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Two-Scale Convergence first statements

G. Nguetseng.
A general convergence result for a functional related to the
theory of homogenization.
SIAM Journal on Mathematical Analysis, 20(3):608–623, 1989.

G. Nguetseng.
Asymptotic analysis for a stiff variational problem arising in
mechanics.
SIAM Journal on Mathematical Analysis, 21(6):1394–1414,
1990.

G. Allaire.
Homogenization and Two-Scale Convergence.
SIAM Journal on Mathematical Analysis, 23(6):1482–1518,
1992.
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The simplest example I know to introduce
Homogenization

Microstructure

Material shape

Figure : Composite material - macroscopic shape and a microstructure -
Ratio size of the microstructure on the size of the material is ε.

uε : Temperature field

∇ ·
[
aε(x,

x
ε

)∇uε
]

= 0 within the material,

uε given on the boundary of the material,
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A slight digression to explain aε(x, x
ε) (and even

more) - 1
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Figure : Graph of
1
2

sin(x) + 1 + ε cos(
x

ε
) for ε = 1/20 (left), 1/40

(center) and 1/80 (right) between −π and π.
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A slight digression to explain aε(x, x
ε) (and even

more) - 2
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Figure : Graph of
1
2

sin(x) + 1 +
1
2

cos(
x

ε
) for ε = 1/20 (left), 1/40

(center) and 1/80 (right) between −π and π.
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A slight digression to explain aε(x, x
ε) (and even

more) - 3
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Figure : Graph of 5 sin(x) + 1 +
1
2ε

cos(
x

ε
) for ε = 1/20 (left), 1/40

(center) and 1/80 (right) between −π and π.
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A slight digression to explain aε(x, x
ε) (and even

more) - 4
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Figure : Graph of
1
2
(sin(x) + 1) cos(

x

ε
) for ε = 1/20 (left), 1/40 (center)

and 1/80 (right) between −π and π.
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A slight digression to explain aε(x, x
ε) (and even

more) - 5
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Figure : Graph of
1
4ε

(sin(x) + 1) cos(
x

ε
) for ε = 1/20 (left), 1/40 (center)

and 1/80 (right) between −π and π.
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A slight digression to explain aε(x, x
ε) (and even

more) - 6
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Figure : Graph of
1
2

cos(x) + 1 +
1
2
(sin(x) + 1) cos(

x

ε
) for ε = 1/20 (left),

1/40 (center) and 1/80 (right) between −π and π.

Emmanuel Frénod Two-Scale Convergence and Two-Scale Numerical Methods



Two-Scale
Convergence
and Two-Scale
Numerical
Methods

Emmanuel
Frénod

Two-Scale
Convergence
And also Ho-
mogenization
Typical proofs
Definitions and
results

Hyperbolic
PDEs
Order 0
Order 1

Two-Scale
Numerics
Algorithms
Implementation

A slight digression to explain aε(x, x
ε) (and even

more) - 7
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Figure : Graph of 10 cos(x) + 1 +
1
2ε

(sin(x) + 1) cos(
x

ε
) for ε = 1/20

(left), 1/40 (center) and 1/80 (right) between −π and π.
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A slight digression to explain aε(x, x
ε) (and even

more) - 8
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Figure : Graph of x2 + y2 +
1
2
(sin(

y

ε
) + 1) + (sin(

x

ε
) + 1) for ε = 1/20 on

[0, 3]2.
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A slight digression to explain aε(x, x
ε) (and even

more) - 9
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Figure : Graph of x2 + y2 + sin(2x)(sin(
y

ε
) + 1) + (sin(

x

ε
) + 1) for

ε = 1/20 on [0, 3]2.
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A slight digression to explain aε(x, x
ε) (and even

more) - 10

aε(x,
x
ε

) can model a wide range of microscopic oscillations or
heterogeneities.
This is why we use it in the model.

Remark
Two-Scale Convergence is based on this capability

Remark

IF ξ 7→ aε(x, ξ) periodic, THEN microscopic scale variations are
qualified of high frequency periodic oscillations.
Two-Scale Convergence is essentially designed for this
context.
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Back to : the simplest example I know to introduce
Homogenization

Microstructure
Material shape

1

ε
uε : Temperature field

∇ ·
[
aε(x,

x
ε

)∇uε
]

= 0 within the material,

uε given on the boundary of the material,

IF Solved with a numerical method INDUCES : ∆x << ε

IF interested in the tiny variation of uε, WHY NOT (?)
OTHERWISE: Clearly NOT REASONNABLE

Emmanuel Frénod Two-Scale Convergence and Two-Scale Numerical Methods
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Homogenization Goal

Find an operator H (that neither contains nor generates oscillations
of size ε)
Such that u

Hu = 0 within the material,
u = uGiven on the boundary of the material,

close to uε (in some sense)

∇ ·
[
aε(x,

x
ε

)∇uε
]

= 0 within the material,

uε = uGiven on the boundary of the material,

INDEPENDENTLY of uGiven

This means

H must induce average effect of oscillations in u

In some sense: H = lim
ε→0
∇ · aε(x, x

ε
)∇
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Homogenization Theory

Homogenization Theory gathers a collection of methods that allow to
build operators H satisfying the required constraint for every problem
- containing or generating oscillations or heterogeneities - we can
imagine.
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Asymptotic Expansion: First Homogenization
method set out by Engineers in the 1970s

In the case of ∇ ·
[
aε(x,

x
ε

)∇uε
]

= 0:

uε(x) = U(x,
x
ε

) + εU1(x,
x
ε

) + ε2U2(x,
x
ε

) + . . . ,

U(x, ξ), U1(x, ξ), U2(x, ξ), . . . periodic with respect to ξ.

Gathering terms in factor of ε−2, ε−1, ε0, ε, ε2, . . . :

H−2U = 0, H−1U1 = I(U), H0U2 = I ′(U,U1), . . . .

Get well-posed equations for U, U1, U2, . . . .
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Mathematical justification of Asymptotic Expansion

Needed: ∥∥∥uε(x)− U(x,
x
ε

)
∥∥∥

?
→ 0,

or in a weaker sense: (
uε(x)− U(x,

x
ε

)
)
⇀ 0.

For higher orders, needed:uε(x)− U(x,
x
ε

)

ε
− U1(x,

x
ε

)

→ 0,

(
1
ε

(
1
ε

(
uε(x)− U(x,

x
ε

)
)
− U1(x,

x
ε

)

)
− U2(x,

x
ε

)

)
→ 0,

and so on, in some sense.
Emmanuel Frénod Two-Scale Convergence and Two-Scale Numerical Methods
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Tools for mathematical justification of Asymptotic
Expansion - 1

For Heat Equation with Dirichlet boundary conditions:

∇ ·
[
aε(x,

x
ε

)∇uε
]

= 0 within the material,

uε = uGiven on the boundary of the material,

Maximum Principle and boundary estimates WORKS.
SEE

A. Bensoussan, J. L. Lions, and G. Papanicolaou.
Asymptotic analysis for periodic structures.
Studies in Mathematics and its Applications, Vol. 5. North
Holland, 1978.

For any all problem: DOES NOT WORK.
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Tools for mathematical justification of Asymptotic
Expansion - 2 : "Oscillating Test Function Method"

L. Tartar.
Cours Peccot.
Collège de France, 1977.

F. Murat.
H-convergence.
Séminaire d’Analyse Fonctionnelle et Numérique d’Alger, 1977.

L. Tartar.
The General Theory of Homogenization. A Personalized
Introduction.
Springer Verlag, dec 2009.
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Brief overview of Oscillating Test Function Method

Weak Formulation with Oscillating Test Functions (WFWOTF).∫
Material

∇ ·
[
aε(x,

x
ε

)∇uε(x)
]
ϕ(x,

x
ε

) dx = 0,

By the Stokes Formula:∫
Material

aε(x,
x
ε

)∇uε(x) · ∇
[
ϕ(x,

x
ε

)
]
dx =

∫
Boundary
Something,

or∫
Material

aε(x,
x
ε

)∇uε(x) ·
[
∇xϕ(x,

x
ε

) +
1
ε
∇ξϕ(x,

x
ε

)

]
dx =

∫
Boundary
Something.

Difficulty: ∇uε, aε(x, x
ε ), ∇xϕ(x, x

ε ) and ∇ξϕ(x, x
ε ) converges in a

weak sense only.
Passing to the limit involves relatively sophisticated analytical
methods.
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Tools for mathematical justification of Asymptotic
Expansion - 3 : Two-Scale Convergence

Two-Scale Convergence offers an efficient framework to pass to the
limit in such terms, in the case when oscillations are periodic.
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Link Homogenization - Two-Scale Convergence:
Conclusion

Two-Scale Convergence emerged as an efficient tools to justify
Asymptotic Expansion
Yet, it is more that this: It is a constructive Homogenization
Method very well adapted to Singularly Perturbed Hyperbolic
Equations.

Well adapted for problems with oscillations at one frequency:
1
ε
.

Can be improved to the case of oscillations with several

frequencies, if scale separation, for instance :
1
ε
and

1
ε2

.

Cannot be improved to the case of several frequencies if no scale
separation.
Cannot be improved to the case of a variable frequency.
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Two proofs which are typical
in Two-Scale Convergence
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The Riemann-Lebesgue Lemma

The Lemma
If ψ ∈ L∞# (R). Defining [ψ]ε by [ψ]ε(x) = ψ(

x

ε
), then

[ψ]ε ⇀

∫ 1

0
ψ(ξ) dξ in L∞(R) weak-*.

This means: for any test function ϕ∫
R

[ψ]ε(x) ϕ(x) dx →
∫
R

(∫ 1

0
ψ(ξ) dξ

)
ϕ(x) dx

=

∫ 1

0
ψ(ξ) dξ

∫
R
ϕ(x) dx .

Emmanuel Frénod Two-Scale Convergence and Two-Scale Numerical Methods
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The Riemann-Lebesgue Lemma proof - 1

Fix ϕ ∈ D(R)

Choose M s.t. supp(ϕ) ⊂ [−M,M]

Set
{−M,−M + ε, . . . ,−M + E(2M/ε)ε,−M + (E(2M/ε) + 1)ε}
(E: integer part)

Split
∫
R

[ψ]ε(x) ϕ(x) dx =

E(2M/ε)+1∑
i=1

∫ −M+iε

−M+(i−1)ε

ψ(
x

ε
) ϕ(x) dx

Use Taylor formula: ∀x ∈ [−M + (i − 1)ε,−M + iε],
∃ci (x) ∈ [−M + (i − 1)ε, x ] such that
ϕ(x) = ϕ(−M + (i − 1)ε) + (x + M − (i − 1)ε)ϕ′(ci (x))∫
R

[ψ]ε(x) ϕ(x) dx =

E(2M/ε)+1∑
i=1

∫ −M+iε

−M+(i−1)ε

ψ(
x

ε
) dx ϕ(−M(i − 1)ε)

. +

E(2M/ε)+1∑
i=1

∫ −M+iε

−M+(i−1)ε

ψ(
x

ε
) (x + M − (i − 1)ε)ϕ′(ci (x)) dx

Emmanuel Frénod Two-Scale Convergence and Two-Scale Numerical Methods
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The Riemann-Lebesgue Lemma proof - 2

∫
R

[ψ]ε(x) ϕ(x) dx =

E(2M/ε)+1∑
i=1

∫ −M+iε

−M+(i−1)ε

ψ(
x

ε
) dx ϕ(−M(i − 1)ε)

. +

E(2M/ε)+1∑
i=1

∫ −M+iε

−M+(i−1)ε

ψ(
x

ε
) (x + M − (i − 1)ε)ϕ′(ci (x)) dx

E(2M/ε)+1∑
i=1

∫ −M+iε

−M+(i−1)ε

ψ(
x

ε
) dx ϕ(−M(i − 1)ε) =

∫ 1

0
ψ(ξ) dξ ε

E(2M/ε)+1∑
i=1

ϕ(−M(i − 1)ε)
ε→0−→

∫ 1

0
ψ(ξ) dξ

∫
R
ϕ(x) dx∣∣∣∣∣∣

E(2M/ε)+1∑
i=1

∫ −M+iε

−M+(i−1)ε

ψ(
x

ε
) (x + M − (i − 1)ε)ϕ′(ci (x)) dx

∣∣∣∣∣∣
. ≤

∫ 1

0
|ψ(ξ)| εdξ

(
2M + 1

ε

)
ε‖ϕ′‖∞

ε→0−→ 0

Emmanuel Frénod Two-Scale Convergence and Two-Scale Numerical Methods
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The Riemann-Lebesgue Lemma generalization

The Lemma
If ψ = ψ(x , ξ) ∈ C0(R; C0#(R)). Defining [ψ]ε by [ψ]ε(x) = ψ(x ,

x

ε
),

then

[ψ]ε ⇀

∫ 1

0
ψ(x , ξ) dξ in L∞(R) weak-*.

This means: for any test function ϕ∫
R

[ψ]ε(x) ϕ(x) dx →
∫
R

(∫ 1

0
ψ(x , ξ) dξ

)
ϕ(x) dx .

i.e.: as soon as ε small enough,∣∣∣∣∫
R

[ψ]ε(x)ϕ(x) dx −
∫
R

(∫ 1

0
ψ(x , ξ) dξ

)
ϕ(x) dx

∣∣∣∣ is small.
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The Riemann-Lebesgue Lemma generalization proof
- 1

step 1:
∀m ∈ N: partition of [0, 1] with m intervals of length 1/m
χm
i : characteristic functions of i-th interval, for i = 1 . . . ,m

extended by periodicity over R. ξmi : center of the i-th interval

ψ̃m(x , ξ) =
m∑
i=1

ψ(x , ξmi )χm
i (ξ)

m→∞−→ ψ(x , ξ)

[χm
i ]ε

ε→0
⇀

∫ 1

0
χm
i (ξ) dξ =

1
m

in L∞(R) weak-*.

Hence [ψ̃m]ε
ε→0
⇀

m∑
i=1

ψ(x , ξmi )
1
m

=

∫ 1

0
ψ̃m(x , ξ) dξ
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The Riemann-Lebesgue Lemma generalization proof
- 2

step 2:

∣∣∣∣∫
R

[ψ]ε(x)ϕ(x) dx −
∫
R

(∫ 1

0
ψ(x , ξ) dξ

)
ϕ(x) dx

∣∣∣∣ ≤∫
R

∣∣∣[ψ]ε(x)− [ψ̃m]ε(x)
∣∣∣ |ϕ(x)| dx

+

∣∣∣∣∫
R

(
[ψ̃m]ε(x)−

∫ 1

0
ψ̃m(x , ξ) dξ

)
ϕ(x) dx

∣∣∣∣
+

∫
R

(∫ 1

0

∣∣∣ψ̃m(x , ξ)− ψ(x , ξ)
∣∣∣ dξ) |ϕ(x)| dx
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The Riemann-Lebesgue Lemma generalization proof
- 2

step 2:
Fix m s.t. :

∣∣∣∣∫
R

[ψ]ε(x)ϕ(x) dx −
∫
R

(∫ 1

0
ψ(x , ξ) dξ

)
ϕ(x) dx

∣∣∣∣ ≤∫
R

∣∣∣[ψ]ε(x)− [ψ̃m]ε(x)
∣∣∣ |ϕ(x)| dx small for any ε > 0

+

∣∣∣∣∫
R

(
[ψ̃m]ε(x)−

∫ 1

0
ψ̃m(x , ξ) dξ

)
ϕ(x) dx

∣∣∣∣
+

∫
R

(∫ 1

0

∣∣∣ψ̃m(x , ξ)− ψ(x , ξ)
∣∣∣ dξ) |ϕ(x)| dx small
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The Riemann-Lebesgue Lemma generalization proof
- 2

step 2:
Fix m and if ε is small:

∣∣∣∣∫
R

[ψ]ε(x)ϕ(x) dx −
∫
R

(∫ 1

0
ψ(x , ξ) dξ

)
ϕ(x) dx

∣∣∣∣ ≤∫
R

∣∣∣[ψ]ε(x)− [ψ̃m]ε(x)
∣∣∣ |ϕ(x)| dx small for any ε > 0

+

∣∣∣∣∫
R

(
[ψ̃m]ε(x)−

∫ 1

0
ψ̃m(x , ξ) dξ

)
ϕ(x) dx

∣∣∣∣ small

+

∫
R

(∫ 1

0

∣∣∣ψ̃m(x , ξ)− ψ(x , ξ)
∣∣∣ dξ) |ϕ(x)| dx small

is small
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Two-Scale Convergence:
definitions and results
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Key Points of the Theory - 1

Several variants of the Two-Scale Convergence theory, for various
targeted applications and involving various functional spaces.
Very close to each other. All follow the same routine based :

A continuous injection Lemma
A compactness Theorem

See

G. Nguetseng.
A general convergence result for a functional related to the theory of
homogenization.
SIAM Journal on Mathematical Analysis, 20(3):608–623, 1989.

G. Nguetseng.
Asymptotic analysis for a stiff variational problem arising in mechanics.
SIAM Journal on Mathematical Analysis, 21(6):1394–1414, 1990.

G. Allaire.
Homogenization and Two-scale Convergence.
SIAM Journal on Mathematical Analysis, 23(6):1482–1518, 1992.
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Key Points of the Theory - 2

M. Amar.
Two-scale convergence and homogenization on BV(ω).
Asymptotic Analysis, 65(1):65–84, 1998.

J. Casado-Díaz and I. Gayte.
The two-scale convergence method applied to generalized Besicovitch spaces.
Proceedings of the Royal Society of London. Series A: Mathematical, Physical and
Engineering Sciences, 458(2028):2925–2946, 2002.

E. Frénod, P. A. Raviart, and E. Sonnendrücker.
Asymptotic expansion of the Vlasov equation in a large external magnetic field.
J. Math. Pures et Appl., 80(8):815–843, 2001.

G. Nguetseng and N. Svanstedt.
Σ−convergence.
Banach Journal of Mathematical Analysis, 5(1):101–135, 2011.

G. Nguetseng and J.-L. Woukeng.
Σ−Convergence of nonlinear parabolic operators.
Nonlinear Analysis: Theory, Methods & Applications, 66(4):968–1004, feb 2007.

E. Frénod.
Two-Scale Convergence.
ESAIM: Proceedings, 38:1–35, December 2012.
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Key Points of the Theory - 2

H. E. Pak.
Geometric two-scale convergence on forms and its applications to maxwell’s
equations.
Proceedings of the Royal Society of Edinburgh, 135A:133–147, 2005.
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Definitions
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Definitions
Notations

Ω: a regular domain in Rn

L a usual functional Banach space: L′ its topological dual
space. 〈L′ ., .〉L: duality bracket. |.|L, |.|L′ : norms
q ∈ [1,+∞) and p ∈ (1,+∞] s.t. 1/q + 1/p = 1
C0#(Rn;L): continuous functions Rn → L, periodic of period 1
with respect to every variable
Lp(Ω,L′): functions f : Ω→ L′

s.t. |f |pL′ is integrable if p <∞
s.t. |f |L′ is essentially bounded if p =∞

Lp#(Rn;L′): functions f : Rn → L′

s.t. |f |pL′ is locally integrable if p <∞
s.t. |f |L′ is locally essentially bounded if p =∞

and periodic of period 1.
Lp#(Rn;L′) = (Lq#(Rn;L))′ (because of the separability of L)
Lq(Ω; Lq#(Rn,L)), Lq(Ω; C0#(Rn;L)) and Lp(Ω; Lp#(Rn,L′))
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Definitions
Two-Scale Convergence definition

Definition
(uε) = (uε(x)) ⊂ Lp(Ω;L′) Two-Scale converges to

U = U(x, ξ) ∈ Lp(Ω; Lp#(Rn,L′))

if, for any function φ = φ(x, ξ) ∈ Lq(Ω; C0#(Rn;L)),

lim
ε→0

∫
Ω

〈L′ uε(x), φ(x,
x
ε

)〉L dx =

∫
Ω

∫
[0,1]n

〈L′ U(x, ξ), φ(x, ξ)〉L dxdξ,
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Definitions
Strong Two-Scale Convergence definition

Definition
IF p = q = 2, L is a Hilbert space,
IF

(uε) = (uε(x)) ⊂ L2(Ω;L′) Two-Scale converges to U = U(x, ξ)

and IF U ∈ L2(Ω; C0#(Rn;L′)).

THEN we say

(uε) = (uε(x)) Strongly Two-Scale converges to U = U(x, ξ)

if

lim
ε→0

∫
Ω

∣∣∣uε(x) − U(x,
x
ε

)
∣∣∣2
L′

dx = 0
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Link with weak-∗ convergence
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Link with weak-∗ convergence

Proposition

If (uε) ⊂ Lp(Ω;L′) Two-Scale converges to U ∈ Lp(Ω; Lp#(Rn; L′)),
then

uε ⇀

∫
[0,1]n

U(., ξ) dξ weak-* in Lp(Ω;L′).

In the definition of Two-Scale Convergence: φ(x, ξ) = φ(x).

lim
ε→0

∫
Ω

〈L′ uε(x), φ(x)〉L dx =

∫
Ω

∫
[0,1]n

〈L′ U(x, ξ), φ(x)〉L dxdξ =

∫
Ω

〈L′
(∫

[0,1]n
U(x, ξ)dξ

)
, φ(x)〉L dx.

Emmanuel Frénod Two-Scale Convergence and Two-Scale Numerical Methods



Two-Scale
Convergence
and Two-Scale
Numerical
Methods

Emmanuel
Frénod

Two-Scale
Convergence
And also Ho-
mogenization
Typical proofs
Definitions and
results

Hyperbolic
PDEs
Order 0
Order 1

Two-Scale
Numerics
Algorithms
Implementation

Two-Scale Convergence criterion
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Two-Scale Convergence criterion
Injection Lemma - 1

Injection Lemma

If φ ∈ Lq(Ω; C0#(Rn;L)), then for all ε > 0, function [φ]ε : Ω→ L
defined by

[φ]ε(x) = φ(x,
x
ε

)

satisfies

‖[φ]ε‖Lq(Ω;L) ≤ ‖φ‖Lq(Ω;C0
#(Rn;L))

‖φ‖qLq(Ω;C0
#(Rn;L)) =

∫
Ω

(
sup

ξ∈[0,1]n
|φ(x, ξ)|L

)q

dx

‖[φ]ε‖Lq(Ω;L) =

∫
Ω

∣∣∣φ(x,
x
ε

)
∣∣∣q
L
dx ≤

∫
Ω

(
sup

ξ∈[0,1]n
|φ(x, ξ)|L

)q

dx
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Two-Scale Convergence criterion
Injection Lemma - 2: Supplementary Proposition

Supplementary Proposition

If φ ∈ Lq(Ω; C0#(Rn;L)), then

lim
ε→0
‖[φ]ε‖qLq(Ω;L) = lim

ε→0

∫
Ω

∣∣∣φ(x,
x
ε

)
∣∣∣q
L
dx

=

∫
Ω

∫
[0,1]n
|φ(x, ξ)|qL dxdξ = ‖φ‖q

Lq(Ω;Lq
#(Rn;L))

Emmanuel Frénod Two-Scale Convergence and Two-Scale Numerical Methods



Two-Scale
Convergence
and Two-Scale
Numerical
Methods

Emmanuel
Frénod

Two-Scale
Convergence
And also Ho-
mogenization
Typical proofs
Definitions and
results

Hyperbolic
PDEs
Order 0
Order 1

Two-Scale
Numerics
Algorithms
Implementation

Two-Scale Convergence criterion
The criterion - 1

Theorem
If a sequence (uε) is bounded in Lp(Ω;L′), i.e. if

‖uε‖Lp(Ω;L′) =

(∫
Ω

|uε(x)|pL′ dx
) 1

p

≤ c ,

for a constant c independent of ε, then, there exists a profile
U ∈ Lp(Ω; Lp#(Rn;L′)) such that, up to a subsequence,

(uε) Two-Scale converges to U.

Two ingredients for the proof
sequential convergence
Riesz Representation
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Two-Scale Convergence criterion
Proof of the Theorem - 1

Injection Lemma and assumption of the Theorem →
∀φ = φ(x, ξ) ∈ Lq(Ω; C0#(Rn;L)) ((1/p) + (1/q) = 1)∣∣∣∣∫

Ω

〈L′ uε(x), φ(x,
x
ε

)〉L dx
∣∣∣∣ ≤ c ‖[φ]ε‖Lq(Ω,L)

≤ c‖φ‖Lq(Ω;C0
#(Rn;L))

Hence (thanks to the second inequality)

µε : Lq(Ω; C0#(Rn;L)) → R

φ 7→
∫

Ω

〈L′ uε(x), φ(x,
x
ε

)〉L dx

bounded in (Lq(Ω; C0#(Rn;L)))′

As (Lq(Ω; C0#(Rn;L)))′ dual of separable space Lq(Ω; C0#(Rn;L))

µε ⇀ µ in (Lq(Ω; C0#(Rn;L)))′ weak-* (up to a subsequence)

In particular: 〈µε, φ〉 → 〈µ, φ〉,∀φ ∈ Lq(Ω; C0#(Rn;L))

Emmanuel Frénod Two-Scale Convergence and Two-Scale Numerical Methods



Two-Scale
Convergence
and Two-Scale
Numerical
Methods

Emmanuel
Frénod

Two-Scale
Convergence
And also Ho-
mogenization
Typical proofs
Definitions and
results

Hyperbolic
PDEs
Order 0
Order 1

Two-Scale
Numerics
Algorithms
Implementation

Two-Scale Convergence criterion
Proof of the Theorem - 2

We have: ∀φ = φ(x, ξ) ∈ Lq(Ω; C0#(Rn;L)) ((1/p) + (1/q) = 1)∣∣∣∣∫
Ω

〈L′ uε(x), φ(x,
x
ε

)〉L dx
∣∣∣∣ ≤ c ‖[φ]ε‖Lq(Ω,L)≤ c‖φ‖Lq(Ω;C0

#(Rn;L))

Making ε→ 0 →

|〈µ, φ〉| ≤ c ‖φ‖Lq(Ω;Lq
#(Rn;L)) ∀φ ∈ Lq(Ω; C0#(Rn;L))

Since Lq(Ω; C0#(Rn;L)) is dense in Lq(Ω; Lq#(Rn;L))

(whose dual is Lp(Ω; Lp#(Rn;L′)))
Riez Representation Theorem → ∃U ∈ Lp(Ω; Lp#(Rn;L′)) s.t.

〈µ, φ〉 =

∫
Ω

∫
[0,1]n

〈L′ U(x, ξ), φ(x, ξ)〉L dxdξ,

∫
Ω

〈L′ uε(x), φ(x,
x
ε

)〉L dx→
∫

Ω

∫
[0,1]n

〈L′ U(x, ξ), φ(x, ξ)〉L dxdξ

as ε→ 0
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Strong Two-Scale Convergence criterion
Preliminary results -1

Lemma
IF ψ = ψ(x, ξ) ∈ L2(Ω; C0#(Rn;L))

([ψ]ε) Strongly Two-Scale converges to ψ

(recall: [ψ]ε(x) = ψ(x,
x
ε

))

step 1: Two-Scale convergence
Consequence of the Riemann-Lebesgue generalization∫

Ω

〈L ψ(x,
x
ε

), φ(x,
x
ε

)〉L dx→
∫

Ω

∫
[0,1]n

〈L ψ(x, ξ), φ(x, ξ)〉L dxdξ

∀φ ∈ L2(Ω; C0#(Rn;L)), i.e.

([ψ]ε) Two-Scale converges to ψ
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Strong Two-Scale Convergence criterion
Preliminary results - 2

step 2: Strong Two-Scale convergence∫
Ω

∣∣∣[ψ]ε(x) − ψ(x,
x
ε

)
∣∣∣2
L′

dx→ 0,

Completely obvious: [ψ]ε(x) = ψ(x,
x
ε

)

Hence:

([ψ]ε) Strongly Two-Scale converges to ψ
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Strong Two-Scale Convergence criterion
Preliminary results - 3

Also easy to prove:

Lemma
IF ψ = ψ(x, ξ) ∈ L2(Ω; C0#(Rn;L))

‖[ψ]ε‖L2(Ω;L) =

(∫
Ω

∣∣∣ψ(x,
x
ε

)
∣∣∣2
L

dx
)1

2

=

.

(∫
Ω

〈L ψ(x,
x
ε

), ψ(x,
x
ε

)〉L dx
)1

2

→

(∫
Ω

∫
[0,1]n

〈L ψ(x, ξ), ψ(x, ξ)〉L dxdξ

)1
2

=

(∫
Ω

∫
[0,1]n
|ψ(x, ξ)|2L dx

)1
2

= ‖ψ‖L2(Ω;L2
#(Rn;L)) .
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Strong Two-Scale Convergence criterion
The Criterion

Theorem
IF(uε) ⊂ L2(Ω;L) Two-Scale converges to U
IF U ∈ L2(Ω; C0#(Rn;L))
IF

lim
ε→0
‖uε‖L2(Ω;L) = ‖U‖L2(Ω;L2([0,1]n;L) ,

THEN

(uε) Strongly Two-Scale converges to U,

and, ∀(vε) ⊂ L2(Ω;L) Two-Scale converging towards V ,

〈L uε, vε〉L ⇀
∫

[0,1]n
〈L U(., ξ),V (., ξ)〉L dξ, in D′(Ω).
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Some words on Tokamaks and Stellarators - 2

Turbulence	  	  

Edge	  instability	  

Discharge	  
simula5on	  	  

∂f ε

∂t
+ v · ∇x f ε + (Eε + v × (Bε +

M
ε

)) · ∇v f ε = 0

∂f ε

∂t
+ v‖ · ∇x f ε +

v⊥
ε
· ∇x f ε + (Eε + v × M

ε
) · ∇v f ε = 0
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Equation of interest and setting

∂uε

∂t
+ a(t,

t

ε
, x) · ∇uε +

1
ε
b(x) · ∇uε = 0

uε|t=0 = u0

uε = uε(t, x), x ∈ Rd , t ∈ [0,T ), for T > 0

Assumptions:
a is regular
∇ · a = 0
τ 7→ a(t, τ, x) periodic of period 1
b(x) = Mx, M matrix s.t.

trM = 0
τ 7→ eτM periodic of period 1

⇒ ∇ · b = 0 and τ 7→ X(τ) = eτMx periodic of period 1
(∂X
∂τ = MX = b(X), X(0) = x)

u0 ∈ L2(Rd)
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A priori estimate

(
∂uε

∂t
+ a(t,

t

ε
, x) · ∇uε +

1
ε
b · ∇uε = 0

)
×uε,

∫
Rd

dx →∫
Rd

∂uε

∂t
uε dx +

∫
Rd

a(t,
t

ε
, x) · ∇uεuε dx +

1
ε

∫
Rd

b · ∇uεuε dx = 0

∫
Rd

∂uε

∂t
uε dx =

1
2

d

(∫
Rd

|uε|2 dx
)

dt
=

1
2

d
(
‖uε‖L2(Rd ))

)
dt∫

Rd

a · ∇uεuε dx = −
∫
Rd

a · ∇uεuε dx−
∫
Rd

∇ · a uεuε dx =

−
∫
Rd

a · ∇uεuε dx = 0

Same thing for last term

.
d
(
‖uε‖L2(Rd ))

)
dt

= 0→‖uε‖L2(Rd )) constant→‖uε‖L2([0,T );L2(Rd )) bounded

.(uε) Two-Scale Converges to U = U(t, τ, x) ∈ L2([0,T ); L2#((R; L2(Rd)))

up to a subsequence
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For φ = φ(t, τ, x) regular: [φ]ε(t, x) = φ(t,
t

ε
, x)

∂[φ]ε

∂t
=

[
∂φ

∂t

]ε
+

1
ε

[
∂φ

∂τ

]ε

[φ]ε ×
(
∂uε

∂t
+ a(t,

t

ε
, x) · ∇uε +

1
ε
b · ∇uε

)
,

∫
, IBP ⇒

.

∫ T

0

∫
Rd

uε
([

∂φ

∂t

]ε
+

1
ε

[
∂φ

∂τ

]ε
+ a(t,

t

ε
, x) · [∇φ]ε +

1
ε
b · [∇φ]ε

)
dxdt

+

∫
Rd

u0 φ(0, 0, .) dx = 0
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WFOTF:

.

∫ T

0

∫
Rd

uε
([

∂φ

∂t

]ε
+

1
ε

[
∂φ

∂τ

]ε
+ a(t,

t

ε
, x) · [∇φ]ε +

1
ε
b · [∇φ]ε

)
dxdt

+

∫
Rd

u0 φ(0, 0, .) dx = 0

×ε, ε→ 0 →
∂U

∂τ
+ b · ∇U = 0

→
∃V (t, y) ∈ L2([0,T ); L2(Rd)) s.t. U(t, τ, x) = V (t, e−τMx)

(Recall:
∂(eτMx)

∂τ
= M(eτMx) = b(eτMx)

∂(V (t, e−τMx))

∂τ
+ b · ∇(V (t, e−τMx)) =

∇V (t, e−τMx))·((−e−τM)Mx)+((e−τM)Mx)·∇V (t, e−τMx)) = 0)
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For γ = γ(t, y) regular: φ(t, τ, x) = γ(t, e−τMx) s.t.
∂φ

∂τ
+ b · ∇φ = 0

In WFOTF →∫ T

0

∫
Rd

uε
([

∂φ

∂t

]ε
+ a(t,

t

ε
, x) · [∇φ]ε

)
dxdt +

∫
Rd

u0 φ(0, 0, .) dx = 0

ε→ 0 →∫ T

0

∫ 1

0

∫
Rd

U(t, τ, x)

(
∂φ

∂t
(t, τ, x) + a(t, τ, x) · ∇φ(t, τ, x)

)
dxdτdt

+

∫
Rd

u0 φ(0, 0, .) dx=0
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∫ T

0

∫ 1

0

∫
Rd

U(t, τ, x)

(
∂φ

∂t
(t, τ, x) + a(t, τ, x) · ∇φ(t, τ, x)

)
dxdτdt

+

∫
Rd

u0 φ(0, 0, .) dx=0

U in terms of V ; φ in terms of γ
∂φ

∂t
(t, τ, x) =

∂γ

∂t
(t, e−τMx) and ∇φ(t, τ, x) = (e−τM)T∇γ(t, e−τMx)

→∫ T

0

∫ 1

0

∫
Rd

V (t, y)

(
∂γ

∂t
(t, y) + e−τMa(t, τ, eτMy) · ∇γ(t, y)

)
dydτdt

+

∫
Rd

u0(y) γ(0, y) dy=0

∂V

∂t
+

(∫ 1

0
e−σMa(t, σ, eσMy) dσ

)
· ∇V = 0 V|t=0 = u0
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From now: a(t, τ, x) = a(x)
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Order 1 Homogenization
Equation for U and u - 1

Linearity → Equation for U → Equation for u (w-∗ limit of (uε)):
WRITE

∂V

∂t
+

(∫ 1

0
e−σMa(eσMy) dσ

)
· ∇V = 0 in y = e−τMx

USE: U(t, τ, x) = V (t, e−τMx)
∇U(t, τ, x) = (e−τM)T∇V (t, e−τMx) i.e.
∇V (t, e−τMx) = (eτM)T∇U(t, τ, x) →

0 =
∂
(
V (t, e−τMx)

)
∂t

+

(∫ 1

0
e−σMa(eσMe−τMx)dσ

)
·∇V (t, e−τMx)

=
∂U

∂t
+

(
eτM

∫ 1

0
e−σMa(e(σ−τ)Mx)dσ

)
· ∇U

=
∂U

∂t
+

(∫ 1

0
e(τ−σ)Ma(e(σ−τ)Mx)dσ

)
· ∇U

=
∂U

∂t
+

(∫ 1

0
e−σMa(eσMx)dσ

)
· ∇U,

the last equality being gotten from periodicity of σ 7→ eσM .
Now, since (

∫ 1
0 e−σMa(e(σ)Mx)dσ) does not depend on τ and

because of (??), integrating (??) gives

∂u

∂t
+

(∫ 1

0
e−σMa(eσMx)dσ

)
· ∇u = 0. (1)
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0 =
∂
(
V (t, e−τMx)

)
∂t

+

(∫ 1

0
e−σMa(eσMe−τMx)dσ

)
·∇V (t, e−τMx)

=
∂U

∂t
+

(∫ 1

0
e(τ−σ)Ma(e(σ−τ)Mx)dσ

)
· ∇U

=
∂U

∂t
+

(∫ 1

0
e−σMa(eσMx)dσ

)
· ∇U,

→
∂U

∂t
+

(∫ 1

0
e−σMa(eσMx)dσ

)
· ∇U = 0, U|t=0 = u0(e−τMx)

u =

∫ 1

0
U(., τ, .)dτ →

∂u

∂t
+

(∫ 1

0
e−σMa(eσMx)dσ

)
· ∇u = 0, u|t=0 =

∫ 1

0
u0(e−τMx) dτ
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∂(uε)2

∂t
= 2uε

∂uε

∂t
and ∇(uε)2 = 2uε∇uε

multiplying equation for uε by 2uε →
∂(uε)2

∂t
+ a · ∇(uε)2 +

1
ε
b · ∇(uε)2 = 0 (uε)2|t=0 = u20

IF u20 ∈ L2(Rd), i.e. if u0 ∈ L4(Rd), doing the same →

(uε)2 Two-Scale converges to Z solution to

∂Z

∂t
+

(∫ 1

0
e−σMa(eσMx)dσ

)
· ∇Z = 0

Z|t=0 = u20(e−τMx)

→ Z = U2

((uε)2) Two-Scale Converges to U2
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((uε)2) Two-Scale Converges to U2

→

‖uε‖L2([0,T );L2(Rd )) → ‖U‖L2([0,T );L2
#((R;L2(Rd )))

Moreover: IF u0 ∈ C0(Rd) →
uε ∈ C0([0,T ); C0(Rd)), U ∈ C0([0,T ); C0#((R; C0(Rd))),
V ∈ C0([0,T ); C0(Rd))

HENCE: IF u0 ∈ (L2 ∩ L4 ∩ C0)(Rd), THEN in addition to every
already stated results

(uε) Strongly Two-Scale Converges to U

(We have: (uε − [U]ε)→ 0
Now: Get more:

(
(uε − [U]ε)/ε

)
Two-Scale Converges)
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Order 1 Homogenization - Function W1 - 1

Step 1:
∂U

∂τ
+ b · ∇U = 0 →∂[U]ε

∂t
=
[∂U
∂t

]ε
+

1
ε

[∂U
∂τ

]ε
=
[∂U
∂t

]ε
− 1
ε
b · ∇[U]ε

∂U

∂t
+

(∫ 1

0
e−σMa(eσMx)dσ

)
· ∇U = 0, U|t=0 = u0(e−τMx)

∂uε

∂t
+ a(x) · ∇uε +

1
ε
b · ∇uε = 0, uε|t=0 = u0

→

∂

(
uε − [U]ε

ε

)
∂t

+ a · ∇
(
uε − [U]ε

ε

)
+

1
ε
b · ∇

(
uε − [U]ε

ε

)
= −1

ε

(
a−

∫ 1

0
e−σMa(eσMx)dσ

)
· ∇[U]ε(

uε − [U]ε

ε

)
|t=0

= 0
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Order 1 Homogenization - Function W1 - 2

Step 2: DEFINE: W1 = W1(t, τ, y) s.t

W̃1 = W̃1(t, τ, x) = W1(t, τ, e−τMx) solution to

∂W̃1

∂τ
+ b · ∇W̃1 = −

(
a−

∫ 1

0
e−σMa(eσMx)dσ

)
· ∇U

THEN: [W̃1]ε = [W̃1]ε(t, x) = W̃1(t, t/ε, x):

∂[W̃1]ε

∂t
+ a · ∇[W̃1]ε +

1
ε
b · ∇[W̃1]ε

=

[
∂W̃1

∂t

]ε
+

1
ε

[
∂W̃1

∂τ

]ε
+ a · ∇[W̃1]ε +

1
ε
b · ∇[W̃1]ε

=

[
∂W̃1

∂t

]ε
+ a · ∇[W̃1]ε − 1

ε

(
a−

∫ 1

0
e−σMa(eσMx)dσ

)
· ∇[U]ε
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Order 1 Homogenization - Function W1 - 3

∂

(
uε − [U]ε

ε

)
∂t

+ a · ∇
(

uε − [U]ε

ε

)
+

1
ε
b · ∇

(
uε − [U]ε

ε

)
= −

1
ε

(
a−

∫ 1

0
e−σMa(eσMx)dσ

)
· ∇[U]ε

∂[W̃1]ε

∂t
+ a · ∇[W̃1]ε +

1
ε
b · ∇[W̃1]ε

=

[
∂W̃1

∂t

]ε
+ a · ∇[W̃1]ε −

1
ε

(
a−

∫ 1

0
e−σMa(eσMx)dσ

)
· ∇[U]ε

∂

(
uε − [U]ε

ε
− [W̃1]ε

)
∂t

+ a · ∇
(
uε − [U]ε

ε
− [W̃1]ε

)
+

1
ε
b · ∇

(
uε − [U]ε

ε
− [W̃1]ε

)
= −

[
∂W̃1

∂t

]ε
− a · ∇[W̃1]ε(

uε − [U]ε

ε
− [W̃1]ε

)
|t=0

= −[W̃1]ε|t=0
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Step 3: expression of the function W1:

W̃1(t, τ, x) = W1(t, τ, e−τMx)

∂W̃1

∂τ
+ b · ∇W̃1 = −

(
a−

∫ 1

0
e−σMa(eσMx)dσ

)
· ∇U

→

∂W1

∂τ
= −

(
a(eτMy)−

∫ 1

0
e−σMa(e(σ+τ)My)dσ

)
· ∇U(t, τ, eτMy)

∇U(t, τ, eτMy) = (e−τM)T ∇
(
U(t, τ, eτMy)

)
= (e−τM)T∇V (t, y)

→

∂W1

∂τ
= −

(
e−τMa(eτMy)−

∫ 1

0
e−(σ+τ)Ma(e(σ+τ)My) dσ

)
·∇V (t, y)

= −
(
e−τMa(eτMy)−

∫ 1

0
e−σMa(eσMy) dσ

)
· ∇V (t, y)
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Order 1 Homogenization - Function W1 - 5

∂W1

∂τ
= −

(
e−τMa(eτMy)−

∫ 1

0
e−(σ+τ)Ma(e(σ+τ)My) dσ

)
·∇V (t, y)

= −
(
e−τMa(eτMy)−

∫ 1

0
e−σMa(eσMy) dσ

)
· ∇V (t, y)

→

W1(t, τ, y) =

−
(∫ τ

0
e−σMa(eσMy) dσ − τ

∫ 1

0
e−σMa(eσMy) dσ

)
· ∇V (t, y)

By-product: [W̃1]ε|t=0 = 0

.

∥∥∥∥∥−
[
∂W̃1

∂t

]ε
− a · ∇[W̃1]ε

∥∥∥∥∥
L∞([0,T );L2(Rd ))

≤ C1
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A priori estimate and convergence - 1

∂

(
uε − [U]ε

ε
− [W̃1]ε

)
∂t

+ a · ∇
(
uε − [U]ε

ε
− [W̃1]ε

)
+

1
ε
b · ∇

(
uε − [U]ε

ε
− [W̃1]ε

)
= −

[
∂W̃1

∂t

]ε
− a · ∇[W̃1]ε(

uε − [U]ε

ε
− [W̃1]ε

)
|t=0

= −[W̃1]ε|t=0 = 0

×((uε − [U]ε)/ε− [W̃1]ε),
∫
Rd

dx, IBP →

d

(∫
Rd

∣∣∣∣uε − [U]ε

ε
− [W̃1]ε

∣∣∣∣2 dx

)
dt

≤ C1

(∫
Rd

∣∣∣∣uε − [U]ε

ε
− [W̃1]ε

∣∣∣∣2 dx

)1
2
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Order 1 Homogenization
A priori estimate and convergence - 2

(
uε − [U]ε

ε
− [W̃1]ε

)
and consequently

(
uε − [U]ε

ε

)
bounded in L2([0,T ); L2(Rd)). Then, up to subsequences,(

uε − [U]ε

ε

)
Two-Scale Converges to U1 = U1(t, τ, x)(

uε − [U]ε

ε
− [W̃1]ε

)
Two-Scale Converges to U1 − W̃1
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Order 1 Homogenization
Constraint

WFOTF : φ = φ(t, τ, x) ∈ C1([0,T ); C1#((R; C1(Rd)))

∫ T

0

∫
Rd

(
uε − [U]ε

ε
− [W̃1]

ε

)([
∂φ

∂t

]ε
+

1
ε

[
∂φ

∂τ

]ε
+ a · [∇φ]ε+ 1

ε
b · [∇φ]ε

)
dxdt

=

∫ T

0

∫
Rd

(
−
[
∂W̃1

∂t

]ε
− a · ∇[W̃1]

ε

)
[φ]εdxdt

×ε, ε→ 0 →

∂(U1 − W̃1)

∂τ
+ b · ∇(U1 − W̃1) = 0

∃V1 = V1(t, y) ∈ L2([0,T ); L2(Rd)) s.t.

U1(t, τ, x)− W̃1(t, τ, x) = V1(t, e−τMx) i.e.

U1(t, τ, x) = V1(t, e−τMx) + W1(t, τ, e−τMx)
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Order 1 Homogenization
Equation for V1 - 1

For γ = γ(t, y) regular: φ(t, τ, x) = γ(t, e−τMx) s.t.
∂φ

∂τ
+ b · ∇φ = 0

USE φ(t, τ, x) in WFOTF, ε→ 0 →∫ T

0

∫ 1

0

∫
Rd

V1(t, e
−τMx)

(
∂γ

∂t
(t, e−τMx) + e−τMa(x) · ∇γ(t, e−τMx)

)
dxdτdt

=

∫ T

0

∫ 1

0

∫
Rd

(
−∂W̃1

∂t
− a(x) · ∇W̃1

)
γ(t, e−τMx)dxdτdt

change of variables (t, τ, x) 7→ (t, τ, y = e−τMx) gives

∫ T

0

∫ 1

0

∫
Rd

V1(t, y)

(
∂γ

∂t
(t, y) + e−τMa(eτMy) · ∇γ(t, y)

)
dydτdt

=

∫ T

0

∫ 1

0

∫
Rd

(
−∂W1

∂t
− e−τMa(eτMy) · ∇W1

)
γ(t, y)dydτdt
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Order 1 Homogenization
Equation for V1 - 2

∫ T

0

∫ 1

0

∫
Rd

V1(t, y)

(
∂γ

∂t
(t, y) + e−τMa(eτMy) · ∇γ(t, y)

)
dydτdt

=

∫ T

0

∫ 1

0

∫
Rd

(
−∂W1

∂t
− e−τMa(eτMy) · ∇W1

)
γ(t, y)dydτdt

→

∂V1

∂t
+

(∫ 1

0
e−σMa(eσMy)dσ

)
· ∇V1 =∫ 1

0

(
−∂W1

∂t
− e−τMa(eτMy) · ∇W1

)
dτ

V1|t=0 = 0
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Order 1 Homogenization
Equation for V1 - 3

Heavy computation to get:∫ 1

0

(
−∂W1

∂t
− e−τMa(eτMy) · ∇W1

)
dτ

∂V1

∂t
+

(∫ 1

0
e−σMa(eσMy)dσ

)
· ∇V1 =(∫ 1

0

([
∇
[
e−τMa(eτMy)

]](∫ τ

0
e−σMa(eσMy)

)
dτ

+
1
2

[
∇
[∫ 1

0
e−σMa(eσMy) dσ

]](∫ 1

0
e−σMa(eσMy) dσ

)))
· (∇V )

V1|t=0 = 0.
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Long term target : 10 ms of a Tokamak working

Turbulence	  	  

Edge	  instability	  

Discharge	  
simula5on	  	  

∂f ε

∂t
+ v · ∇x f ε + (Eε + v × (Bε +

M
ε

)) · ∇v f ε = 0

∂f ε

∂t
+ v‖ · ∇x f ε +

v⊥
ε
· ∇x f ε + (Eε + v × M

ε
) · ∇v f ε = 0
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Algorithm for order 0 Two-Scale Numerical Method

To compute uε solution to

∂uε

∂t
+ a(t,

t

ε
, x) · ∇uε +

1
ε
b · ∇uε = 0 uε|t=0 = u0.

for ε small:

Compute V solution to

∂V

∂t
+

(∫ 1

0
e−σMa(t, σ, eσMy) dσ

)
· ∇V = 0 V|t=0 = u0

And use

uε(t, x) ∼ U(t,
t

ε
, x) U(t,

t

ε
, x) = V (t, e−

t
εMx)

Emmanuel Frénod Two-Scale Convergence and Two-Scale Numerical Methods



Two-Scale
Convergence
and Two-Scale
Numerical
Methods

Emmanuel
Frénod

Two-Scale
Convergence
And also Ho-
mogenization
Typical proofs
Definitions and
results

Hyperbolic
PDEs
Order 0
Order 1

Two-Scale
Numerics
Algorithms
Implementation

Algorithm for order 1 Two-Scale Numerical Method

For ε small, to compute uε solution to
∂uε

∂t
+ a(x) · ∇uε + 1

ε
b · ∇uε = 0 uε|t=0 = u0.

Compute: W1(t, τ, y) =

−
(∫ τ

0
e−σMa(eσMy) dσ − τ

∫ 1

0
e−σMa(eσMy) dσ

)
· ∇V (t, y)

Compute: V and V1 solution to

∂V

∂t
+

(∫ 1

0
e−σMa(eσMy) dσ

)
· ∇V = 0 V|t=0 = u0

∂V1

∂t
+

(∫ 1

0
e−σMa(eσMy)dσ

)
· ∇V1 = RHS(V )

And use

uε(t, x) ∼ U(t,
t

ε
, x) + εU1(t,

t

ε
, x)

= V (t, e−
t
ε
Mx) + ε(V1(t, e

− t
ε
Mx) +W1(t,

t

ε
, e−

t
ε
Mx))
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A beam in a focusing channel

x y 

z ~ t 
r 

vr 

E ~ r 
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PDE Model

fε = fε(t, r , vr ), t ∈ [0,T ), r ∈ R+ and vr ∈ R:
∂fε
∂t

+
2π
ε
vr
∂fε
∂r

+

(
Er ε −

2π
ε
r

)
∂fε
∂vr

= 0

1
r

∂(rEr ε)

∂r
= ρε(t, r), ρε(t, r) =

∫
R
fε(t, r , vr ) dvr

fε(t = 0, r , vr ) = f0

∂uε

∂t
+ aε · ∇uε +

1
ε
b · ∇uε = 0 with x replaced by (r , vr ) and

aε =

(
0

Er ε(t, r)

)
, b =

(
2πvr
−2πr

)

M =

(
0 2π
−2π 0

)
eτM =

(
cos(2πτ) sin(2πτ)
− sin(2πτ) cos(2πτ)

)
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Order 0 Homogenization

Assumptions: f0 ≥ 0, f0 ∈ (L1 ∩ Lp)(R2; rdrdvr ) for p ≥ 2∫
R2

(r2 + v2r )f0 rdrdvr < +∞

Then:
fε Two-Scale Converges to F ∈ L∞([0,T ); L∞# (R; L2(R2; rdrdvr )))

Er ε Two-Scale Converges to Er ∈ L∞([0,T ); L∞# (R;W 1,3/2(R; rdr)))

∃G = G (t, q, ur ) ∈ L∞([0,T ); L2(R2; qdqdur )):

F (t, τ, r , vr ) = G (t, cos(2πτ)r − sin(2πτ)vr , sin(2πτ)r + cos(2πτ)vr )
∂G

∂t
+

∫ 1

0
− sin(2πσ) Er (t, σ, cos(2πσ)q + sin(2πσ)ur ) dσ

∂G

∂q

+

∫ 1

0
cos(2πσ) Er (t, σ, cos(2πσ)q + sin(2πσ)ur ) dσ

∂G

∂ur
= 0

G (t = 0) = f0

Er = Er (t, τ, r , vr ):
1
r

∂(rEr )
∂r

=

∫
R
G
(
t, cos(2πτ)r − sin(2πτ)vr , sin(2πτ)r + cos(2πτ)vr ) dvr
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Two-Scale Pic Method to compute G - 1
Introduction

G approximated by GN(q, u, t) =
N∑

k=1

wkδ(q − Qk(t))δ(u − Uk(t))

From (Q l
k ,U

l
k) at time tl , compute (Q l+1

k ,U l+1
k ) as an approximated

solution to

dQk

dt
= −

∫ 1

0
sin(2πσ) Er (t, σ, cos(2πσ)Qk + sin(2πσ)Uk) dσ, Qk(tl) = Q l

k

dUk

dt
=

∫ 1

0
cos(2πσ) Er (t, σ, cos(2πσ)Qk + sin(2πσ)Uk) dσ, Uk(tl) = U l

k

at time tl+1 = tl + ∆t
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Two-Scale Pic Method to compute G - 1
Recall Runge-Kutta 4 Method

tl,1 = tl , y l,1 = y l

tl,2 = tl +
∆t

2
, y l,2 = y l +

1
2
I 1 with I 1 = ∆t K (tl,1, y

l,1),

tl,3 = tl +
∆t

2
, y l,3 = y l +

1
2
I 2 with I 2 = ∆t K (tl,2, y

l,2),

tl,4 = tl + ∆t, y l,4 = y l + I 3, with I 3 = ∆t K (tl,3, y
l,3)

y l+1 = y l +
1
6
I 1 +

1
3
I 2 +

1
3
I 3 +

1
6
I 4 with I 4 = ∆t K (tl,4, y

l,4)
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In other words, we have to compute Q l,2
k as follows:

Q l,2
k = Q l

k +
1
2
I 1 with

I 1 = ∆t
(
−

p∑
m=1

γm sin(2πσm) Er (tl , σm, cos(2πσm)Q l
k + sin(2πσm)U l

k)
)

Q l,3
k = Q l

k +
1
2
I 2 with

I 2 = ∆t
(
−

p∑
m=1

γm sin(2πσm)

E2r (tl +
∆t

2
, σm, cos(2πσm)Q l,2

k + sin(2πσm)U l,2
k )
)
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Implementation - 2

Q l,4
k = Q l

k + I 3, with

I 3 = ∆t
(
−

p∑
m=1

γm sin(2πσm)

E3r (tl +
∆t

2
, σm, cos(2πσm)Q l,3

k + sin(2πσm)U l,3
k )
)

Q l+1
k = Q l

k +
1
6
I 1 +

1
3
I 2 +

1
3
I 3 +

1
6
I 4, with

I 4 = ∆t
(
−

p∑
m=1

γm sin(2πσm)

E4r (tl + ∆t, σm, cos(2πσm)Q l,4
k + sin(2πσm)U l,4

k )
)
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