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General framework
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Essentially : € ~ 0 (but not uniformally)

O¢ induces oscillations of period = (possibly with non-small
amplitude) in v = v°(2).
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Convergence Results

Homogenization
based . ..
numerical Weak-* Convergence definition

methods

gt u(z) = u(z) weak-x* if Vo : /(ug(z) —u(2))9(2) dz % 9

Weak-*
Convergence
based

Mothode If ||u°]| in bounded, then u®(z) — u(z) weak-*

Weak-* Convergence result

High-frequency-non-small-amplitude oscillations

Strong Convergence

If o] =2 Jlul|,  then [|u(2) — u(z)|] —2>+ O

High-frequency-small-amplitude oscillations

Set of Methods
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Strong Convergence based Numerical Methods -

Diagram

Homogenization i
Lo Where ¢ is small

pucnssical If u®(z) ~ u(z) strongly for small ¢  (||u®(2) — u(2)|| =0, 0)

methods

u® solution to u solution to
Weak-* E 14€ — —
Convergence O u = O e—=0 O u = 0
based
Numerical
Methods
Az—0

ua, solution to

OAz upnz = 0

u®(z) ~ u(z) strongly —> high-frequency-small-amplitude
oscillations.
u good approximation of u°.
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Weak-x Convergence based Numerical Methods -

Diagram

LR Where ¢ is small
based

numerical If u®(z) ~ u(z) weakly for small &
methods .
Emmane ([ (v (2) — u(2))p(z2) dz =290 for any test function )
u® solution to u solution to
Weak-* —_—>
Convergence OE u€ = O e—0 O u= 0

based
Numerical
Methods

Az—0

up solution to
OAZ Unz = 0
u®(z) ~ u(z) weakly —=> high-frequency-non-small-amplitude

oscillations.
u approximation of u® in average only.
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Order 1 Weak-* Convergence based Numerical
Methods
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Order 1
Weak-
Convergence
based
Numerical
Methods

Set of Methods
O°u" =0 —> Ou=0and O'ul =0
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Order 1 Weak-* Convergence based Numerical

Methods - Diagram

Homogenization

based Where ¢ is small

numerical
fRetheas If u(z) ~ u(z) + eut(z) for small &

Emmanuel
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u, uy solutions to
Ou=0
Otut=0

u® solution to

Ocur =0 =0

Order 1
Weak-*

Convergence
based Az—0

Numerical
Methods

Upz, Uaz solution to
OAZ upnz = 0
1 1 _
OAZ qu =0
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Approx. of high-frequency-non-small-amplitude
oscillating functions
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u®(z) — high-frequency-non-small-amplitude oscillations.

u"(z) ~ U(z, 2) with U(z,() periodic in .

Illustration

Order 0
Two-Scale
Numerical
Methods
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function with large scale variation and
high-frequency-non-small-amplitude oscillations
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Order 0 Figure: Graph of = sm(x) +1+ %cos( ) for e = 1/20 (left), 1/40

Two-Scale

Numerical (center) and 1/80 (rlght) between — and 7.

Methods
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function with high-frequency-modulated-amplitude
oscillations
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A

Order 0 Figure: Graph of (sm( )+ l)cos(X) for £ = 1/20 (left), 1/40 (center)

Two-Scale

Numerical and 1/80 (right) between —7 and 7.

Methods
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Methods

function with large scale variation and
high-frequency-modulated-amplitude oscillations

) for e = 1/20 (left),

Figure: Graph of %cos(x) +1+ %(sin(x) + 1) cos(
1/40 (center) and 1/80 (right) between —7 and .

X
g
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Two-Scale Convergence Definition

Homogenization

n
(z € R7)
numerical
methods

Emmanuel (u”(z)) Two-Scale Converges to U(z, () periodic of period [0,1]" in ¢

Frénoc
if

Vi (z, ) regular, compactly supported in z and periodic of period
[0,1]" in ¢

Ju@ue e = [ [ e aue0d

Order 0
Two-Scale
Numerical
Methods

MEANS: v®(z) ~ U(z,-)

™| N
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Two-Scale Convergence Results

Homogenization
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Tmethods Two-Scale Convergence

Smmanuel If ||u®]] in bounded, then

(u"(2)) Two-Scale Converges to U(z, ()

u(z) = u(z) = /ge[o " U(z,¢)d¢  weak-x

Strong Two-Scale Convergence

If o] =% ||U|,  then ||u£(z)—U(z7§)” =20,

Order 0
Two-Scale
Numerical
Methods

\

Set of Methods

Ouw=0 > OU=0

Emmanuel Frénod Homogenization based numerical methods



Homogenization
based
numerical
methods

Emmanuel
Frénod

Order O Two-Scale

Numerical Methods

Order 0
Two-Scale
Numerical
Methods
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Order 0 Two-Scale Numerical Methods - Diagram

Where ¢ is small

If u®(z) ~ u(z) weakly and u*(z) ~ U(z, Z) more strongly for small ¢

u® solution to

u solution to

Ocuc =0 e —0, weak-* Ou=0

s—)O,tone\

Ua; solution to / d¢
OAZ UAz =0 /=2

Emmanuel Frénod

U solution to / d¢
OoU=0

Z Az—0

uaz solution to

Az—0
OAz upnz = 0
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Numerical Methods

Order 1
Two-Scale
Numerical
Methods
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Order 1 Two-Scale Numerical Methods

Homogenization
based
numerical

methods u®(z) ~ U(z, g) + U (2, g) with U(z,¢) and Ul(z,¢) periodic in (.
Emmanuel

(u”(z)) Two-Scale Converges to U(z, ()

1

(5 <u5(z) — U(z, i)) Two-Scale Converges to U'(z, ()

Set of Methods
O°u =0 — OU=0and O U'=0

Order 1
Two-Scale
Numerical
Methods
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Where ¢ is small

If u¥(z) ~ U(z,

™ IN

) 4+ cU(z, 2) for small & (u°(2) ~ u(z) + eu'(z) weakly)

R . u, uy solutions to
u® solution to

OEUEZO e — 0, weak-* OUIO

O'wl=0
sﬁom /

U, U* solutions to / d¢
OU=0 ‘ Az—>0
OtUt =0

uaz, uh, solutions to
Az—0 OAZ upnz = 0
1 1 _
OAzqu =0

Uaz, Uiz solutions to / dC
OAZ Ua; =0 =
OIAZ UAZ = O
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¢ non uniformally small
If u5(z) ~ U (2. 2) = Us(2, 2) + U5 (2, 2)

u® solution to

u, uy solutions to
OE UE = £ —0, weak-* Ou=0 04l =0
£ — 0, two-scale %
U, U solutions to =z
ouU=o0
otut =o
Az — 0 Az —0
£—0
U? solution to
O U =0
Az —0
uj, solution to

1 .
=0 upz. up, selutions to

13 15 J— _ 1,1 _
Az qu — 0 Opzupz =0, oAz"’Az*O

Az —0 /

d
Upg, Uiz solutions to /Z <
Opz Upz =0

1 1 _
OazUaz =0

Uy, solution to
Oa,Up, =0
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