼

1

4ε
. (3.35)

Concerning the wind velocity, we have
M

W
∼

1

10
, (3.36)

in calm weather regime, and, in storm regime

M

W
∼

1

100
∼ 2ε. (3.37)

Hence, the rescaled equation reads in this case:

∂Ĩ

∂t
+

2

ε
(∇(5E + H̃)) · Ñ +

2

ε
(5E + H̃)∇ · Ñ +

2

ε
(∇Ĩ) · M̃ +

2

ε
Ĩ(∇ · M̃)

+2(∇Ĩ) · Ñ + 2Ĩ(∇ · Ñ) = 0,

(3.38)

∂Ñ

∂t
+

2

ε
(∇Ñ)M̃ +

2

ε
(∇M̃)Ñ + 2(∇Ñ)Ñ +

π

2ε
Ñ⊥ +

0.2

ε2
∇Ĩ − 0.6ε2∆M̃ − 0.6ε3∆Ñ

−0.6ε2
(∇M̃)∇(E + H̃)

E + 1
5H̃ + ε

5 Ĩ
− 0.1ε2

(∇M̃)∇Ĩ

E + 1
5H̃ + ε

5 Ĩ
′
− 0.6ε2

(∇Ñ)∇(E + H̃)

E + 1
5H̃ + ε

5 Ĩ

−0.1ε3
(∇Ñ)∇Ĩ

E + 1
5H̃ + ε

5 Ĩ

+
1

10

1
E+ 1

5
H̃+ ε

5
Ĩ

1 + 1
10ε2 (E + 1

5H̃ + ε
5 Ĩ)

M̃ +
1

10ε

1
E+ 1

5
H̃+ ε

5
Ĩ

1 + 1
10ε2 (E + 1

5H̃ + ε
5 Ĩ)

Ñ =

0.2

1
E+ 1

5
H̃+ ε

5
Ĩ

1 + 1
4ε(E + 1

5H̃ + ε
5 Ĩ)

(
γ

2ε
W̃ −

1

ε
M̃) − 0.2

1
E+ 1

5
H̃+ ε

5
Ĩ

1 + 1
ε (E + 1

5H̃ + ε
5εĨ)

Ñ + F.

(3.39)

where γ/2 = 10 = 1/20ε in still weather and γ/2 = 1/2ε in stormy weather.

We will give the name of coastal layer to a domain having the following characteristics

M

ω
∼ 10km, (3.40)

and L ∼ 500km, l ∼ 5km, E ∼ 50m et H ∼ 10m and then

M
ω

L
∼ 4ε,

l

L
∼ 2ε,

H

E
∼

1

5
. (3.41)
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In this case, we have N ∼ εM ∼ 1.2 10−1km/day, then we get gt/N ∼ 8 108. Since I ∼ εH ∼
5 10−2m, we obtain I/L ∼ 10−7. Hence

gt

N

I

L
∼ 80 ∼

0.4

ε
. (3.42)

Moreover

ct

L
2 ∼

10−5

25 104
∼ 13ε5, (3.43)

κt

E
∼

1

0.05
∼ 20 ∼

1

10ε
,

κE

c
∼ 5 103 ∼

1

10ε2
, (3.44)

µt

E
∼

10−2

0.05
∼ 0.2,

µE

c
∼ 50 ∼

1

4ε
. (3.45)

The considerations concerning the wind velocity are the same as in the case of a coastal zone. The
the rescaled equation for a coastal layer writes:

∂Ĩ

∂t
+









20
∂E

∂x1
+
∂H̃

∂x1

2

ε
(5
∂E

∂x2
+
∂H̃

∂x2
)









· Ñ + (20E + H̃)
(∂Ñ1

∂x1
+

1

2ε

∂Ñ2

∂x2

)

+ 4









∂Ĩ

∂x1

1

2ε

∂Ĩ

∂x2









· M̃

+4Ĩ
(∂M̃1

∂x1
+

1

2ε

∂M̃2

∂x2

)

+









4ε
∂Ĩ

∂x1

2
∂Ĩ

∂x2









· Ñ + Ĩ
(

4ε
∂Ñ1

∂x1
+ 2

∂Ñ2

∂x2

)

= 0,

(3.46)
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∂Ñ

∂t
+

(

4
∂Ñ

∂x1
,
2

ε

∂Ñ

∂x2

)

M̃ +
(

4
∂M̃

∂x1
,
2

ε

∂M̃

∂x2

)

Ñ +
(

4ε
∂Ñ

∂x1
, 2
∂Ñ

∂x2

)

Ñ +
π

2ε
Ñ⊥

+
0.4

ε









∂Ĩ

∂x1

1

2ε

∂Ĩ

∂x2









− (13ε4
∂2M̃

∂x1
2

+
13ε2

4

∂2M̃

∂x2
2
) − (13ε5

∂2Ñ

∂x1
2

+
13ε3

4

∂2Ñ

∂x2
2
)

−13ε4

(∂M̃

∂x1
,

1

2ε

∂M̃

∂x2

)









∂E

∂x1
+

1

5

∂H̃

∂x1

1

2ε
(
∂E

∂x2
+

1

5

∂H̃

∂x2
)









E + 1
5H̃ + ε

5 Ĩ

−
13ε5

5

(∂M̃

∂x1
,

1

2ε

∂M̃

∂x2

)









∂Ĩ

∂x1

1

2ε

∂Ĩ

∂x2









E + 1
5H̃ + ε

5 Ĩ
− 13ε5

( ∂Ñ

∂x1
,

1

2ε

∂Ñ

∂x2

)









∂E

∂x1
+

1

5

∂H̃

∂x1

1

2ε
(
∂E

∂x2
+

1

5

∂H̃

∂x2
)









E + 1
5H̃ + ε

5 Ĩ

−
13ε6

5

( ∂Ñ

∂x1
,

1

2ε

∂Ñ

∂x2

)









∂Ĩ

∂x1

1

2ε

∂Ĩ

∂x′2









E + 1
5H̃ + ε

5 Ĩ

+
1

10ε2

1
E+ 1

5
H̃+ ε

5
Ĩ

1 + 1
10ε2 (E + 1

5H̃ + ε
5 Ĩ)

M̃ +
1

10ε

1
E+ 1

5
H̃+ ε

5
Ĩ

1 + 1
10ε2 (E + 1

5H̃ + ε
5 Ĩ)

Ñ =

0.2

1
E+ 1

5
H̃+ ε

5
Ĩ

1 + 1
4ε(E + 1

5H̃ + ε
5 Ĩ)

(
γ

2ε
W̃ −

1

ε
M̃) − 0.2

1
E+ 1

5
H̃+ ε

5
Ĩ

1 + 1
4ε(E + 1

5H̃ + ε
5 Ĩ)

Ñ+F.

(3.47)

4 Existence

4.1 Simplified system for continental shelf

In this section, we focus on one of the models introduced in the previous section, and we explore
some of its mathematical properties.

More precisely, we consider a simplified version of system (3.28)-(3.29) which consists in consid-
ering that the ocean bottom is flat, i.e. E ≡ 1, in forgetting all the power of ε greater than 1 and
in setting all constants to 1. Then we obtain system (2.5)-(2.6) and we prove an existence result for
the solution of this system.

Although the results given in sections 4 and 5 are specific to the model (2.5)-(2.6), we expect that
similar methods could be used to prove similar results for the other models introduced in section 3.
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4.2 Proof of Theorem 2.1

Setting u = (Ĩ, Ñ) = (Ĩ, Ñ1, Ñ2), u⊥ = (0, Ñ⊥) and introducing

B1(t,
t

ε
,x, εu) =











M̃1 + εÑ1
1

ε
+ H̃ + εĨ 0

1

ε
M̃1 + εÑ1 0

0 0 M̃1 + εÑ1











, (4.1)

B2(t,
t

ε
,x, εu) =











M̃2 + εÑ2 0
1

ε
+ H̃ + εĨ

0 M̃2 + εÑ2 0
1

ε
0 M̃2 + εÑ2











, (4.2)

and

F (t,
t

ε
,x,u) =

















−(
∂H̃

∂x1
Ñ1 +

∂H̃

∂x2
Ñ2) − (

∂M̃1

∂x1
+
∂M̃2

∂x2
)Ĩ

W̃1 − (
∂M̃1

∂x1
Ñ1 +

∂M̃1

∂x2
Ñ2)

W̃2 − (
∂M̃2

∂x1
Ñ1 +

∂M̃2

∂x2
Ñ2)

















, (4.3)

equations (2.5)-(2.6) read

∂u

∂t
+B1 ∂u

∂x1
+B2 ∂u

∂x2
+

1

ε
u⊥ = F. (4.4)

And, introducing

A0(t,
t

ε
,x, ε2Ĩ) =











1

1 + εH̃ + ε2Ĩ
0 0

0 1 0

0 0 1











, (4.5)

A1(t,
t

ε
,x, εu) =













M̃1 + εÑ1

1 + εH̃ + ε2Ĩ
0 0

0 M̃1 + εÑ1 0

0 0 M̃1 + εÑ1













, (4.6)

A2(t,
t

ε
,x, εu) =













M̃2 + εÑ2

1 + εH̃ + ε2Ĩ
0 0

0 M̃2 + εÑ2 0

0 0 M̃2 + εÑ2













, (4.7)

S1 =











0 1 0

1 0 0

0 0 0











and S2 =











0 0 1

0 0 0

1 0 0











, (4.8)
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equation (4.4) yields the following symmetric hyperbolic system:

A0 ∂u

∂t
+A1 ∂u

∂x1
+A2 ∂u

∂x2
+

1

ε
S1 ∂u

∂x1
+

1

ε
S2 ∂u

∂x2
+

1

ε
u⊥ = F0 = A0F. (4.9)

Hence applying Kato [18] or Majda [23], we deduce that for any ε, under the assumptions of Theorem
2.1, the classical solution of (2.5), (2.6) and (2.8) exists and is unique on a time interval. what remains
to prove is that this time interval does not depend on ε.

Before going further in the proof, we may observe the following differences between equation
(4.9) and the type of problems, also depending on a small parameter, studied in Klainerman and
Majda [19, 20], Schochet [33, 32, 34], and Metivier and Schochet [24]. Some of those differences
simplify the problem: the nonlinearity in A0 are functions of only ε2Ĩ and in A1 and A2 of only εu.
Some others make the results proved by those authors unable to be applied directly: A0, A1 and A2

depend on t/ε and the singular term u⊥/ε involves the function u itself and not order 1 derivatives
of it. Nonetheless, the now classical calculus procedures carried out in the concerned papers may be
followed in order to obtain the right estimates allowing for the conclusion. We sketch the concerned
computations hereafter.

We set α = (α1, α2) ∈ N
2 with |α| = α1 + α2 ≤ s and Dαu =

∂|α|u

∂x1
α1∂x2

α2
. Applying Dα to

equation (4.9) yields

A0 ∂D
αu

∂t
+A1 ∂D

αu

∂x1
+A2 ∂D

αu

∂x2
+

1

ε
S1 ∂D

αu

∂x1
+

1

ε
S2 ∂D

αu

∂x2
+

1

ε
(Dαu)⊥ = Fα, (4.10)

with

Fα = DαF0 − [Dα, A0 ∂

∂t
]u− [Dα, A1 ∂

∂x1
]u − [Dα, A2 ∂

∂x2
]u, (4.11)

[ , ] standing for the classical commutator.
Multiplying equation (4.10) by 2Dαu, , integrating on R

2 and noticing that

2

∫

A0 ∂D
αu

∂t
·Dαu dx =

d
(

∫

A0Dαu ·Dαu dx
)

dt
−

∫

d(A0)

dt
Dαu ·Dαu dx, (4.12)

2

∫

Aj ∂D
αu

∂xj
·Dαu dx =

(

∫

d
(

AjDαu ·Dαu
)

dxj
dx

)

−

∫

d(Aj)

dxj
Dαu ·Dαu dx

= −

∫

d(Aj)

dxj
Dαu ·Dαu dx (4.13)

2

∫

Sj ∂D
αu

∂xj
·Dαu dx = −2

∫

Sj ∂D
αu

∂xj
·Dα dx = 0, (4.14)

for j = 1, 2, and

2

∫

(Dαu)⊥ ·Dαu dx = 0, (4.15)

we obtain

d
(

∫

A0Dαu ·Dαu dx
)

dt
=

∫

d(A0)

dt
Dαu ·Dαu dx

+

∫

d(A1)

dx1
Dαu ·Dαu dx +

∫

d(A2)

dx2
Dαu ·Dαu dx +

∫

Fα ·Dαu dx. (4.16)

14



For all the estimates to come, all the constants which are needed are called c. Since the dependency
of A0 with respect to t/ε is done through εH̃, and since s > 3, we can deduce that for any t and x,

∣

∣

∣

d(A0
11(t,

t
ε ,x, ε

2Ĩ))

dt

∣

∣

∣ ≤ c(1 + ε2
∣

∣

∂Ĩ

∂t

∣

∣) ≤ c(1 + ε2 sup
x∈R2

∣

∣

∂Ĩ

∂t

∣

∣) ≤ c(1 + ε2
∥

∥

∂Ĩ

∂t

∥

∥

s−1
), (4.17)

where ‖ ‖s−1 stands for the norm in Hs−1(R2). The time derivatives of the other entries of A0 are
zero. Hence the first term of the right hand side of (4.16) may be estimated

∣

∣

∣

∣

∫

d(A0)

dt
Dαu ·Dαu dx

∣

∣

∣

∣

≤ c(1 + ε2
∥

∥

∂Ĩ

∂t

∥

∥

s−1
) ‖Dαu‖2

0 ≤ c(1 + ε2
∥

∥

∂Ĩ

∂t

∥

∥

s−1
) ‖u‖2

s, (4.18)

where ‖ ‖s stands for the norm in (Hs(R2))2 and ‖ ‖0 for the norm in (L2(R2))2. Concerning the
entries Ai

kl of Ai for i = 1, 2,

∣

∣

∣

d(Ai
kl(t,

t
ε ,x, εu))

dxi

∣

∣

∣ ≤ c(1 + ε
∣

∣

∂Ñi

∂xi

∣

∣ + ε2
∣

∣

∂Ĩ

∂xi

∣

∣) ≤ c(1 + ε sup
x∈R2

∣

∣

∂Ñi

∂xi

∣

∣ + ε2 sup
x∈R2

∣

∣

∂Ĩ

∂xi

∣

∣)

≤ c(1 + ε
∥

∥

∂u

∂xi

∥

∥

s−1
) ≤ c(1 + ε

∥

∥u
∥

∥

s
). (4.19)

Hence
∣

∣

∣

∣

∫

d(Ai)

dxi
Dαu ·Dαu dx

∣

∣

∣

∣

≤ c(1 + ε‖u‖s)‖D
αu‖2

0 ≤ c(1 + ε‖u‖s)‖u‖
2
s. (4.20)

The last term of (4.16) is left to estimate . For this, we first notice that DαF0 is the sum of
controlled coefficients multiplied by Dβu (possibly multiplied by ε2 or ε4 or . . . ) with β = (β1, β2) ∈
N

2 such that β ≤ α (i.e. β1 ≤ α1 and β2 ≤ α2). Hence

∣

∣

∣

∣

∫

DαF0 ·D
αu dx

∣

∣

∣

∣

≤ c(1 +
∑

β

‖Dβu‖0) ‖D
αu‖0 ≤ c(1 + ‖u‖s) ‖u‖s. (4.21)

Secondly [Dα, A1 ∂
∂x1

]u is the sum of controlled coefficients multiplied by Dβu (possibly multiplied

by ε or ε2 or . . . ) and themselves multiplied by Dγu with β ≤ α, γ ≤ α and β + γ ≤ α + (1, 0)
which implies |β|+ |γ| ≤ |α|+ 1. When |β| ≤ s− 1 and |γ| ≤ s− 1 since |β|+ |γ|+ 1 ≤ |α|+ 2 < 2s
we deduce that Dβu ·Dγu ∈ L2(R2) with ‖Dβu ·Dγu‖0 ≤ c‖u‖2

s by a classical calculus inequality
that can be for instance found in the Appendix of Schochet [32]. When |α| = s, |β| = s and |γ| = 1
we have sup

x∈R2 |Dγu| ≤ ‖u‖s. Then Dβu · Dγu ∈ L2(R2). When |α| = s, |β| = 1 and |γ| = s
sup

x∈R2 |Dβu| ≤ ‖u‖s and then Dβu ·Dγu ∈ L2(R2). As the same can be done with [Dα, A2 ∂
∂x2

]u,
we deduce

∣

∣

∣

∣

∫

(

− [Dα, A1 ∂

∂x1
]u− [Dα, A1 ∂

∂x1
]u

)

·Dαu dx

∣

∣

∣

∣

≤ c(1 + ‖u‖s + ‖u‖2
s) ‖D

αu‖0

≤ c(1 + ‖u‖s + ‖u‖2
s) ‖u‖s. (4.22)

Finally, [Dα, A0 ∂
∂t ]u is a sum of controlled coefficients multiplied by εDβu (possibly multiplied by

ε or ε2 or . . . ) and themselves multiplied by Dγ ∂u

∂t with γ < α and (0, 0) < β ≤ α, that implies
|β| > 0 and |β|+ |γ| ≤ |α|. When |β| ≤ s−1 and |γ| ≤ s−2, since |β|+ |γ|+1 ≤ |α|+1 < s+(s−1),
applying classical calculus inequalities, we obtain Dβu · Dγ ∂u

∂t ∈ L2(R2), with ‖Dβu · Dγ ∂u

∂t ‖0 ≤

c‖u‖
1/2
s ‖∂u

∂t ‖
1/2
s−2‖u‖

1/2
s−1‖

∂u

∂t ‖
1/2
s−1 ≤ c‖u‖s‖

∂u

∂t ‖s−1. When |α| = s, |β| = s and |γ| = 0 we have
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sup
x∈R2 |Dγ ∂u

∂t | ≤ ‖∂u

∂t ‖s−1. Then Dβu ·Dγ ∂u

∂t ∈ L2(R2). When |α| = s, |β| = 1 and |γ| = s− 1, we

get sup
x∈R2 |Dβu| ≤ ‖u‖s and Dβu ·Dγ ∂u

∂t ∈ L2(R2). Hence, we deduce

∣

∣

∣

∣

∫

(

[Dα, A0 ∂

∂t
]u

)

·Dαu dx

∣

∣

∣

∣

≤ c(1 + ε
∥

∥

∥

∂u

∂t

∥

∥

∥

s−1
‖u‖s) ‖u‖s. (4.23)

Using inequalities (4.17) - (4.23) and summing (4.16) for α ≤ s, we obtain

∑

|α|≤s

∣

∣

∣

∣

d
(

∫

A0Dαu ·Dαu dx
)

dt

∣

∣

∣

∣

≤ g1(‖u‖s, ε‖
∂u

∂t
‖s−1), (4.24)

for a function g1 not depending on ε.
Derivating system (4.10) with respect to t, we get

A0 ∂(Dα ∂u

∂t )

∂t
+A1 ∂(Dα ∂u

∂t )

∂x1
+A2 ∂(Dα ∂u

∂t )

∂x2
+

1

ε
S1 ∂(Dα ∂u

∂t )

∂x1
+

1

ε
S2 ∂(Dα ∂u

∂t )

∂x2
+

1

ε
(Dα ∂u

∂t
)⊥

= −
dA0

dt
Dα ∂u

∂t
−
dA1

dt
Dα ∂u

∂x1
−
dA2

dt
Dα ∂u

∂x2
+
dFα

dt
. (4.25)

Every previously established estimate remains valid. Moreover, we can set that the entries Ai
kl of

Ai for i = 1, 2 satisfy

∣

∣

∣

d(Ai
kl(t,

t
ε ,x, εu))

dt

∣

∣

∣ ≤ c(
1

ε
+ ε

∥

∥u
∥

∥

s
+ ε

∥

∥

∂u

∂t

∥

∥

s−1
), (4.26)

and using, when it is necessary, the same classical calculus procedure as above, we can show that
dF α

dt is in L2(R2) with

∥

∥

∥

dFα

dt

∥

∥

∥

0
≤ c(

1

ε
+ 1 + ε

∥

∥u
∥

∥

s
+ ε

∥

∥u
∥

∥

2

s
+ ε

∥

∥

∂u

∂t

∥

∥

s−1
+ ε

∥

∥

∂u

∂t

∥

∥

2

s−1
)
∥

∥u
∥

∥

s
. (4.27)

Then, multiplying equation (4.25) by 2εDα(ε∂u

∂t ) and following the previous method, we obtain

∑

|α|≤s−1

∣

∣

∣

∣

d
(

∫

A0Dα(ε
∂u

∂t
) ·Dα(ε

∂u

∂t
) dx

)

dt

∣

∣

∣

∣

≤ g2(‖u‖s, ε‖
∂u

∂t
‖s−1), (4.28)

for a function g2 not depending on ε.
As a conclusion, estimates (4.24)-(4.28) together with the fact that

(

∑

|α|≤s

∫

A0Dαu ·Dαu dx
)1/2

(4.29)

is a norm equivalent to ‖ ‖s, allows us to set that

d
(

‖u‖s + ε
∥

∥

∥

∂u

∂t

∥

∥

∥

s−1

)

dt
≤ g(‖u‖s + ε

∥

∥

∥

∂u

∂t

∥

∥

∥

s−1
) (4.30)

for a function g not depending on ε and then that the time interval on which the classical solution
of (2.5), (2.6) and (2.8) exits does not depend on ε.

Finally, estimate (2.9) is a direct consequence of (4.30). This ends the proof of Theorem 2.1.
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5 Asymptotic behavior: proof of Theorem 2.2

In order to deduce the asymptotic behavior as ε goes to 0 of (I,N) we use the method, developed
in Tartar [37], Frénod [9] and Frénod and Hamdache [11] and used in Frénod and Sonnendrücker
[13, 14], which consists in setting a weak formulation with oscillating test functions of system (2.5)
- (2.6) or of its equivalent form (4.10). Passing then to the limit using the two scale convergence
allows us to set a constraint equation. This constraint equation imposes a form to (I,N). Using
test functions satisfying the constraint equation allows us finally to deduce system (2.11).

We start by recalling the following notions linked to two-scale convergence, presented in details
in N’Guetseng [26], Allaire [4] and Frénod, Raviart and Sonnendrücker [12]. Let X be a Banach
space and let q ∈ [1,∞); we denote by X ′ the dual space of X , < ., . > the duality bracket between
X ′ and X and q′ the conjugate exponent of q, such that 1

q + 1
q′

= 1. We denote by C♯(R;X) the

space of continuous 1−periodic functions on R, with values in X . Then given a sequence (u(t))
of functions of Lq′

(0, T ;X ′) depending on a small parameter ε and a function U = U(t, θ) in
Lq′

((0, T )× (0, 1);X ′) = Lq′

((0, T );Lq′

(0, 1;X ′)), we say that

u two scale converges to U when ε→ 0, (5.1)

if, for any function ψ ∈ Lq(0, T ;C♯(R;X)), we have

lim
ε→0

∫ T

0

< u(t), ψ(t,
t

ε
) > dt =

∫ T

0

∫ 1

0

< U(t, θ), ψ(t, θ) > dθdt. (5.2)

We have the following Theorem.

Theorem 5.1 Given a sequence (u) depending on a small parameter ε, bounded in Lq′

(0, T ;X ′),
there exists an extracted subsequence (denoted in the same way) and a function U ∈ Lq′

((0, T ) ×
(0, 1);X ′) such that, when ε→ 0,

u two scale converges to U, (5.3)

u weak−∗ converges to

∫ 1

0

U dθ in Lq′

(0, T ;X ′). (5.4)

Having this result at hand, estimate (2.9) yields the two-scale convergence of u = (Ĩ, Ñ) to
U = (I,N) ∈ L∞((0, T );L∞(0, 1; (Hs(R2))3), up to a subsequence, as ε goes to 0.

Multiplying symmetric hyperbolic system (4.9) by oscillating test functions Ψ(t, t
ε ,x)) with

funtions Ψ(t, θ,x) being regular, R
3− valued, and such that θ 7→ Ψ(t, θ,x) is 1−periodic and

(t,x) 7→ Ψ(t, θ,x) is with compact support in [0, T )× R
2, and integrating yields

−

∫ T

0

∫

R2

u ·

(

∂A0Ψ

∂t
+

1

ε
A0 ∂Ψ

∂θ
+

1

ε

∂A0

∂θ
Ψ +

∂A1Ψ

∂x1
+
∂A2Ψ

∂x2
+

1

ε
S1 ∂Ψ

∂x1
+

1

ε
S2 ∂Ψ

∂x2
+

1

ε
Ψ⊥

)

dtdx

=

∫ T

0

∫

R2

A0F · Ψdtdx +

∫

R2

u0 ·A
0Ψ(0, 0, ·)dx. (5.5)

Multiplying (5.5) by ε and passing to the limit yields, since A0 two-scale converges to I and ∂A0/∂θ
to 0,

−

∫ T

0

∫

R2

∫ 1

0

U ·

(

∂Ψ

∂θ
+ S1 ∂Ψ

∂x1
+ S2 ∂Ψ

∂x2
+ Ψ⊥dθ

)

dtdx = 0, (5.6)
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which is the weak formulation of

∂U

∂θ
+ S1 ∂U

∂x1
+ S2 ∂U

∂x2
+ U⊥ = 0, (5.7)

or

∂I

∂θ
+ ∇ · N = 0,

∂N

∂θ
+ N⊥ + ∇I = 0. (5.8)

For S′ being the dual space of the space of infinitely differentiable functions with fast decay we
consider, for k ∈ 2πZ and l = (l1, l2) ∈ R

2, (Î, N̂) = (Î(k, l1, l2), N̂(k, l1, l2)) the Fourier transform

in S′ of (I,N). From equation (5.10), we deduce that (Î(k, l1, l2), N̂(k, l1, l2)) is the solution to

kÎ + l1N̂1 + l2N̂2 = 0,

kN̂1 − N̂2 + l1Î = 0,

kN̂2 + N̂1 + l2Î = 0.

(5.9)

Since the determinant of this system is k(l21 + l22−k
2−1), it has non zero solutions if l21 + l22 = k2 +1,

or if k = 0. Hence any non zero solution of (5.8) is made of two terms. The first of those terms
has a Fourier transform supported on the set {(k, l1, l2) ∈ R

3, k ∈ 2πZ, l21 + l22 = k2 + 1}. As a
function being the Fourier transform of a function in L∞(0, 1; (Hs(R2))3) having a support in such
set can only be 0, we deduce that this first term is 0. The second term has a Fourier transform
supported on the set {(k, l1, l2) ∈ R

3, k = 0}, then it does not depend on θ. Hence, we may conclude
that U = (I,N) does not depend on θ. As a consequence U = (I,N) is also the weak−∗ limit of
u = (Ĩ, Ñ) and is solution to

∇ ·N = 0, N⊥ + ∇I = 0. (5.10)

From this constraint equation, we deduce the form of (I,N) given by (2.10).

For any regular function ϕ we define the test function Ψ satisfying the constraint equation by

Ψ1(t,x) = ϕ(t,x) Ψ2(t,x) = −
∂ϕ

∂x2
(t,x) Ψ3(t,x) =

∂ϕ

∂x1
(t,x). (5.11)

Using this function in (5.5) cancels terms containing 1/ε factors. Since A0 is a regular oscillating
function two-scale converging to I, 1/ε ∂A0

11/∂θ a regular oscillating function two-scale converging
to ∂H/∂θ, A1 a regular oscillating function two-scale converging to M1I and A2 a regular oscillating
function two-scale converging to M2I, passing to the limit yields

−

∫ T

0

∫

R2

∫ 1

0

U ·

(

∂Ψ

∂t
+
∂H

∂θ











Ψ1

0

0











+
∂M1Ψ

∂x1
+
∂M2Ψ

∂x2

)

dtdxdθ

=

∫ T

0

∫

R2

∫ 1

0

F · Ψdtdxdθ +

∫

R2

∫ 1

0

u0 · Ψ(0, 0, ·)dxdθ. (5.12)

Since, neither U nor Ψ depends on θ, this last equation gives

−

∫ T

0

∫

R2

U ·

(

∂Ψ

∂t
+
∂(

∫ 1

0
M1dθ)Ψ

∂x1
+
∂(

∫ 1

0
M2dθ)Ψ

∂x2

)

dtdx

=

∫ T

0

∫

R2

∫ 1

0

Fdθ · Ψdtdx +

∫

R2

u0 · Ψ(0, ·)dx. (5.13)
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or, using expressions of U, Ψ and F ,

−

∫ T

0

∫

R2

I
(∂ϕ

∂t
+
∂(

∫ 1

0
M1dθ)ϕ

∂x1
+
∂(

∫ 1

0
M2dθ)ϕ

∂x2

)

+
∂I

∂x2

(∂ ∂ϕ
∂x2

∂t
+
∂(

∫ 1

0 M1dθ)
∂ϕ
∂x2

∂x1
+
∂(

∫ 1

0 M2dθ)
∂ϕ
∂x2

∂x2

)

+
∂I

∂x1

(∂ ∂ϕ
∂x1

∂t
+
∂(

∫ 1

0 M1dθ)
∂ϕ
∂x1

∂x1
+
∂(

∫ 1

0 M2dθ)
∂ϕ
∂x1

∂x2

)

dtdx

=

∫ T

0

∫

R2

−
(∂(

∫ 1

0
Hdθ)

∂x1
(−

∂I

∂x2
) +

∂(
∫ 1

0
Hdθ)

∂x2
(
∂I

∂x1
) +

(∂(
∫ 1

0
M1dθ)

∂x1
+
∂(

∫ 1

0
M2dθ)

∂x2

)

I
)

ϕ

−
(

∫ 1

0

W1dθ − (
∂

∫ 1

0 M1dθ

∂x1
(−

∂I

∂x2
) +

∂
∫ 1

0 M1dθ

∂x2
(
∂I

∂x1
)
) ∂ϕ

∂x2

+
(

∫ 1

0

W2dθ − (
∂

∫ 1

0 M2dθ

∂x1
(−

∂I

∂x2
) +

∂
∫ 1

0 M2dθ

∂x2
(
∂I

∂x1
)
) ∂ϕ

∂x1
dtdx

+

∫

R2

Ĩ0ϕ− (Ñ0)1
∂ϕ

∂x2
+ (Ñ0)2

∂ϕ

∂x1
dx. (5.14)

We have here a weak formulation of (2.11). Since this equation is linear, it is easy to show that its
solution is unique. From this, we can finally deduce that the whole sequence u weak−∗ converges
to U as ε→ 0, ending the proof.

6 Conclusion and perspectives

In this paper, we set out equations modeling the long term evolution of the perturbation Ĩ of the
ocean free surface elevation and of the perturbation Ñ of the velocity field. Because of the tide
wave, those models contain and generate oscillations with high frequency. If numerical simulations
of near coastal ocean waters are needed, directly using those models could be very expensive because
of the oscillations. Nevertheless, the result given in Theorem 2.2, which says that (Ĩ, Ñ) weak−∗
converges to (I,N), suggests a way to use those models for numerical simulations of near coastal
ocean waters. As an intuitive interpretation of it we could say that

Ĩ(t,x) is close to I(t,x) and Ñ(t,x) is close to N(t,x). (6.1)

Hence, since equations (2.11) - (2.12) neither contain nor generate oscillations with frequency 1/ε,
we can solve it using a numerical method involving a time step which does not need to be small
compared with ε. Hence solving (2.11)-(2.12) and then reconstructing (I,N) via (2.10) in place of
solving (2.5)-(2.6)-(2.8) directly may give good results in a shorter computational time.

Among the tasks listed at the beginning of this paper, we realized significant steps in the direction
of building numerical methods in our previous paper [2] and in coastal ocean modeling over long
time periods in the present one.

The next step, we shall provide in a forthcoming paper, will consist in using the models set out
here in order to compute the ocean fields in a real near coastal ocean area and to couple this to
the numerical method proposed in [2]. This will allow us to make forecasts in a real coastal ocean
region.
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