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General framework

Oε uε = 0,

Essentially : ε ∼ 0 (but not uniformally)

Oε induces oscillations of period ε (possibly with non-small
amplitude) in uε = uε(z).
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Convergence Results

Weak-∗ Convergence definition

uε(z)⇀ u(z) weak-∗ if ∀φ :

∫
(uε(z)− u(z))φ(z) dz ε→0−−−−→ 0

Weak-∗ Convergence result

If ‖uε‖ in bounded, then uε(z)⇀ u(z) weak-∗
High-frequency-non-small-amplitude oscillations

Strong Convergence

If ‖uε‖ ε→0−−−−→ ‖u‖, then ‖uε(z)− u(z)‖ ε→0−−−−→ 0
High-frequency-small-amplitude oscillations

Set of Methods
Oε uε = 0 −−> O u = 0
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Strong Convergence based Numerical Methods -
Diagram

Where ε is small
If uε(z) ∼ u(z) strongly for small ε (‖uε(z)− u(z)‖ ε→0−−−−→ 0)

uε solution to

Oε uε = 0 ε→ 0
// u solution to

O u = 0

u∆z solution to

O∆z u∆z = 0

∆z → 0

OO

∆z → 0

OO

∆z → 0

OO

∆z → 0

OO

uε(z) ∼ u(z) strongly −−> high-frequency-small-amplitude
oscillations.
u good approximation of uε.
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Weak-∗ Convergence based Numerical Methods -
Diagram

Where ε is small
If uε(z) ∼ u(z) weakly for small ε

(
∫
(uε(z)− u(z))ϕ(z) dz ε→0−−−−→ 0 for any test function ϕ)

uε solution to

Oε uε = 0 ε→ 0
// u solution to

O u = 0

u∆z solution to

O∆z u∆z = 0

∆z → 0

OO

∆z → 0

OO

∆z → 0

OO

∆z → 0

OO

uε(z) ∼ u(z) weakly −−> high-frequency-non-small-amplitude
oscillations.
u approximation of uε in average only.
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Order 1 Weak-∗
Convergence based
Numerical Methods
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Order 1 Weak-∗ Convergence based Numerical
Methods

uε(z) ∼ u(z) + εu1(z).

uε(z)→ u(z , ζ)
1
ε

(
uε(z)− u(z)

)
⇀ u1(z)

Set of Methods

Oε uε = 0 −−> O u = 0 and O1 u1 = 0
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Order 1 Weak-∗ Convergence based Numerical
Methods - Diagram

Where ε is small
If uε(z) ∼ u(z) + εu1(z) for small ε

uε solution to

Oε uε = 0 ε→ 0
//

u, u1 solutions to

O u = 0
O1 u1 = 0

u∆z , u∆z solution to

O∆z u∆z = 0
O1

∆z u1
∆z = 0

∆z → 0

OO

∆z → 0

OO

∆z → 0

OO

∆z → 0

OO
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Two-Scale Convergence
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Approx. of high-frequency-non-small-amplitude
oscillating functions

uε(z) −−> high-frequency-non-small-amplitude oscillations.

uε(z) ∼ U(z , z
ε ) with U(z , ζ) periodic in ζ.

Illustration · · · / . . .
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function with large scale variation and
high-frequency-non-small-amplitude oscillations
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Figure: Graph of
1
2

sin(x) + 1 +
1
2

cos(
x
ε
) for ε = 1/20 (left), 1/40

(center) and 1/80 (right) between −π and π.
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function with high-frequency-modulated-amplitude
oscillations
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Figure: Graph of
1
2
(sin(x) + 1) cos(

x
ε
) for ε = 1/20 (left), 1/40 (center)

and 1/80 (right) between −π and π.
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function with large scale variation and
high-frequency-modulated-amplitude oscillations
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Figure: Graph of
1
2

cos(x) + 1 +
1
2
(sin(x) + 1) cos(

x
ε
) for ε = 1/20 (left),

1/40 (center) and 1/80 (right) between −π and π.
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Two-Scale Convergence Definition

(z ∈ Rn)

(uε(z)) Two-Scale Converges to U(z , ζ) periodic of period [0, 1]n in ζ

if

∀ψ(z , ζ) regular, compactly supported in z and periodic of period
[0, 1]n in ζ∫

uε(z)ψ(z ,
z
ε
) dz ε→0−−−−→

∫ ∫
ζ∈[0,1]n

U(z , ζ)ψ(z , ζ) dζdz

MEANS: uε(z) ∼ U(z ,
z
ε
)
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Two-Scale Convergence Results

Two-Scale Convergence

If ‖uε‖ in bounded, then

(uε(z)) Two-Scale Converges to U(z , ζ)

uε(z)⇀ u(z) =
∫
ζ∈[0,1]n

U(z , ζ) dζ weak-∗

Strong Two-Scale Convergence

If ‖uε‖ ε→0−−−−→ ‖U‖, then ‖uε(z)− U(z ,
z
ε
)‖ ε→0−−−−→ 0

Set of Methods
Oε uε = 0 −−> OU = 0
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Order 0 Two-Scale
Numerical Methods
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Order 0 Two-Scale Numerical Methods - Diagram

Where ε is small
If uε(z) ∼ u(z) weakly and uε(z) ∼ U(z , z

ε ) more strongly for small ε

uε solution to

Oε uε = 0 ε→ 0 , weak-*
//

ε→ 0 , two-scale ))

u solution to

O u = 0

U solution to

OU = 0

∫
Z

dζ

66

u∆z solution to

O∆z u∆z = 0

∆z → 0

OO

U∆z solution to

O∆z U∆z = 0

∆z → 0

OO

∫ Num

Z
dζ

66
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Order 1 Two-Scale
Numerical Methods
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Order 1 Two-Scale Numerical Methods

uε(z) ∼ U(z ,
z
ε
) + εU1(z ,

z
ε
) with U(z , ζ) and U1(z , ζ) periodic in ζ.

(uε(z)) Two-Scale Converges to U(z , ζ)(
1
ε

(
uε(z)− U(z ,

z
ε

))
Two-Scale Converges to U1(z , ζ)

Set of Methods

Oε uε = 0 −−> OU = 0 and O1 U1 = 0
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Where ε is small
If uε(z) ∼ U(z , z

ε ) + εU1(z , z
ε ) for small ε (uε(z) ∼ u(z) + εu1(z) weakly)

uε solution to

Oε uε = 0 ε→ 0 , weak-*
//

ε→ 0 , two-scale ((

u, u1 solutions to

O u = 0
O1u1 = 0

U, U1 solutions to

OU = 0
O1U1 = 0

∫
Z

dζ

77

u∆z , u1
∆z solutions to

O∆z u∆z = 0
O1

∆zu
1
∆z = 0

∆z → 0

OO

U∆z , U1
∆z solutions to

O∆z U∆z = 0
O1

∆zU
1
∆z = 0

∆z → 0

OO

∫ Num

Z
dζ

77
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TSAPSε non uniformally small
If uε(z) ∼ Uε(z , z

ε ) = Uε
0 (z ,

z
ε ) + εUε

1 (z ,
z
ε )

uε solution to
Oε uε = 0 ε→ 0 , weak-*

//

ε→ 0 , two-scale
,,

u, u1 solutions to

O u = 0, O1u1 = 0

U, U1 solutions to
O U = 0

O1U1 = 0

∫
Z

dζ

66

Uε solution to
Oε Uε = 0

ζ =
z

ε

bb

ε→ 0

66

uε
∆z solution to

Oε
∆z uε

∆z = 0

∆z→ 0

OO

ε→ 0 // u∆z , u1
∆z solutions to

O∆z u∆z = 0, O1
∆z u1

∆z = 0

∆z→ 0

OO

U∆z , U1
∆z solutions to

O∆z U∆z = 0

O1
∆zU1

∆z = 0

∆z→ 0

OO

∫
Z

dζ

66

Uε
∆z solution to
Oε

∆z Uε
∆z = 0

ζ =
z

ε

aa
∆z→ 0

OO

ε→ 0

66
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