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MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS
MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE

(Vol 32, n° 3, 1998, p 307 à 339)

ON CONSERVATIVE AND ENTROPIC DISCRETE AXISYMMETRIC
FOKKER-PLANCK OPERATORS (*)

Emmanuel FRÉNOD \ Brigitte LUCQUIN-DESREUX t

Abstract — We study, in axisymmetnc geometry, a discretization of the Fokker-Planck operator that preserves the physical properties
which are decrease of the kinetic entropy and conservation of mass, momentum and energy and only those quantifies

For this purpose, we exhibit how the above properties are conséquences, first, of the algebraic structure of the Landau form of the
Fokker-Planck operator and, secondly, of an intégration step Then we show that, even in our particular geometry, it is easy to make
discretizatwns preserving the algebraic structure Concerning the second point we provide an analysis inducing necessary and sufficient
conditions on the discrete dérivation operators Consequently, a discrete Fokker-Planck operator decreasing the kinetic entropy and
conserving mass, momentum and energy is easy to buüd Yet, a discrete Fokker-Planck operator conserving only those quantifies is not so
easy to get and in particular it cannot involve vertex-independent finite différence operators We then bmld an actual implemented operator
which we vahdate on physically reahstic examples of plasma collisions © Elsevier, Paris

Mathematical Subject Classification - 65M06, 82C40, 82C80, 82D10

Résumé —Nous étudions en géométrie axisymétrique, une discrétisation de Vopérateur de Fokker-Planck respectant les propriétés
physiques importantes que sont la décroissance de l'entropie cinétique et la conservation de la masse, de l'impulsion, de l'énergie et
exclusivement ces trois quantités

Pour ce faire, nous montrons que ces propriétés sont la conséquence de la structure algébrique de l'opérateur de Fokker-Planck écrit sous
la forme de Landau d'une part, et d'autre part d'une relation intégrale Puis nous montrons que même en géométrie axisymétnque, il est
simple de réaliser des discrétisations préservant la structure algébrique Concernant le second point, nous déduisons une condition nécessaire
et suffisante sur les opérateurs de dérivation discrets pour préserver la relation intégrale En conséquence, il est simple de construire des
opérateurs de Fokker-Planck discrets réalisant la décroissance de l'entropie cinétique et la conservation de la masse, de l'impulsion et de
l'énergie En revanche, l'obtention d'un opérateur conservant exclusivement ces quantités et plus délicate En particulier, il ne peut se
construire à l'aide d'opérateurs de dérivation discrets uniformément définis sur le maillage Enfin, nous construisons l'opérateur
effectivement implémenté dans notre code que nous validons sur des exemples physiquement réalistes de collisions de plasmas © Elsevier,
Pans

1. INTRODUCTION

We present a discrete Fokker-Planck operator, in cylindrical coordinates ( v,,, v± ) which, as does the continuous
one in the following homogeneous in space Fokker-Planck équation

f ) )
f _ f (1-1)

J\t = o ~JQ '

possesses important physical properties: decrease of the kinetic entropy, conservation of mass, momentum and
energy and of only those quantities.

This study is carried out in two successive steps. First of ail, following the idea developped in B. Lucquin-
Desreux [18] and P. Degond & B. Lucquin-Desreux [12] for the whole 3D case, we observe that writing the
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308 Emmanuel FRENOD, Brigitte LUCQUIN DESREUX

Fokker-Planck operator m the Landau form involving loganthms, allows to dérive the decrease of the kinetic
entropy and a charactenzation of the collisional invariants by a System of first order differential équations Those
properties are conséquences of the mère algebraic structure of the operator, and they are then valid for both
contmuous and discrete Fokker-Planck operators as soon as the discretization does not break down tms algebraic
structure The second point, that we call intégration step, consists in solving the System of differential équations
obtamed m the first step and gives for the contmuous Fokker-Planck operator the conservation properties The
mam drfficulty appears hère, since at the discrete level the solutions denved are closely related to the particular
choice of the discrete dérivation operator used to approximate the gradient This means that in some cases,
additional collisional invariants may appear, which do not have any physical meaning This situation, which was
already present in [18] and [12] is far more drastic hère, due to the context of axisymmetric geometry

We now present the startmg point of our approach, in axisymmetric geometry, wntmg the Fokker-Planck
operator m the Landau form with loganthms, î e

ƒ>(ƒ,ƒ) = Div />(ƒ,ƒ), (a)

p(fj)(v)=\ f(V)/(V1 ) <P(v - v1 ). (GmdLog f(v )-GrzdLog f(vl )) da1 da\ (b) (12)

with du1 = vl
± <ft?j dv\ In formula (12), 't" = M x R* x (0, 2 n), and v = ( V, a) = (t^ , vL, a) is a

cylindncal System of coordinates (the notation v^ and v± will be precised later on), while Div and Grad dénote
the divergence and gradient operators The velocity distribution ƒ = / ( V ) does not depend on a, yielding an
operator /*(ƒ,ƒ) wfcuch also does not depend on a (we shall show this fact in Section 2) At last, &(w) is the
tensor

(13)

Smce / - — 2 is the projection operator onto the plane orthogonal to w, <P(w) is semi-defimte positive
L l w l J

and lts null set is

>(w) = wU (14)

These two purely algebraic properties of the tensor <Z>, coupled with the fact that (— Div ) and (Grad) are adjoint
operators, are precisely what we call the algebraic structure of the Fokker-Planck operator

Physically speakmg, the équation (11) under considération is a model for the évolution in time t of an
a-mdependent velocity distribution ƒ( t, V) of a spatially uniforrruy distributed, fully ïomsed and hot plasma, made
of one species of particles which is not subrmtted to any external force

Since, by use of a splitting in time algonthm, a numencal method for solving (11) also permits to simulate
the évolution of a non spatially umformly distributed plasma, the mdependence with respect to the position
variable is actually not restrictive Yet, the a-mdependence is usually a conséquence of some assumptions made
on the spatial distribution of the plasma

One of these is when the spatial distribution is only varying in one fixed direction r Introducing then r as a
coordmate in this direction, the Vlasov-Fokker-Planck équation descnbmg the évolution of the plasma wntes

(3, ƒ+ »„ dj) (t, r, V)=P(f(t, r,. ),ƒ(*, r,. )) ( V) ,

fit = o = fo
(15)

In this context, v,, = v —
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ON CONSERVATIVE FOKKER-PLANCK OPERATORS 309

Another assumption yielding the a-independence is when the plasma is spatially isotropic. Then the distribution
function only dépends on the distance r — \x\ = \x\+x\ + x\ between x and the origin, on the velocity
component v^ parallel to x ( v^ = v • - J, and on the modulus v± of the velocity projection onto the plane
orthogonal to x. In order to give a clear meaning to the variables used there, we introducé the spherical coordinate
System ( r, Ö, (p ) for the position defined by

xx = r sin 0 cos tp, x2 = r sin 9 sin (p, x3~ r cos 8 . (1.6)

Denoting by (ev e2, e3) the basis associated with the coordinate System (xvx2, x3), the usual local basis
associated with (r, ö, #>) is (ur, ue, u^), defined by ur = xl\x\ = sin 9 cos <pex + sin 9 sin q>e2 + cos 8e3,
uQ = cos 0 cos Ç7e1 + cos 9 sin #>e2 - sin Öe3 and u<p = ~ s m ^ i + c o s ^ 2 ( s e e fis- 1-1-a); we dénote by
(ur, üö, üp) the coordinates of the velocity v in this previously defined local basis. Introducing at last the
cylindrical system (V, a ) , V= (v^,v±) from the coordinates (vr,v0,v^) by the relation (see fig. 1.1.b)

I

u r = eN

a. Spherical coordinates for position b. Cylindrical coordinates for velocity.

Figure 1.1. — Change of coordinates.

vr = ü||, ve = v± cos a, t;̂  = v± sin a ,

the Vlasov-Fokker-Planck équation for the distribution function f = f(t, r, v», i?±) writes

.,2

(1.7)

(1-8)

For the dérivation of the Fokker-Planck model, we refer to N. A. Krall & A. W. Trivelpiece [14] where the model
is obtained from physical considérations. We also refer to A. V. Bobylev [7] and to P. Degond & B. Lucquin-
Desreux [11] where the Fokker-Planck operator is obtained as the first term of an asymptotic expansion of the
Boltzmann operator with screened Coulomb potential. See also A. A. Arsenev & O. E. Buryak [3] and L. Des-
villettes [10] for a déduction of the Fokker-Planck operator from the Boltzmann one, but excluding the Coulomb
case. From a theoretical viewpoint, A. A. Arsenev & N. V. Peskov [4] proved the existence of a solution to
équation (1.1) for a short time.

The reader interested in older works concerning discretizations that do not destroy the decrease of entropy or
the conservation properties is referred to J. C. Witney [22], I. F. Potapenko & V. A. Chuyanov [21], A. V. Bobylev,
I. F. Potapento & V. A. Chuyanov [8], M. S. Pekker & V. N. Kudick [20] and Yu. A. Berezin, M. S. Pekker & V. N.
Kudick [5],

Concerning actual numerical simulations of the Fokker-Planck équation, let us mention the pioneering work of
W. M. Mac Donald, M. N. Rosenbluth & W. Chuck [19] who implemented a 1D code in the case of a distribution

vol. 32, n° 3, 1998



310 Emmanuel FRENOD, Brigitte LUCQUIN DESREUX

ƒ only depending on the velocity modulus \v\ Other simulations, makmg the same geometncal assumption as the
one considered hère, were done by S Jorna & L Wood [15] In the latter, the problem of conservation is not
considered We also refer to O Larroche [16] who implemented a mass-conservmg finite volume scheme An
improvement of this method was realized by D Deck & G Samba [9] yieldmg the conservation of momentum
and energy and usmg a correction method exposed in V V Aristov & F G Cheremism [2] Last, we refer to
M Lemou, C Buet, S Cordier & P Degond [17], for recent simulations of the 3D Fokker Planck équation, using
the method descnbed m [12] and [18] In this work, the cost induced by the 3D character of the problem is
decreased usmg sub-mesh methods

The paper is orgamzed in the followmg way In Section 2, we first analyze the whole continuous problem in
the context of the axisymmetnc geometry we show the decrease of the kmetic entropy and we charactenze the
colhsional invariants In particular, we point out the crucial rôle played by the algebraic structure of the
Fokker-Planck operator, which may be easily extended to the discrete case A class of discrete Fokker-Planck
operators, mvolving finite différences, and preserving this algebraic structure is discussed m Section 3 Then
necessary and sufficient conditions are given on the finite différence operators in order to preserve at the discrete
level the solutions of the intégration step We propose in Section 4 a discrete implemented operator that preserves
all the expected quanti ties and only those ones Numencal results are finally given and compared with previous
computations in Section 5

2. ALGEBRAIC STRUCTURE AND PHYSICAL PROPERTIES

In this Section, we show that the decrease of the kmetic entropy is a conséquence of the mere algebraic
structure of the Landau form of the Fokker-Planck operator Yet, the conservation properties are a conséquence,
m a first place, of this algebraic structure which yields a differential équation for the colhsional invariants Then,
m a second place, the intégration step which consists in solvmg this équation, leads the conserved quanti ties which
are mass, momentum and energy and only those ones

The velocity space is provided with a cylmdncal coordmate System (v„9v±,a) and is denoted by
f = f 2 x ( 0 , 2TT), £2 = ÎRX[R* The velocity variable is i? = ( V , a ) e f with V= ( i^ , u±) e fl and
a e ( 0 , 2 n) To each v = (V, a) E: i^, is associated the classical orthonormal local basis
BŒ = (gj|, e±, ea), (see fig l l b ) and the coordmates of any vector A m Ba is denoted by (A1', Ax, Aa) Let us
adopt the following définitions

DÉFINITION 21 A real valued function y/ £? x (0, 2 7c) —» IR w called cylmdncal if y/(v) = y/(V) does
not depend on a

DEFINITION 2 2 A vector valued function (p Q X ( 0, 2 n ) —> U3 is called cylmdncal if its expression
V ) ) a ~ (<p , <P •> <pa) m the local basis Ba associated with any v — ( V, a) e 'V ^ satisfies

qr and (p do not depend on a and <pa = 0 (2 1)

The Fokker Planck operator, which is considered as actmg on cylmdncal and positive functions wntes

P( / , / )=Div />(ƒ ,ƒ ) , (a)

p(fj)(v)=\ f(V)f(Vl)<P(v-vl) (GmdLogf(v)-Gv^dLogf(vl))da]dal (b) (2 2)
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The gradient operator, acting on the cylindrical function Log/, expresses in the local basis Ba associated
with v :

( Grad Log ƒ( v ) )*» = dv± Log f{ V) . (2.3)

Of course, its expression can be given in any basis B^ associated with v1 = ( V1, a 1 ) by

( Grad Log ƒ( v ) )B«' = 3Bl Log ƒ( V) cos ( a - a1 ) I (2.4)

and then, Computing the différence involved in (2.2), we get:

(Grad Logf{v))B°-(Grad Logƒ(D1 ) )B° = 9„x Logf{ V) - dv±Logƒ( V1 ) cos (a 1 - a) . (2.5)

For different expressions of the tensor <P(v - v1), we refer to Annex A.
First, the following property (see Annex B for its proof) shows the adequacy of the Fokker-Planck operator with

respect to the notion of cylindrical functions.

PROPOSITION 2.3: If fis a cylindrical function then p(ff) and P(ff) are cylindrical.
From now on, we always suppose that ƒ is a positive cylindrical function, yielding an operator /*(ƒ,ƒ) that does

not depend on a.
The algebraic structure of the operator (essentially (Grad) and ( - Div) are mutually adjoint operators and

<P(v-vl) is proportional to a projection tensor) yields the following key point from which the physical
properties follow.

f
PROPOSITION 2.4: For every real valued cylindrical function y/ we have

P(fJ)(V)W(V)da = -n[ f(V)f(Vl)&(v-v1)-

( Grad Log ƒ( v ) - Grad Log ƒ( v1)) • ( Grad y/{ v ) - Grad y/{ v1 ) ) do do1. (2.6)

We recall briefly the proof of tins proposition which is classical. We have, for every cylindrical function y/, the
following weak formulation of the Fokker-Planck operator

f P(ff)y,doda = - \ f(V)f(Vl)&(v-vl)>

( Grad Log ƒ( v ) - Grad Log ƒ( v1 ) ) • Grad y/{ v ) do do1 dot da\ (2.7)

vol. 32, n° 3, 1998



312 Emmanuel FRÉNOD, Brigitte LUCQUIN-DESREUX

l.e.

f P(ff)y/da = - 2 n ff
u2

(GradLogƒ(v ) - GradLogƒ(v1 ) ) • Grad y/(v)dado\ (2.8)

Exchanging then the rôle of v — ( V, a) and v1 = (V1, a1) we obtain, since ^ is an even function

f P(fJ)y,da = 2nj^

( Grad Log ƒ( v ) - Grad Log ƒ( vl ) ) • Grad y/( v1 ) <icr Ja1, (2.9)

and formula (2.6) follows simply by summing (2.8) and (2.9). •
As a first conséquence of this Proposition, replacing y/ by Log ƒ in (2.6) and since &(w) is semi-defimte

positive, we get:

f P{f, f) ( V) Logƒ( V) da ^ 0 . (2.10)

Consider then f(t, V), solution of the homogeneous in space Fokker-Planck équation

We have

4 f / L o g f da = f a f / (Log / + l)da=\ P(ff) ( L o g / + 1 ) da , (2.12)
ulJü JÜ JQ

H-Theorem.
1and since P(f,f) da = 0 the inequality (2.10) implies the folio wing result which is a part of the so called

Jü
COROLLARY 2.5: The kinetic entropy [ 2 n \ f"Log ƒ da ), with f=f(t,V) solution of the Fokker-Planck

équation (2Al) decreases with time.
We now attend to the conservation properties by introducing first the

DEFINITION 2.6: A cylindrical real valued function y/ is called a collisional invariant if

\tf cylindrical, \ P(ff) ( V) y/( V) da = 0 . (2.13)
JQ

Let us dénote by <$ the space made of all collisional invariants; we call the set exp( ^ ) the "thermodynamical
equilibrium set".

The last point of this définition results from the following characterization of # :

THEOREM 2.7: First, a cylindrical function y/ belongs to <$ if and only ifthere exist A e IR and K G R such that,
for all V G Q we have

dn y/{ V) = Aüj, + K and dvjf( V) = lv± . (2.14)
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Secondly, P(ff)=O if and only if ƒ e exp(^).
The proof of this Theorem is a conséquence of the Proposition 2.4 which gives the following preliminary resuit.

LEMMA 2.8: A cylindrical function y/ belongs to <£ if and only if

V(V, V 1 ) e Q2andV(a, a1) e ( 0 , 2nf, G r a d ^ ( ü ) - G r a d ^ ü 1 ) e Ker<£(ü -v1) , (2.15)

with the notations V ~ (V, a ) , and v = ( V , a ).

Proof: Applying Proposition 2.4, formula (2.15) obviously implies (2.13). On the other hand, choosing
in (2.13), we get

P(exp(y) ,exp(yO) y/da = ~n exp(^) ( V ) e x p ( ^ ) (V1) &(v -vl) •

( Grad yf( i> ) - G r a d ^ ( u 1 ) ) • ( G r a d ^ ( u ) - Grad y/(vl) ) da da1. (2.16)

The expression (2.16) is zero if and only if (2.15) holds true, proving the Lemma. •

Proof of Theorem 2.7: Once (2.14) is established, the second point of the Theorem is obvious. In fact, we first

notice that if P(ff) = 0 then P(ff)y/da = 0 for any cylindrical function y/ and applying (2.6) and
JQ

Lemma 2.8, we get t h a t / e e x p ( ^ ) . Now, if f G e x p ( ^ ) the characterization (2.14) of ^ shows that L o g /
satisnes (2.15) yielding P(ff) = 0.

Concerning the first point, let us notice that, since an element of Ker &(v - v1) is proportional to
(v - v1) we have, applying again Lemma 2.8, y/ e ^ if and only if there exists a real number
À(V,a,v\al) s u c h that

G r a d y/(v)- G r a d y/(vl) = A(V, a, v\ al) (v - v1) , (2.17)

for every (v,v ) e ( O x (0, 2 n)) , with v ^ v . The main point consists now in showing that X is in fact
independant of V, a, V1 and a1. Rewritting (2.17), we get

- v\

dVxy/(V) - d^y/iV1) cos (al - a) = X(V, a, V\a1)(v±-v1
± cos(al-a)), (2.18)

[dv±y/( V1 ) sin ( a1 - a ) = À( V, a, V1, a1 ) v\ sin ( a1 - a ) ,

for every ( V, V1) e &2 and (a , a 1 ) e (0, 2 TC)2, ( V, a ) ^ ( V1, a 1 ). The first équation of (2.18) gives
k{ V, a, V1, a1 ) = À( V, V1 ) does not depend on a and a1 as soon as v,, =̂  vl . If i?„ = f|j , and
a ^ a + &7T, A: G Z, the third équation leads to the same conclusion. At last, in the case when v» = vl ,

1 1 1 H t !

a = a + kn with t? ^ i? (i.e. A: odd or (v± ^ v± ) the second équation enables us to conclude.

Fixing then a and a , a =£ a + kn, équation (2.18) becomes

(2.19)

(c)
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314 Emmanuel FRÊNOD, Brigitte LUCQUIN-DESREUX

for every (V,Vl) e Q2. As on Q, v±>0 (2.19/b) yields À(V,Vl)= À(y), and (2.19.c)
X(V, y 1 ) = x ( y 1 ) . Using those facts in (2.19.a) we get

dv y/( V) — dL y/( y 1 ) = ?i{ y ) ( v,, — vl ) = X( y 1 ) ( v, — vl ) . (2.20)

Then,

A(y) = X(Vl) , (2.21)

for ail ( y, y1 ) e D 2 such that u|( =* uj . At last if 1^=1?}, we have for some ô e R*
2( ( ü||, ü± ) ) = 2( ( u,| + <5, i;x ) ) = A( ( v{l, 1;} ) ) yielding À( V) = X is constant on O, giving

(d w(v) = d w(Vl) = X(v, - vl ), V(y, yMe^2 ,
j u , v , ^ v v ,| 11 ( 2 _ 2 2 )

Now, fixing V1 and setting K = dv y/{ V1 ) — Àvl , we get (3.9). Since the reverse is obvious, the Theorem
follows. •

Remark 2.9: Notice that (2.10) and Theorem 2.7 are conséquences, via algebraic manipulations of the mere
algebraic structure of the Fokker-Planck operator. Hence, they remain valid for any operator (continuous or
discrete) having the same algebraic structure, i.e. writting

Q(J.f)=-D*-q(J.f)
2 n (2 23)

1 ) ) ) J 1
f2

=
Jo

where ƒ( V) is defined on a set I a Q (which can be discrete) and where v = ( V, a) for any a. The operator
D acts on real valued cylindrical functions y/ and gives a cylindrical vector valued function Dy/. For any
v = (y , a ) , y e ƒ, its expression in the basis Ba is given by

(2.24)

0

where d" and d1 are two linear operators on real valued cylindrical functions. ££l is a linear form having a
behaviour comparable with the one of an intégral operator, and in particular satisfying

{y/ S* 0^> JSf/yO S* 0) and ( [> 5= 0 and i f /yO = 0] => |> = 0] ) . (2.25)

Last (D* • ) is the adjoint operator of D defined by

&£D* 'Ç>V) = &£<p-Dy), (2.26)

for any real valued cylindrical function y/ and any vector valued cylindrical function <p.
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As a conséquence of the fact that (2.10) remains valid in this framework, if the operator D satisfies the
additional condition d 1 is a constant and d 1 is zero, the kinetic entropy (2TC cSf ;(/Log/)) of ƒ solution of

dtf= Q(f( U . ), ƒ( U . ) ), ƒ,, = o =/o > 0 . (2.27)

decreases with time. •

Remark 2.10: The framework evoked in Remark 2.9 can be improved a bit without altering the validity of (2.10)
and Theorem 2.7. We may consider in (2.23) that ƒ( V) is defined on ^ D /, which may contain points V such that
v± = 0. Then D is an operator acting on real valued cylindrical functions defined on $ and leading vector valued
cylindrical functions defined on I. In this context, (2.26) has to be replaced by

J2y D* • (py/) = jS?/p • Dyj) , (2.28)

where JSf̂  satisfies the same properties (2.25) than ££v There, if the additional conditions d" 1 is a constant and
d 1 is zero are satisfied, the entropy (2 n J£?^(/Log/)) of ƒ decreases. We shall need this type of context later
on in Sections 3 and 4, especially when working in a bounded velocity domain, in view of practical computations.

•
The whole algebraic structure of the Fokker-Planck operator has been exploited when writing (2.14), achieving

then the first step of the study. It remains now to solve the System (2.14), composed of two ordinary first order
differential équations. This step, that we call intégration step, is no more related to the operator itself. In the
continuous case, the intégration of System (2.14) stands to reason, and gives the following characterization of the
collisional invariants:

PROPOSITION 2.11: The collisional invariant space 9f> is given by

«' = Span{l,t ; | | ,^ +v2
±}. (2.29)

Then, since

ft\ fvào=\ />(ƒ,ƒ) ¥ da , (2.30)

for ƒ solution of the Fokker-Planck équation (2.11), I fy/ da ) is conserved if and only if y/ belongs to <ë\
JQ

Hence, Proposition 2.11 gives the

COROLLARY 2.12: Let f be a solution of (2.11); then the mass I 2 n\ f de I, the momentum
\ in /

I 2 n\ jv» da 1 and the energy I 2 n \ f(v^ + f ̂  ) do I (and their linear combinations) are the only linear
\ la ) \ JQ /
intégral quantifies conserved with time.

Another direct conséquence of Proposition 2.11 is the second part of the H-Theorem:

COROLLARY 2.13: The stationary solutions of the Fokker-Planck équation, Le. the functions ƒ such that
P(ff) = 0, are the Maxwellian functions defined byfs exp (^ ) ; moreover, these ones are the only functions
realising the minimum of the kinetic entropy.
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Remark 2.14: The geometrical assumption under considération enables us to disregard the a-dependent
quantities. However, since in the basis Ba the velocity expresses (i?.,, v± cos ( a ) , v± sin ( a ) ) , the

a-integration yields that the components of the momentum perpendicular to v, M Jv± cos (a) da da and
\Jo iar jv± sin ( a ) do doc J are indentically zero and thus naturally conserved. •

3. DISCRETE FOKKER-PLANCK OPERATORS

We now turn to the discrete case using an approximation of finite différence type. In this context, we reproduce
the same approach based on two successive steps. Concerning the first one, as suggested in Remarks 2.9 and 2.10,
it is actually easy to build a discrete Fokker-Planck operator having an algebraic structure similar to the
continu ous one and consequently decreasing the kinetic entropy and conserving mass, momentum and energy; we
state hère rapidly these properties.

The tricky point consists in showing that mass, momentum and energy are the only conserved quantities. This
fact is a conséquence of the intégration step, i.e. the characterization of the solutions of the discrete analogue of
System (2.14). Unfortunately, we shall see that if we consider finite différence operators which are uniformly
defined on the mesh, it is not possible to preserve the form of the solution of (2.14): unexpected additional
solutions appear giving rise to additional conserved quantities. This fact is spécifie to the axisymmetric geometry.

We now précise the mesh of the velocity domain and the genera! finite différence operators under considération.

Finite différences on a regular mesh

Let Z b e a regular mesh defined by

Z = Au y Z x Av± Z+, AÜ„ At?± =* 0 , (3.1)

and let / and $ be two submeshes satisfying Z c ^ c Z , I a Q and $ <z Q. Since Q = M x IR* , the submesh
/ cannot contain vertices such that v± = 0; in the opposit, nothing excludes those vertices from 3. The reason
for introducing two submeshes is the following: since the local basis Ba is not defined in v± = 0, the vector valued
functions cannot be defined along this axis so they are defined on /. Yet, there is no reason for a real valued
function not to be defined in v± = 0. Hence those last are defined on 3>.

Let ö and d"1 be two finite différence operators acting on real valued cylindrical functions and defined for any
V e 7, by:

2 E ^ j ^ f r J

ze M'je J\i)

In (3.2), M, M' J(i) and J\i) are finite sets and the coefficients al} and at], are non zero. The shifts af a'j9
Pt and p[ belong to Z and j —> aj9 j —> a'j9 i —> Pt and / —> ƒ?' are one to one such that
( V + (Xj Aü|| + Pt Av±) and (V+ ctjAv± + P'AV\\ ) b e l ° n g t o <*• The définitions of sets, coefficients and shifts
may depend on the vertex V.
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Then denoting by v = ( V, a ) for any a, the discrete gradient operator, expressed in the basis Ba, is defined
by

{Dy/{v))B'=\ aV(V) | , (3.3)

and the discrete intégrations by

&,(¥)= E W(V)p\V), £>,(?)= ^ <p(V)p\V) , (3.4)
V Ë > V&I

for y/ defined on 3 and (p on ƒ, where /? and p are two non-vanishing approximations of da on $ and /
respectively. We approximate the divergence operator by ( - D* • ) where (£>* • ) is the adjoint operator of D,
i.e. satisfying

&t(D*-<pV,) = &I((P.D¥), (3.5)

for all real valued cylindrical function y/, and all vector valued cylindrical function <p. Notice that (3.5) makes
sense and gives rise to an operator (D . ) without any singularity (unlike the continuous divergence operator
which is not defined along the axis (u± = 0) since p1 and p2 are non-vanishing. Last, we define the discrete
Fokker-Planck operator by

v - ( . , a 1 ) ) • (DLog/( t ; ) - DLog/( . , a 1 ) ) da\)

where £fI acts componant by componant. As noticed in Remarks 2.9 and 2.10 and since the algebric structure
is preserved, the proofs of (2.10) and Theorem 2.7 remain valid with 3 and dv± respectively replaced by d" and
dx. Hence we have:

PROPOSITION 3.1: For all real valued cylindrical functions f we have

^(ö(/,/)Log/)^0. (3.7)

As a conséquence of this, we easily obtain:

COROLLARY 3.2: If d 1 is a constant and d 1 is zero, then the discrete kinetic entropy ( 2
decreases with time.

By analogy with the continuous case, a real valued cylindrical function y/ defined on 3 is called a collisional
invariant if, for every cylindrical function ƒ defined on 3, we have

&,(Q(f,f)f) = 0. (3.8)

Now, since the characterization of such y/ is closely related to the particular choice of the discrete operator D,
we shall dénote by # ( Q ) the collisional invariant set associated with the discrete operator Q defined by (3.6).
The equivalent of Theorem 2.7 is given by
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THEOREM 3 3 A real valued cyhndncal functin y/ belongs to ^(Q) if and only if there exist l
e R such that, for ail Ve /, we have

and

y) = Av\\ +K and d±y/(V) = Àv± (3 9)

Secondly, Q(ff) = O if and only iffe
We now need to charactenze the solutions of (3 9) Recall that, m order to have the nght conservation properties
and the nght thermodynamical equihbrium set, we need ^(Q) = Span {l, v^, i?? + t ^ } Concernmg this, as
a direct conséquence of Theorem 3 3 we have the

COROLLARY 3 4 The space Span { l , vH,v^ + v\ } a <$( Q) if and only if there exist Xv A2, A3, KV K2 and
K3 such that

d ( Vt\ + V , ^ = An Vu + TCo, d ( V il + t ? , ) = / - U i
v |I ± / 3 || 3 ' v II -L 3 X

Moreoven <#( Q) cz Span {l, ü.. ,ü{ + ü̂_ } ?ƒ and on/y if for all X e U and K G R ,

(3

(3 11)

Remark 3 5 A fundamental différence with the whole 3D case studied in P Degond & B Lucquin-Desreux [12]
appears clearly at this le vel, simply by looking at the last équation in formula (3 10) the nght hand side does
not contam a constant term In particular, if d± is a first order approximation of dv , this relation is not satisfied,
and so the energy is not conserved •

Example Let d be a first order finite différence approximation of dh and d a second order approximation
of dv This choice of course satisfies condition (3 10) with À1 - KX = 0, X2 = 0, K2 = 1, À3 = 2 and
K3 = Ai? M Hence the resultmg discrete Fokker-Planck operator decreases entropy and îts collisional mvanant
space satisfies Span{1, Vy, Py +v]_} Œ%?(Q)

Now, with this second order approximation of dv±, condition (3 11) is not satisfied (see [12] for details) and
the collisional invanant space associated with the resultmg discrete Fokker-Planck operator is bigger as it has to
be

We shall now see that condition (3 11) is not so easy to satisfy and, m particular, it is always violated by a
vertex independent operator d±

Vertex-independent operators

If the définition of d" is the same for all vertices of /, then for every fixed VG I and every

y= ( Y\\ ' s u c n m a t v + y= ( vw + y\\ » v±_+ y± w e n a v e

(312)

for all real valued cylmdncal functions y/ Hence (3 10) yields the foliowing
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COROLLARY 3.6: If the définition of d is the same for ail vertices of I, the space
Span{l, U||,t>y +v2

L}cz(ë(Q) if and only if we have (3.10) with

Xx = 0, X2 = K1 = 0, À3 = 2K2 and d" i;± = 0 . (3.13)

Proof: First, if (3.12) holds true and if y/ = y/(v,) does not depend on v„, then d y/ does not depend
H

on v M . Indeed, let us set 0(uii > U_L) '-= d ty- For y = (y,,, 0 ) we have on the one hand
d" (y/( V+ y ) ) = d" (y/( V)) = #(t;||, Ü ± ) and on the other hand, according to (3.12),
dHv(V+ ?)) = (d11 y/) (V+ y) = g(v^ +yvvj, yielding g(vvv±) = g(v±).

Exactly in the same way we may prove that, if y/ = y/(v„ ) then, d y/ = ^(^ii )•
In order to get Àx = 0, we just write afl ( 1 ( V + y)) = (ô11 1 ) (V + y) = A^Uy + yy ) + ?cp

( 1 ( V + y ) means function 1 taken in ( ( V + y ) ), but also d " ( 1 ( V + y ) ) = a " 1 = kxv^ + K P leading
to the conclusion.

Now, 3"(ü|, ( V + y ) ) = (d"ü| | ) ( V + y ) = A2(t?(| + yy ) + ?c2. On the other hand,

3 l l ( ^ ( V r + y ) ) = a"(«n +7y ) = V u + K 2 + K1y | . Then, 1 2 = K:r

In order to get the two other relations and KX — 0, consider g(v±) := d^v± and write

a"((Uy +v]_ ) ( V+ y ) ) = ^3(f|| +y| | ) + K:3. A S a direct computation gives

a « ( ( ^ + ü l ) ( V + y ) ) = a a ( ^ + ^ + 2 ^ y„ +2ü J L y ± + y |̂ + y i )

- V j i +^3 + 2 ^ 2 ^ y,j +2/c2yn + 2 g(v±) y± + KY y\ +Kxy\,

we deduce ( 13 — 2 K2 ) y,. + 2 TCj Un y.i + Kt y .. + Kj y± + 2 0(t>±) yx = 0 for every v», y., and y±

such that V and V+ y e I. Then, ^ ( f ± ) = 0, K:: = 0 and À3 — 2 K2, prooving
(3.13). •

In the same spirit, we also have

COROLLARY 3.7: If d is a vertex-independent operator, then Span {l, v„, v» H- v± } ci ^ ( Q ) if and only ifwe
have (3.10) with

x = 0, A2 = 0 anii A3 = 2 ô x Ü±. (3.14)

s,
in order to have Span{l, v^, rjj +v2

L}<^cê(Q) (see (3.10)) are
Hence, applying the two last Corollaries, we get that if d and d are vertex-independent operators, the conditions

= dLi = o

= K 2 , a111^ =
v •'L • - ^ 't- ƒ

Hopeless Theorem

Unfortunately we have the

THEOREM 3.8: Among the operators d± satisfying (d\v]_ ) ^ 0 ) and (y/ = y/(v,, ) => d±y/ = 0 ) ,
no vertex-independent operator such that *$(()) = Span {l, ü,,, i?., + f± }.

Proof: Under condition (3.14) of Corollary 3.7, we shall build a function y/ : $ —> IR, not belonging to
Span{l, Uii, Uy +u^_}, such that Dy/ = 0 and thus belonging to
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Let us recall that the vertex-independent operator dx is defined by

2 X v A V i + ptAvJ9 (3.16)
i e M j e 7( i )

where the sets M, / ( 0 > the coefficients a y and the shifts a^ pt are independent of vertex V itself.

First, under the assumption d x ( y/(v,, ) ) = 0, we have 2 2 « a = 0 and 2 2 <3 « 2 = 0.
• 9 " icMjeJii) y ' i e Af; e 7 ( 0 7 J

Secondly, d (v± )^0 implies /L3 ̂  0 in formula (3.10).
Hence, in view of (3.10) and (3.14), the conditions in order to have Span {l, v», v^ +v]_} a^iQ) are

E E «, = 0, (a)

ie Af; e 7(0

i e Af j e J( i )

We now give the construction of the expected function y/ which, as we shall see, does not depend on i;,,. First,
notice that a function y/(v,,v±) = tp(v±) such that d±y/ = 0 then satisfies:

E
e.7(i)

Then, we see that the indices i G M such that 2 Ö ^ 0 and the other ones do not play the same role. Hence

let Mo= J i e M, E aH = 0 L and Mc = M-M0. We have Card(Mc) ^ 2, Indeed, because of (3.17.b),
l je JU) J

Card (Mc) ^ o. Now, suppose Card (Mc) = 1. Denoting by i'o its single element, we have 2 fl
f ^ 0 an<i

7 e 7(0 0-;

2 S <z„ = 0. The second of those relations and (3.17.a) give S a =0 contradicting the first. Then
i ^ i o ; e / ( O y ; e / ( O OJ

Card(Mc) ^ 2.

Now, for v± such that V= (i?,, Ü± ) e ƒ, we dénote ^(^j , ) = {̂ 1 =v± + fil Av±, i e Mc}. Consider
v\ =min{fx, y e /} , and set y/(rmn{v\, v]_ e Pc(v°± )}) = 1 and ^(u± ) = 0 if
V_L < max \v]_, v1^ e ^ ( ^ ^ )}• T n e v a l u e of ^ m m a x {vi» ü i e ^ ( ^ i . )} ^s giv e n ^y the relation (3.18) which
has a solution since Card (Mc) ^ 2. We can build ^ ( f ± ) for every v± ^ max {v]_, v]_ e Pc(v

2
± ), V2 e /} using

the same relation. Fixing at last y/(v±) to 0 every t;± > max{i?^_, v\_ e Pc(^x ), V2 e ƒ}, we define the function
^ by setting:

„ 1 ^ ( Ü ± ) . (3.19)

By construction, ^ satisfies Z>^ = 0 and then belongs to ^(Q). As we shall see soon, (3.17.c) implies

{v^ (min{vl
±,v[ ^ Pc(v°±)} <v±<max{v[,vl

± ^ Pc(v°±)})} ^ 0 , (3.20)

yielding that y/ is not constant. Since a function not depending on U|| and belonging to
Span{l, ü||, v2 +v2

±} is a constant function, y/£ Span {l, v^, v2^ + ^ } , and the Theorem is proved.
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Let us show (3.20). For this purpose, assume the contrary, Le. assume that there is no
such that min{i^_fi;^ e Pc(v°x)} <v±<rnjàx{v1

X9v
l
± G PC(V\ )}. Then CardMc = 2, Le. Afc = {l,

and ƒ?, = /?+1. Equation (3.17.a) gives 2 «i = - 2 eu. Equation (3.17.b) yields
j e J ( l ) 7 j e i ( 2 ) Z 7

2AÜ ± 2 Û2y = ^3 a m i a t l a s t e q u a t i o n (3.17.c) leads to

(3.21)

Then we may conclude that either A3 = 0 or /? = - 1/2 ^ Z both contradicting the assumptions. Hence (3.20)
is true. •

Remark 3.9: Approximating the partial differentiation dv by a second order vertex-dependent operator enables
us to build discrete Fokker-Planck operators satisfying Span {l, u„, u? + v2

±} = <ë'(Q). Nevertheless, the choice
of D sets the operator (D* • ) by formula (3.5), and we did not manege to build a vertex-dependent operator
D leading an operator ( - D • ) consistent with the divergence. •

4. ACTUAL EMPLEMENTED OPERATOR

In view of numerical experiments, we have to build a discrete axisymmetric Fokker-Planck operator Qim on
a bounded velocity domain. Moreover, in order to have the right conservation properties and the right
thermodynamical equilibrium set, the collisional invariant space ^ ( Qim ) has to be Span {l, v„, \Â + v2

± }. Then
considering the situation explained in Theorem 3.8 and Remark 3.9, we use the foliowing discrete operator

for a small parameter 0 < e < < 1. In this expression, the operator Q involves constant coefficient fmite
différence operators; it is built from the continuous Fokker-Planck operator defined on a bounded velocity domain.
Since the complementary set of Span{l, v^,v^ + v]_} in ̂ ( Q ) is not empty, its thermodynamical equilibrium
set is polluted. In order to remove this pollution, we perturb it with an operator QQ involving non constant
coefficient operators and satisfying ^ ( Qo ) = Span {1, f,, v? + v2

±}.

Construction of Q via a finite element method in a bounded velocity domain

Let i^h^Y be a bounded cylinder *V h = Qb x (0, 2 n), Qb = {V, v^m ^ i>(| ^ v^**, 0<v±^ vf"}. We
introducé on Qb the regular mesh 3> (see fig. 4.1) with 3 = Jf n Qb, where Jf = Av« Z x Av± Z+ (v*)?m fAv»,
v^™ /AvI and v*^* /Av± are supposed to be integers). The construction of the operator Q is made in three successive
steps, following the process described in [12] for the whole 3D case. The first step consists in using artificial
boundary conditions, of Robin type, so as to preserve the weak formulation (2.7) of the Fokker-Planck operator. The
continuous initial-boundary value problem we deal with writes

dj= P(fJ) ( V) for v e iT t>0,

J\t = o j

with

P(f,f)=T>ivp(f,f),
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and the boundary conditions are given by

Pif.fHv) n(v) = 0, forcer, (44)

where F dénotes the boundary of ^ b , and n( v ) îts outer normal vector This choice of boundary conditions allows
to keep the algebraic structure of the operator mducing then the decrease of the kinetic entropy and conservation
of mass, momentum and energy

Moreover, the weak formulation of (4 3), wnting for all y/ = y/( V) regular enough,

f (P(f,f)y/)(V)dada = -\ (p(fif) Gmdy/)(V)dada, (4 5)

suggests a finite element discretization, of Q-l type, the cells bemg rectangular this is the second step The third
one consists then in choosing "good" quadrature formulae in the finite element formulation, so as to recover a
finite différence scheme for the mternal nodes of the mesh In parallel, it produces boundary conditions for the
boundary nodes

The mam advantage of this approach hes in the fact that the boundary conditions are naturally taken mto
account while they would be les s easy to treat via a direct finite différence approximation Let us point out that
in this process, the finite element formulation is just a tooi to construct the nght boundary conditions for the finite
différence scheme

Since the mam différence with the whole 3D case concerns the third step, we only detail this pomt in the proof
of the next proposition, which gives the final expression of Q

PROPOSITION 4 1 The discrete Fokker-Planck operator Q, buütfrom P defined by (4 3), via a Q 1 finite element
discretization and quadrature formulae, is defined by

Q(f,f) = -D* q(f,f)

where v stands for (V, a) for any a, and with I given by I = {Ve 3, u(] ^ ujj*'", v± ^ 0, v± =* v^}, and D

by

I \

Av±) - y,(V- AvJ)

\

The two linear forms ££$ and ££t are defined by

(4 7)

<p(V)p\V), (48)2
Ve ƒ

where the approximated measures p and p are the volumes of the cells of two different gnds (see (4 21), (4 18),

(4 23) and (4 19) for précise définitions)

Finally, (D ) is the operator defined by

, D*
P (V)

£/ />>)] (V) (4 9)
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where (D • ) is the operator defined on the whole mesh Av^ Z x Av± Z by

D • <P( V) = - 2 ^ - ( / ( V) - <p11 ( V - Aü„ )) - 2 ^ (<p\V+ Av±)-<p\v-Av±)); (4.10)

in expression (4.9) El is a prolongation operator which f or any function <p defined on I, associâtes the function
Ej<p defined on Av» Z x À ^ Z by

[Ejç] (V) = <p(V)ifVe I, and0 otherwise, (4.11)

while R$ is a restriction operator acting on every function y/ defined on Av» Z x Av± Z in the following way:

R!fy/(V) = y/(V), forVe3>. (4.12)

Then, this operator (D* • ) is the adjoint operator of D in the sensé of identity (3.5), i.e. we have

X9(D'-q>y,) = &,(q>-Dy/), (4.13)

for any (p defined on I and any y/ defined on 3.

Proof: As mentioned above, the way to build the operator (D • ) is precisely motivated by the préservation,
at the discrete level, of the weak formulation (4.5). Thus, (4.13) is a direct conséquence of this construction that
we now explain, only detailing the différences with the whole 3D case.

The starting point is the discretization, by use of Q-l finite éléments, of the weak formulation (4.5) which
writes, after simplification by the factor 2 n,

f (P(fJ)ys)(V)da = - \ (P(ff)-Gmd y,) (V) da. (4.14)

The domain Qb is first partitioned in cells Cv, for Ve 3, defined by

cv={(v\ »üI) .üo ^ v\ ^V\\ +Avvv±^ vl +Aü x }nf l f t , (4.15)

(soefig. 4.1 for a visualization of cells Cv and other forthcoming notations). The finite element space we use is
generated by the basis (Çv)v e $, Çv being a continuous function defined on Qb, whose restriction to each cell
Cw is a polynomial of degree 1 in each variable and which satisfies for every f e i , £V(W) = 1 if
V= W and 0 otherwise. Because of the importance of the rôle played by "Log/ ' in the algebraic structure of
the Fokker-Planck operator, the approximation ƒ of ƒ is chosen such that Log ƒ belongs to the finite element space.
Since, from now on, we only work with this approximated function, we simplify the notation and replace ƒ by
ƒ. We then have

Log/= 2 L o g / ( V K v , (4.16)

and the discrete weak formulation writes

f (P(fJ)tv°)(V)dG = - \ (p(ff) • Gradue ) (V) da , (4.17)

for any V° e ».
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Figure 4.1. — A vizualization of 3-, I, Cv , S'v, S2
V and B\.

We now have to choose quadrature formulae in order to compute the intégrais appeanng above. Since the
discrete operators Q(f,f) and ç( / , / ) , that respectively approximate the continuous operators P(f,f) and
p(/> ƒ). ^ e not a priori defined on the same set of nodes, the two sides of equality (4.17) are computed via two
different quadrature formulae, defined on two different grids. More precisely, let us consider, for V E 3, the cell
S y defined by

We also set, for any V G /,

), 0<v]_ ̂  |

(4.19)

These cells are represented on figure 4.1; notice that they both recover the whole domain Qb.
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In order to evaluate the left hand side of expression (4.17), we use a centered quadrature formula in each
elementary cell Sv, V G 3. This formula writes

f
h
f y(Vl)dal V ( V ) ^ V ) , (4.20)

where:

p\V)=\Sv\ = { da\ (4.21)

The right hand side of (4.17) is computed via a decentered quadrature formula defined on each cell S2
V,

V e ƒ, by

ff <p{Vl)dol ~p\V)<p(V), (4.22)
Js2

v

where:

p\V)=\S2
v\ = \ da\ (4.23)

Using the définition of the basis functions Çvo, the equality (4.17) then writes, after approximation

P1(V°) Q(fJ) (V°) = - 2 P\V) («(/.ƒ) * ( G r a d ^ W ) (V) , (4.24)

for ail V° e 3. Let us précise the right hand side of this last equality. First, we notice that the function
Grad £vo is not continuous on S2

y. We can however give a sensé to this expression, adopting the following
convention: if q> is not continuous in a point V, we set

~ \ (p(Vl)do\ç>(V) = limQ-~ \ (p(Vl)do\ (4.25)

with B£
V={V\ \V-Vl\ <e}nS£, and |^^| = f do\

Secondly, the computation of q(f,f) that approximates /?(ƒ,ƒ) is carried out using in each elementary cell the
second quadrature formula (4.22), with the convention (4.25) for the function Log/. Now using the expression
of Çvo we get, after some easy computations (we set v - ( V, a ) for any a )

Ç2n

q(fj)(v)= SejUiV)A - ) * ( « - ( . , a 1 ) ) - ( ^ L o g / ( i ; ) - Z ) L o g / ( . . a 1 ) ) ) * * 1 , (4.26)
Jo

with ££t defined by (4.8).
By analogy with the continuous case, we set for every V̂  G 3,

(D* • cp) (V°) = , 1 n V /?2(V) (^ • (Grad
p (v°)^r/
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so that (4.24) simply writes

£(ƒ,ƒ) (V°) = -(D'- q{f,f)) (V°) , (4.28)

which, coupled to (4.26), gives the scheme (4.6).

Now, using once more the explicit expression of £vo, the computation of the operator (D* • ) defined by
équation (4.27) is straitforward, and we get

D* (p = 1
lR^DEI{p2(p), (4.29)

P

where (D . ) is given by (4.10). Let us notice that this operator (D. ) is the formai adjoint of the operator
D whose définition would have been extended to the whole mesh Av» Z x Av. Z.

Finally, by construction, we obviously have the discrete weak formulation

(<pDy,)(V)p2(V), (4.30)2 ^
Ve $ Ve I

which, using the définition (4.8) of jSf̂  and JSf7, gives exactly:

ie^D • <pyt) = Sejitp .Dy/) . (4.31)

•
Remark 4.2: The operator (D* - ) is consistent with the divergence operator. Moreover, since pl( V) is a non

vanishing approximation of v±, the singularity of the divergence along the axis v± = 0 is removed. •
The operator d" being a first order operator, and dx a second order operator, the operator Q decreases the

entropy and conserve mas s, momentum and energy. The collisional invariant space is polluted since it writes
<g( Q ) = Span {1, UU , rjj + v\, &} with &( V) = 1 if î  = 2 k Av±, k G M, and 0 otherwise. Hence we perturb
it by a second operator.

The operator Qo

We use exactly the same sets 3 and ƒ, the same linear forms j£P^ and S£v and the same operators as for Q except

±9 * Lfor points of / where v± = 2 k Av±9 k e N*, where dL is the following second order finite différence opeator

2 ^ ± 2 A ü ± ) ) . (4.32)

Proceeding as well, condition (3.10) is satisfied, and a straightforward computation shows that (3.11) is
also satisfied, leading to ^(<20) ~ Spanjl, u„, v^ +v2

J_), so that we finally have

We easily obtain the following expression for the adjoint operator,

<P(V)= -—- IR,DO • Etip2?)] (V) , (4.33)
P (V)
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with

^ r l ] T ^ v J ) ifvL=(2k+l)Av±. (4.34)

The a1 -intégration

Now, in order to achieve the discretization, we have to do the computation of #(ƒ,ƒ) given by formula (4.6).
This computation relies on an a ̂ intégration which cannot be done analytically. We refer to Annex C for its
numerical computation (involving elliptic intégrais and finite différences) and for the actual implemented
expression of (4.6).

The time discretization

At last, we implement an explicit time discretization. Then, the velocity distribution ƒ is approximated by

(/( V) )„ e N, A V) - / ( J s At\ v) solution of

(f + \V)=AV) + AtnQimp(f,f)(V), Vs3,neN,

[A = (f0)(v), F E ! (4'35)

Easily, we have that the conservation properties are satisfied for the solution of (4.35).
On another hand, in order for the solution to be positive, Af has to be such that

Atn < inf ( f\V) ^ , (4.36)

and for the decrease of entropy, Af < xn where xn realizes the minimum of the entropy in the direction

Qimp(f>f)> i-e.

&JS + r" Qimp(f,f) Log (f + TM Qimp(f,f) ) ) =

min JSP,CT + rQmp<if,f) Log (ƒ" + tQmp(f,f) ) ) . (4.37)

Since J5f^(/log/) is a convex function of ƒ, rn exits and is unique.

5. TESTS

Test 1

First we simulate the dimensionless équation

f + 1=f + Atn^Qimp<J",f), (5.1)
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a. Initial data. b. ƒ(i^ , v±) at t = 89,17

Figure 5.1. —ƒ* and ƒ after relaxation

with the spherically distributed initial data

f(V) = 0.01 exp{- 10[( \v\ - 0.3)/0.3]2}, (5.2)

the velocity modulus \v\ being v, = + v] the domaine ( - 1 , l ) x ( 0 , 1 ) discretized

with a 65 x 33 regular mesh. Function/° is drawn on figure 5.2.a. By the way, we also give the distribution
function after relaxation on figure 5.2.b. W. M. Mac Donald, M. N. Rosenbluth & W. Chuck [19] simulated the
considered problem using the 1D character induced by the spherical symmetry assumption with a 1D explicit in
time and finite différence scheme. Their results are shown on figure 5.3. As on the straighlines (t^ = 0 ) and
( v± = 0 ) the velocity modulus | v | equals v± and v^ respectively, in order to compare our results with their ones,
we give on figure 5.2 the functions ƒ( 0, f±) and f(v^ ,0 ) for the same times as they did. Despite the spherical
symmetry is not a natural configuration for our code, the results of figures 5.2 and 5.3 are correlated with a good
degree of accuracy.

This test exhibit the good behaviour of our method, which in addition to the decrease of entropy and the
conservation properties leading to the relaxation to the right Maxwellian distribution, générâtes no numerical drift
one the Maxwellian state if reached (as happens on figure 5.3).

Test 2

The second test consists in simulating a collision of two plasmas constituted of the same species of particles
whose charge and mass numbers are Z= 11 and A— 21. For a complete and spatially non homogeneous
simulation of this problem with a fluid code, we refer to R. L. Berger et al. [5], A kinetic and spatially
homogeneous simulation of this problem was done by O. Larroche [16], who implemented a mass-conserving
finite volume and implicit in time scheme for sol ving the Fokker-Planck équation. We shall compare our results
with theix ones.
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t = 89 17 and Maxwellian distribution

02 03 04 05 OS 07 OS 09 10
V±

<l> 0 010- -

T 3

»2 0 008 " ~

a. f(t?|| =0, v±) b. f(vvv± = Q).

Figure 5.2. — f(U| = 0, u±) and/(U| | ,0) for different times

MAXWOJJAN DISTRIBUTION

Vv— r-48417

£0 £6

Figure 5.3. — Simulation of W. M. Mac Donald, M. N. Rosenbluth & W. Chuck.

The initial distribution is composed of two Maxwellian beams with density n1 = n2 = 2 x 1029 m~ 3 ,
velocity vi = - v2 = 6 x 105 ms" l and température Tx = 5.8 x 106 K( = 0.5 kev ) and
r 2 = 1 7 . 4 x l 0 6 K ( = 1 . 5 kev). The équation to simulate is

60A mp
z-imp\

(53)
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a. Initial data. b. t = 25 83 T

Figure 5.4. — Heating of the beams

3 8 /k(T + T ) \ 3 / 2

where Log (A) is the Coulomb Logarithm with A = — j - \ nr * • \ ) » £o t h e dielectric perrrûttivity of
Ze \z\n\ + ni ) /

vacuüm, e the elementary charge, m the proton mass and k the Boltzmann constant. In the results to corne, we
use as time unit the ion-ion collision time zc of a plasma constituted of the same species with density

and To = First of all, we see on figure 5.4 that the two

beams heat on each other. Then their relative velocity tends to zero (see fig. 5.5) until the complete relaxation
shown on figure 5.6.

In order to compare these results with those obtained by O. Larroche [16], we give the profiles of the mass,
velocity, and températures which are defined by

«, = \ip

T = Amp /( 3 kp ) u, - u, ) 2 + «1 ) ) , (5.4)

These profiles, which are given on figures 5.7 and 5.8, show that the conservation properties are satisned with
a very good degree of accuracy.
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d. t = 524 74 T

Figure 5.5. — Relaxation phasis

Concerning the température profile we see that the relaxation time and the gênerai behaviour (and in particular
the angles p and y ) are quite similar to the one obtained in [16]. We point out that in [16] the présence of électrons
gives rise to a drift of the température in the end of the computation which is not the case here since there is only
one species of ion. In spite of the improvement of D. Deck & G. Samba [9] to the method of O. Larroche [16],
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t = 1 446.76 TC .

Figure 5.6. — Maxwellian distribution after relaxation

0 100 200 300 4C0 500 G00 7DQ Q0O 900 io3 O 100 200 300 400 5DD 6C0 700 BOD 900

a. Mass. b. Velocity.

Figure 5.7. — Evolution of the mass and the velocity

the resulting scheme does not ensure decrease of the kinetic entropy in every case. Moreover, the correction raises
diffïculties when the method is applied to multi-species plasmas. Our approach seems to be better adapted to this
problem.
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100 To

0 ICO 200 300 400 500 GDO 700 900 103

Figure 5.8. — Evolution of the Températures in To unit.

ANNEXES

A. Derivatives of | v - v1 | and computation of <P( v - v1 )

We have

-v\ (A.l)

c o s

The partial derivatives of \v - v l \ are then

- 1 ; dv
r(\v-vl\) = - vn -

dv, \v-vl\ dvl
±
 V | | ;

,v ~v I
v]_ - V± cos (a1 - a )

v±-v\ sin (a1 - a )

\v-vl\ ' da1
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while the derivatives of \v - vl\~ 1 are given by:

J L / L
dv\\

v\\ ~
1!3'

3 ( 1

\v-v*\* d^ \\v-vl\J

v^-v), cos(al-a) a / 1 \ _

v±v]_ sin (a1 - a) d

\v-v
l\3

v]_ - U±cos ( a 1 - a )

\v — v

v± vl
± sin ( a 1 — a)

Then the second partial derivatives of \v -vl\ are:

( A 3 )

A

\V — V \v - v

cos (a1-a) (v±-v1
Lcos(a1-a))(v1

±-v±cos(al-a))

dV± \v — v
113

— v \ ) — —

dVn dV

i. .

{v-v1

-^ j j ) ( ^ j - ^ c o s Ç a 1 - a ) )

\v - v
(A.4)

( f — V \ ) — —
v<vl, cos ( a 1 - a ) v x v x sin2(a1 - a )

: r. + : rr;

au„ a«
1 i 3

f} sin (a1 - a ) ux i;} sin (a1 - a) (i>x-f± cos (a1 - a ) )

daL 1 i 3

sin - a) üx i?x sin (a1 - a) (üx - üx cos (a1 - a) )
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Since the tensor &(v - u1), expressed in the local basis BŒ, is given by:

335

~»j ) (< sin (a1 - a)) \

O» -PJ )(^1-^cos(a1-a)) ' ^ j cos (a1 - a)) (v[ si

(v„ - vl ) (v]
± $in (a1 - a)) (v±~v]_ cos ( a 1 - a) ) (i;^ sin ( a 1 - a ) )

using (A.4), it may also be given in tenus of the derivatives of \v - v1 (A.5)

—'D

ri sin^a1 - a )

(A.6)
B. Proof of Proposition 2.3

Since the divergence of any vector valued cylindrical function ((p(v))B* = (ç?^ (V), (ç?'L(V), 0) writes
D/v <p = -— ( dv ( vL qfi ) 4- d^( u± ̂

x ) ), it is a real valued cylindrical function; so it suffices to prove the result

fox p(Jjï
According to expression (A.6), a straightforward computation gives

/>"(ƒ.ƒ) (V)= r f v± âf| da
Log/(V)-Ö11 Log/CV1))

t). sin (a1 - a) ü, t̂  sin (a1 - a) (v) - v. cos (a1 - a))
dalda\ (B.l)

The last term of the integrand can then be simplified by use of (A.4) which yields to the final expression

j r r f
o v± da JQ

= 0.
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Secondly, in (2.5) and (A.5), a and a 1 only appear through sinusoidal functions of (a1 - a). Then the
intégration with respect to a 1 over a whole period occuring in (2.2) remove the a-dependence. The conditions
(2.1) are both satisfied and the proposition is thus proved. •

C. The a1 -intégration

This Annex is devoted to the computation of #(ƒ,ƒ) (see (4.6)). This computation relies on the knowlege of

W ( Ü , Ü 1 ) = f {&(v - v1) . (DLogf(v) - DLogfiv1))} da\ (Cl)
J(0,2TÏ)

for every (V, V1 ) <= 72. Denoting by nB~(v, v1) = (n11 ( V, V 1 ) , n \ V, V 1 ) , 7ra( V, V 1 ) ) , the expression of

n( v, vl ) in the basis BŒ, we recall that

(C.2)

and that TT" ( V, V1 ) and n ( V, V1 ) do not depend on a. Then using the expressions of &Ba (see (A.5), (A.6)), we
get

nHv,Vl)= fY j -^ -dü -» 1 ! ) ) (311 Log/(V)-d» Log/CV1))
Jo \ L^|| J

t;,, - vl ) (ü, - u ' cos ( a 1 - a
-J • ^ ^^ 3

[ {v,, -vl )(v\ si

(\v -vl\) dal\ (d±hogf(V) - dL-Logf(V1))

J
f f2

[Jo

au,

2 " CUII — t?u ) [ O , - f 1 , c o s ( a 1 - a ) ) + (ü1 . - v . c o s C a 1 -

dv{{

Lo g / (y)-

{Io " dAui ( Iü " pl I } rfal} ( ô± Log/( V) ~ d± L ° g ^
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A similar computation gives the second component

• ' ) ) • (C.4)

Hence setting

o dl/»

1 ->2

w\v,' V ) Jo av2
±^V V \ ) d a ' ^(v>v > ^<8f5(v;vi )

f4 r
o \d i4 dv±dv]_

f, u1 ) expresses

(C.6)
^ ƒ

0

Since the computation of the coefficients °Ul is not easy, or even not possible (for instance if V = V the integrands
are not integrable functions), we in vert the intégration and the dérivation operators. Therefore, we define

/u\v,v1) u\v,v1)\
'1) = W<v,v^ü*tv,v^)'

I » - » 1 ! * * 1 ) . (C.7)
o /
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Then, the operator q(f,f) is replaced by

/ / /a11 Log/(y)-ô l lLog/(F1)\ \ \
m IÂV)KV) [ u(v, v1) , ± , +ô1Log/(y1) w(v, v )
JSf7 ^ \ \ ô x L o g / ( V ) - ô ± L o g / ( V 1 ) / &JK 7 , (C.8)

\ ° /
the dérivation operators involved in (C.7) being replaced by finite différence operators. And, in order to access
to an approximated value of

\v~vl\ dal , (C.9)
Jo

we express it in terms of elliptic intégrais. Setting

a = (Î̂ H - i;j )2 + v2
± +vll and b = 2 v± v]_ , (CIO)

and using expression (A.l) of annexe A, we hâve

Ç2 n Ç
\v-vl\ dal = 2\ Va-bco$al da1 . (Ci l )

As a ^ b ^ 0, applying formula n° 2.576, page 156 of I. S. Gradshteyn & I. M. Ryzhik [13], we deduce that

f^,-t;V^-[4V^E(arcsinJ(a + fc)(1-COr1).\^N)T'^Jo ' ' L V V 2(«-ècosa1) V « + Vja> = o

= 4VÏ + ï (E( | \ ^ ) ) . (C.12)

where E is the second kind elliptic intégral. In order to compute E we apply the method described in
M. Abrahamowitz Se A. I. Stegun [1], chapter 17.6, page 598.
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