> Emmanuel Frénod

Introduction

Weak-* Convergence based Numerical Methods

Order 1 Weak-* Convergence based Numerical Methods

Order 0 Two-Scale Numerical Methods

Order 1 Two-Scale Numerical Methods

TSAPS

Synthetic introduction to homogenization based numerical methods

Emmanuel Frénod

LMBA, Université de Bretagne-Sud, Vannes, France and EP Inria Calvi and Irma, Strasbourg, France

AIMS conference

Special Session 79: Numerical Methods based on Homogenization and on Two-Scale Convergence Orlando - July 1st, 2012

> Emmanuel Frénod

Introduction

Weak-* Convergenc based Numerical Methods

Order 1 Weak-* Convergence based Numerical Methods

Order 0 Two-Scale Numerical Methods

Order 1 Two-Scale Numerical Methods

TSAPS

Introduction

General framework

Homogenization based numerical methods

> Emmanuel Frénod

Introduction

Weak-* Convergence based Numerical Methods

Order 1 Weak-* Convergence based Numerical Methods

Order 0 Two-Scale Numerical Methods

Order 1 Two-Scale Numerical Methods

TSAPS

$$O^{\varepsilon} u^{\varepsilon} = 0,$$

Essentially : $\varepsilon \sim 0$ (but not uniformally)

 O^{ε} induces oscillations of period ε (possibly with non-small amplitude) in $u^{\varepsilon} = u^{\varepsilon}(z)$.

> Emmanuel Frénod

Introduction

Weak-* Convergence based Numerical Methods

Order 1 Weak-* Convergence based Numerical Methods

Order 0 Two-Scale Numerical Methods

Order 1 Two-Scale Numerical Methods

TSAPS

Strong and Weak-* Convergence based Numerical Methods

Convergence Results

Homogenization based numerical methods

> Emmanuel Frénod

Introduction

Weak-* Convergence based Numerical Methods

Order 1 Weak-* Convergence based Numerical Methods

Order 0 Two-Scale Numerical Methods

Order 1 Two-Scale Numerical Methods

TSAPS

Weak-* Convergence definition

$$u^{\varepsilon}(z)
ightarrow u(z) \quad \text{weak-* if } orall \phi : \int (u^{\varepsilon}(z) - u(z))\phi(z) \, dz \quad \xrightarrow{\varepsilon
ightarrow 0} \quad 0$$

Weak-* Convergence result

If $\|u^{\varepsilon}\|$ in bounded, then $u^{\varepsilon}(z) \rightharpoonup u(z)$ weak-*

High-frequency-non-small-amplitude oscillations

Strong Convergence

$$\text{ If } \|u^{\varepsilon}\| \xrightarrow{\varepsilon \to 0} \|u\|, \quad \text{ then } \|u^{\varepsilon}(z) - u(z)\| \xrightarrow{\varepsilon \to 0} 0$$

High-frequency-small-amplitude oscillations

Set of Methods $O^{\varepsilon} u^{\varepsilon} = 0 \longrightarrow O u = 0$

Strong Convergence based Numerical Methods - Diagram

Homogenization based numerical methods

> Emmanuel Frénod

Introduction

Weak-* Convergence based Numerical Methods

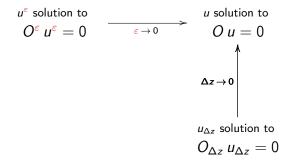
Order 1 Weak-* Convergence based Numerical Methods

Order 0 Two-Scale Numerical Methods

Order 1 Two-Scale Numerical Methods

TSAPS

Where ε is small If $u^{\varepsilon}(z) \sim u(z)$ strongly for small ε $(||u^{\varepsilon}(z) - u(z)|| \xrightarrow{\varepsilon \to 0} 0)$



 $u^{\varepsilon}(z) \sim u(z)$ strongly \longrightarrow high-frequency-small-amplitude oscillations.

u good approximation of u^{ε} .

Weak-* Convergence based Numerical Methods -Diagram

Homogenization based numerical methods

> Emmanuel Frénod

Introduction

Weak-* Convergence based Numerical Methods

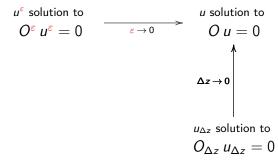
Order 1 Weak-* Convergence based Numerical Methods

Order 0 Two-Scale Numerical Methods

Order 1 Two-Scale Numerical Methods

TSAPS

Where ε is small If $u^{\varepsilon}(z) \sim u(z)$ weakly for small ε $(\int (u^{\varepsilon}(z) - u(z))\varphi(z) dz \xrightarrow{\varepsilon \to 0} 0$ for any test function $\varphi)$



 $u^{\varepsilon}(z) \sim u(z)$ weakly \longrightarrow high-frequency-non-small-amplitude oscillations. *u* approximation of u^{ε} in average only.

> Emmanuel Frénod

Introduction

Weak-* Convergence based Numerical Methods

Order 1 Weak-* Convergence based Numerical Methods

Order 0 Two-Scale Numerical Methods

Order 1 Two-Scale Numerical Methods

TSAPS

Order 1 Weak-* Convergence based Numerical Methods

Order 1 Weak-* Convergence based Numerical Methods

Homogenization based numerical methods

> Emmanuel Frénod

Introduction

Weak-* Convergence based Numerical Methods

Order 1 Weak-* Convergence based Numerical Methods

Order 0 Two-Scale Numerical Methods

Order 1 Two-Scale Numerical Methods

TSAPS

$$u^{\varepsilon}(z) \sim u(z) + \varepsilon u^{1}(z).$$

$$u^{\varepsilon}(z)
ightarrow u(z,\zeta)$$

 $rac{1}{\varepsilon} (u^{\varepsilon}(z) - u(z))
ightarrow u^{1}(z)$

Set of Methods

 $O^{\varepsilon} u^{\varepsilon} = 0 \implies O u = 0 \text{ and } O^{1} u^{1} = 0$

Order 1 Weak-* Convergence based Numerical Methods - Diagram

Homogenization based numerical methods

> Emmanuel Frénod

Introduction

Weak-* Convergence based Numerical Methods

Order 1 Weak-* Convergence based Numerical Methods

Order 0 Two-Scale Numerical Methods

Order 1 Two-Scale Numerical Methods

TSAPS

Where ε is small If $u^{\varepsilon}(z) \sim u(z) + \varepsilon u^{1}(z)$ for small ε

> u, u_1 solutions to u^{ε} solution to O u = 0 $O^{\varepsilon} \mu^{\varepsilon} = 0$ $\varepsilon \rightarrow 0$ $O^1 \mu^1 = 0$ $\Delta z \rightarrow 0$ $u_{\Delta z}, u_{\Delta z}$ solution to $O_{\Lambda_z} u_{\Lambda_z} = 0$ $O^{1}_{\Lambda,z} u^{1}_{\Lambda,z} = 0$

> Emmanuel Frénod

Introduction

Weak-* Convergenc based Numerical Methods

Order 1 Weak-* Convergence based Numerical Methods

Order 0 Two-Scale Numerical Methods

Order 1 Two-Scale Numerical Methods

TSAPS

Two-Scale Convergence

Approx. of high-frequency-non-small-amplitude oscillating functions

Homogenization based numerical methods

> Emmanuel Frénod

Introduction

Weak-* Convergence based Numerical Methods

Order 1 Weak-* Convergence based Numerical Methods

Order 0 Two-Scale Numerical Methods

Order 1 Two-Scale Numerical Methods

TSAPS

 $u^{\varepsilon}(z) \longrightarrow$ high-frequency-non-small-amplitude oscillations.

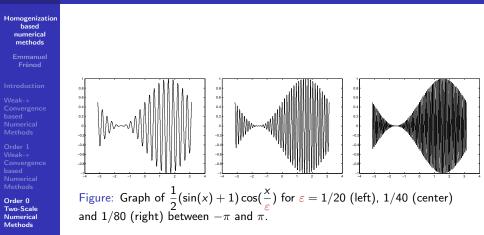
 $u^{\varepsilon}(z) \sim U(z, \frac{z}{\varepsilon})$ with $U(z, \zeta)$ periodic in ζ .

Illustration .../...

function with large scale variation and high-frequency-non-small-amplitude oscillations

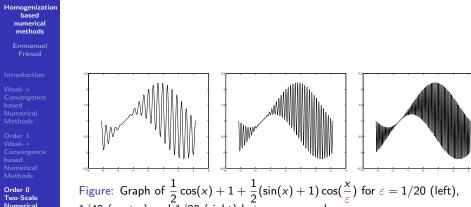
Homogenization based numerical methods Emmanuel 1.6 1.6 1.6 1.4 1.2 0.8 0.8 0.6 0.6 0.4 0.4 0.2 Figure: Graph of $\frac{1}{2}\sin(x) + 1 + \frac{1}{2}\cos(\frac{x}{\varepsilon})$ for $\varepsilon = 1/20$ (left), 1/40 Order 0 Two-Scale (center) and 1/80 (right) between $-\pi$ and π . Numerical Methods

function with high-frequency-modulated-amplitude oscillations



TSAPS

function with large scale variation and high-frequency-modulated-amplitude oscillations



1/40 (center) and 1/80 (right) between $-\pi$ and π .

Two-Scale Numerical Methods

Methods

TSAPS

Two-Scale Convergence Definition

Homogenization based numerical methods

> Emmanuel Frénod

Introduction

Weak-* Convergence based Numerical Methods

Order 1 Weak-* Convergence based Numerical Methods

Order 0 Two-Scale Numerical Methods

Order 1 Two-Scale Numerical Methods

TSAPS

 $(z \in \mathbb{R}^n)$

 $(u^{\varepsilon}(z))$ Two-Scale Converges to $U(z,\zeta)$ periodic of period $[0,1]^n$ in ζ if

 $\forall \psi(z,\zeta)$ regular, compactly supported in z and periodic of period $[0,1]^n$ in ζ

$$\int u^{\varepsilon}(z)\psi(z,\frac{z}{\varepsilon})\,dz \xrightarrow{\varepsilon \to 0} \int \int_{\zeta \in [0,1]^n} U(z,\zeta)\psi(z,\zeta)\,d\zeta dz$$

MEANS:
$$u^{\varepsilon}(z) \sim U(z, \frac{z}{\varepsilon})$$

Two-Scale Convergence Results

Homogenization based numerical methods

> Emmanuel Frénod

Introduction

Weak-* Convergence based Numerical Methods

Order 1 Weak-* Convergence based Numerical Methods

Order 0 Two-Scale Numerical Methods

Order 1 Two-Scale Numerical Methods

TSAPS

Two-Scale Convergence

If $\|u^{\varepsilon}\|$ in bounded, then

$$(u^{\varepsilon}(z))$$
 Two-Scale Converges to $U(z,\zeta)$
 $u^{\varepsilon}(z)
ightarrow u(z) = \int_{\zeta \in [0,1]^n} U(z,\zeta) \, d\zeta$ weak-*

Strong Two-Scale Convergence

$$\text{If } \|u^{\varepsilon}\| \xrightarrow{\varepsilon \to 0} \|U\|, \quad \text{ then } \|u^{\varepsilon}(z) - U(z, \frac{z}{\varepsilon})\| \xrightarrow{\varepsilon \to 0} 0$$

Set of Methods

$$O^{\varepsilon} u^{\varepsilon} = 0 \longrightarrow \mathcal{O} U = 0$$

> Emmanuel Frénod

Introduction

Weak-* Convergenc based Numerical Methods

Order 1 Weak-* Convergence based Numerical Methods

Order 0 Two-Scale Numerical Methods

Order 1 Two-Scale Numerical Methods

TSAPS

Order 0 Two-Scale Numerical Methods

Order 0 Two-Scale Numerical Methods - Diagram

Homogenization based numerical methods

> Emmanuel Frénod

Introduction

Weak-* Convergence based Numerical Methods

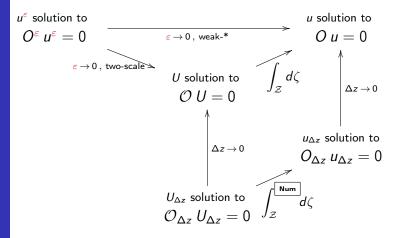
Order 1 Weak-* Convergence based Numerical Methods

Order 0 Two-Scale Numerical Methods

Order 1 Two-Scale Numerical Methods

TSAPS

Where ε is small If $u^{\varepsilon}(z) \sim u(z)$ weakly and $u^{\varepsilon}(z) \sim U(z, \frac{z}{\varepsilon})$ more strongly for small ε



> Emmanuel Frénod

Introduction

Weak-* Convergenc based Numerical Methods

Order 1 Weak-* Convergence based Numerical Methods

Order 0 Two-Scale Numerical Methods

Order 1 Two-Scale Numerical Methods

TSAPS

Order 1 Two-Scale Numerical Methods

Order 1 Two-Scale Numerical Methods

Homogenization based numerical methods

> Emmanuel Frénod

Introduction

Weak-* Convergence based Numerical Methods

Order 1 Weak-* Convergenc based Numerical Methods

Order 0 Two-Scale Numerical Methods

Order 1 Two-Scale Numerical Methods

TSAPS

$$u^{\varepsilon}(z) \sim U(z, \frac{z}{\varepsilon}) + \varepsilon U^{1}(z, \frac{z}{\varepsilon})$$
 with $U(z, \zeta)$ and $U^{1}(z, \zeta)$ periodic in ζ .

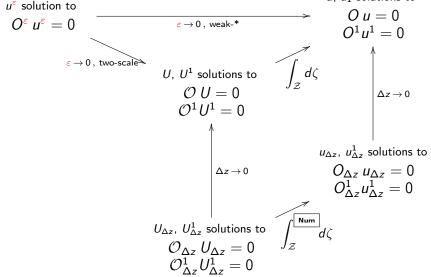
$$(u^{\varepsilon}(z))$$
 Two-Scale Converges to $U(z,\zeta)$
 $\left(\frac{1}{\varepsilon}\left(u^{\varepsilon}(z) - U(z,\frac{z}{\varepsilon})\right)$ Two-Scale Converges to $U^{1}(z,\zeta)$

Set of Methods

$$O^{\varepsilon} u^{\varepsilon} = 0 \longrightarrow O U = 0 \text{ and } O^{1} U^{1} = 0$$

Where ε is small If $u^{\varepsilon}(z) \sim U(z, \frac{z}{\varepsilon}) + \varepsilon U^{1}(z, \frac{z}{\varepsilon})$ for small $\varepsilon (u^{\varepsilon}(z) \sim u(z) + \varepsilon u^{1}(z)$ weakly)

 u, u_1 solutions to



> Emmanuel Frénod

Introduction

Weak-* Convergenc based Numerical Methods

Order 1 Weak-* Convergence based Numerical Methods

Order 0 Two-Scale Numerical Methods

Order 1 Two-Scale Numerical Methods

TSAPS

TSAPS

 ε non uniformally small If $u^{\varepsilon}(z) \sim U^{\varepsilon}(z, \frac{z}{\varepsilon}) = U_0^{\varepsilon}(z, \frac{z}{\varepsilon}) + \varepsilon U_1^{\varepsilon}(z, \frac{z}{\varepsilon})$

