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Part 1
Towards Hamiltonian description of a
charged particle

1 Departure point (in terms of scientific knowledge)

The following is taken for granted.

In a flat space filled with vacuum, the most usual way to write the Maxwell equations is:

1 JIE

7?W+VXB:’UIO‘I’ (11)
B
%JrVX]E:O, (1.2)
1
V-E=—p, (1.3)
€0
V-B=0. (1.4)

Equation (1.1) is called ” Ampere’s Theorem”, equation (1.2) ”Faraday’s Law” and (1.3) ”Poisson’s
Equation”.

€o is the ”Vacuum Electric Permittivity” and po the ”Vacuum Magnetic Permeability”. They are
linked together by: pgeo = 1/¢2, where c is the "Light Velocity in the Vacuum”.

System ((1.1) - (1.4)) models the time-space evolution of the ”Electric Field” IE = IE(¢,x), and the
”Magnetic Field” IB = IB(t,x), seen by an observer in an inertial frame of reference. p = p(¢,x)
stands for the ”Charge Density” filling the space and X = JI(¢,x) for the ”Current Density” (seen
in the inertial frame of reference).

If a particle of mass m, charge ¢ and velocity (in the inertial frame of reference) vy is situated in
position xg at time %o, it feels the following ” Lorentz’s Force” .

]F(tg,Xo,Vo) = q(]E(to,Xo) + Vo X ]B(to,Xo)). (15)

Hence applying ”Newton’s Law” | the considered particle follows a trajectory in the " Position-Velocity
Space” (X, V) = (X(t), V() = (X(¢; %0, Vo, o), V(t; X0, Vo, to)) which is solution to:

oX
E = V7 X(tO;X07vO7tO) = X0, (16)
oV
mﬁ :]F(t,X,V), V(tO;XOaVOHJ;O) = Vo, (17)
or, in its expanded shapes:
oX
E(t) =V(), X(to) = xo, (1.8)
ov
mﬁ(t) =T (t, X(t), V(1)), V(to) = vo, (1.9)
or
o0X
E(t; X0, Vo,to) = V(t; %0, Vo, to), X(to; %0, Vo, to) = Xo, (1.10)
ov
mﬁ(t, X0, Vo, to) = ]F(t,X(t;X(),VO,tQ),V(t;X(),VQ,fo)), V(to;Xo,Vo,to) = Vp. (111)



2 Status of mathematical objects in game I

Above, all the mathematical objects in game are the same. They are scalar or vector fields defined
on the position space X', which is a subset of RY or RY itself, with N = 3 (or may be 2 or 1 in
simplified models that will no be considered in the near sequel).

In view of generalizing the point of view, it is clever to question on their intrinsic status. For this,
first, a weakened version of Newton’s Law saying: ”mass times acceleration of a particle equals the
force acting on it” has to be considered.

2.1 D’Alembert’s version of Newton’s Law

This version which is sometimes called ”D’Alembert’s Principle” consists in considering in any point
x of X all the ”Virtual Displacements” or ” Admissible Displacements” which are the elements of
the tangent space T, X of X in x. Here, in any point x, T,X and X may be considered as the same
space.

It says: in any point x of X such that, for a given time s, X(s;xXq, vo, fo) = X, for any Admissible
Displacement v of T,X the ”Virtual Work” of the force IF which writes IF(¢, X (s), V(s)) - v equals
the ”Virtual Work” of the inertial force ma—v which writes mﬁ(s) 7

Defining the ”Momentum” IM = IM(¢) = IM(¢; X0, Vo, to) associated with the trajectory (X(¢;xq, vo, to),
V(t;x0,vo,t0)), by

ML (¢; X0, Vo, to) = mV (t; X0, Vo, to) (2.1)
7D’ Alembert’s Principle” writes :

PRINCIPLE 2.1 In any point x of X such that, for a given time s, X(s;Xq, Vo, to) = X, the following
equality holds for any v of T X,

(IF(s,X(s), V(s)) — aa;l:/l(s)) v =0. (2.2)

Moreover, this equality characterizes trajectory X(.). ]

REMARK 2.2 Defining mg as mvy, it is relevant to use the following notation IM(¢;xq, mg,%o) in
place of IM(¢; %0, Vo, to). From now, this notation will be used. [ |

2.2 Status of the force IF and of the momentum IM in a given point x of
T.X

oM
Once (2.2) is set, the force IF(s,X(s), V(s)) and the inertial force W(S) may be seen as objects

acting on elements in T X via an inner product (here denoted by ”-”). Hence, intrinsically they

M
they can be represented by elements denoted F(s, X(s), V(s)) and aa—t(s) of the cotangent space

oM ~
T;X of X in x. This allows to avoid the inner product. Since W(S) is in T; X, M has to be in a
manifold whose tangent space is T X, then it is not irrelevant to consider that M is also in T X.
As a conclusion : In a point x of X’ such that, for a given time s, X(s;xq,Vo,t) = X the

force F(s, X (s;x0, Vo, to), V(8;X0, Vo, t9)) and of the momentum M(s; X, Vo, to) may be considered
as elements of the cotangent space T;X.



Once set this conclusion, the question of the definition of the momentum is asked. It has to be
defined intrinsically and (2.1) has to be an expression of this intrinsic definition within a coordinates
system inside which the inner product has its usual expression. Hence, a mapping M, from T X to
TiX has to be built.

A way to build this mapping consists, for any v in T X, in defining M, (v) as the unique linear
form or 1-form such as (M, (v),v/|v|) = sup{(M,(v),v),v € T X} and (M, (v),v) = m|v|?.
Another way, which is equivalent, consists in considering the differentiable function L, : TX — R
defined by

L(v) = ymlvP, (2.3)

and in saying that M, (v) is the differential of L in v, i.e.

M, (v) = d,L,. (2.4)

(Since L, : TX — R, d, L, : T,(T,X) — R and since T X is a vector space, T, (T X) may be
identified with T, X for any v in T_X".)

REMARK 2.3 Notice that defining such a one-to-one linear application M, from T, X onto T;X in
any x € X, in a way regular enough with respect to x and such that (M, (v), ") = (M, (), v) for
any v € T X and any v/ € T X for any x € X, defines a metric on X by considering (M, (v),v') as
the inner product of v by v/. [ |

With this mapping at hand, the momentum M(¢; xo, my, to) associated with trajectory (X (t; xo, Vo, o),
V(t; %0, Vo, to)) is defined as

M(t; X0, My, to) = 'A/tX(t;onmto)(V(t; X0, V0, to)). (25)

REMARK 2.4 If in place of classical mechanics, the framework is special theory of relativity, then
(2.1) is replaced by:

M - (1 - 'V'Q)_l/zmv. (2.6)

c2

v[?

Using as function L : TX — R: L (v) = mc? (1 —4/1- 02)’ setting again M, (v) = d, L, the
momentum IM defined by (2.6) is associated with the following element of TX: M = My (V). ®

REMARK 2.5 Above, if, in place of choosing L.(v)= %m|v|2, for any ¢(x) depending only on the
position variable L (v) = $m|v|? — ¢(x) is chosen, d, L, is left unchanged and then setting again
M, (v) = d, L the definition of the momentum M = My (V) is valid again. [

2.3 Status of the force F and of the momentum M

Firstly, reinterpreting the Lorentz’s Force expression (1.5), it may be deduced the following: From
the fields IE and IB defined on X at any time ¢, for any vector field W defined on X, at any time ¢,
a Lorentz’s Force Field is defined on X by

F(t,x, W) = q(IE(t,x) + W x B(t,x)), (2.7)

for any x in X.



REMARK 2.6 As W is here a vector field, it would be more correct to use an expanded notation
W (x) in expression (2.7) to give:

F(t,x, W(x)) = q(IE(t,x) + W(x) x B(t,x)). (2.8)
|

As a conclusion : The force felt by a particle of charge ¢ being in xg with velocity vq is then the
value TF(t,x9, W(x¢)) of IF in x¢, where the force field IF(¢,x, W) is computed with a vector field
W which is such that W(xg) = vo.

Secondly, in view of the conclusion of subsection 2.2, in any point x of X, IF and IM may be
represented by linear forms or 1-forms on T X

As a conclusion : Hence, for any time, the two vector fields IF(¢, .,.) and IM() defined on X may
be, more relevantly, represented by two differential 1-forms on X: F(¢) and M(t).

In the sequel, for any n < N, for a time-dependent differential n-form K(t) defined on X, in any x
of X, {K(t,x)} will denote the n-form (T ,X)" — R which is the value of the differential n-form at
X.

2.4 Status of the electric field

In view of Lorentz’s Force expression (2.7), it seems to be reasonable to consider the force and the
Electric Field to be represented by objects of the same nature.

As a conclusion : Hence the Electric Field IE(t,.) will be represented by a differential 1-form E(t)
on X.

(As a consequence, the charge ¢ have the status of a number or of a linear operator from T, X to
T, X in every x of X.)

2.5 Status of the magnetic field

If, in any x of X the tangent space T, X is equipped with an inner product ”-” and a cross product
7 x”, any differential 2-form (possibly time-dependant) B(t) defined on X’ can be represented by the
vector field B(¢,.) on X whose value in any x of X is such that

{B(t,x)}(v,V) =B(t,x) - (vx V)= (B(t,x) xv) v =1 xB(tx)) v,
for any v and v/ in TX. (2.9)

Moreover, for any vector field W defined on X, the interior product %y B(t) of B(t) by W and
which results as the differential 1-form whose value in any x of & is:

TwB(t,x) : v {B(t,x) }(W(x), ), (2.10)

for any v in T_X, is represented by the vector field B(¢,.) x W = —W x BB(¢,.) (whose value in a
point x of X is —W(x) x B(t,x)).

As a conclusion : Using these remarks, the Magnetic Field B(t, .) is represented by the differential
2-form B(t). B(t) and B(t,.) are linked by (2.9).

Reinterpreting, once again, the expression of the Lorentz’s Force within the framework of differential
forms, it may be deduced the following: From the differential 1-form E(¢) and the differential 2-form



B(t) defined on X at any time ¢, for any vector field W defined on X, at any time ¢, a Lorentz’s
Force differential 1-Form is defined on X by

F(t) = g(B() — twB(1)). (2.11)

As a conclusion: The object permitting to compute, in any xo of X, the Virtual Work of the
Lorentz’s Force for any Admissible Displacement of a particle of mass m being in xg with velocity
v is then the value {F(¢,x¢)} where F is defined by (2.11) with a vector field W which is such that
W(Xo) = Vp.

2.6 On Lorentz’s Force writing

The first way to write Lorentz’s Force is the one presented via formula (2.11), lines above it and
interior product definition (2.10). There is another way to define the interior product, more compli-
cated, but useful in the sequel and involving the tangent bundle TX which is defined, at any time
t, by TX = Uxex(x, TX).

First, having a time-dependent differential 1-form A (¢) defined on X, a function or differential 0-form
ZA(t) may be defined on TX by setting

LA(tx,v) = LA (LX) = {A(t,%)}(v). (2.12)

More generally, if K(t) is a time-dependent differential n-form defined on X, time-dependant dif-

ferential (n — 1)-form EK(t) may be defined on TX. To do this, it has to be noticed that, in any
point (x,v) of TX, tangent space Ty, (TX) may be identified with T,X x T .X, and making
such an identification leads to the fact that any vector of T(x ) (TX) may be written as (v,v) with

v € TX and v € TX. Then, zK(t) is defined by setting, for any ((v1,v1),..., (Wn-1,Vn—1)) in
n—1
(T (TY))"

o o

{LK(t,x,v)}(v1,01), ooy (Wn—1,0n-1)) = { LK, x)H(v,v1)s .oy Wn—1,Vn-1))
={K({t,x)}(v,v1,...,vp—1). (2.13)

Beside this, if K£(¢) is a differential n-form on TX, for any (x,v) of TX it defines a n-form on T, X
(Dx, ) IDK

{(De vy D)} (w1, -+ -5 vn) = {K(t, %, V) }H(v1,0), . ..., (¥, 0)), (2.14)
for any (v1,...,v,) in (T AX)™.

Then, the interior product %y B(t) may be defined using

twB(t,x) = (D wix II) (LB). (2.15)
and Lorentz’s Force may be written as
F(t,x) = 4(E(t) = (Pewien ) (LB)). (2.16)

The interest of this shape is that it enables to write the force F(¢,X(¢)) in a given point of the
trajectory X(t), as an element of Tg A" (considering the Position-Velocity trajectory (X(t), V(1))
by

F(t,X(1) = a(EX (1) = (Do, v ) (LB) ). (2.17)

without introducing any vector field W.



2.7 Remark on notation, Pushforward and Pullback

The goal of this subsection is to justify the notation (D vy II)K(t) used in formula (2.14) and after.
Having the tangent bundle TX, the following projection may be defined:

Im: Tx - X

2.18
(x,v) = x. (2.18)
Once this is done, in any (x,v) of TX, the differential d(x’v)H of IT is defined by
Ayl Tw(T¥) — TX
(o) (o) (TY) T, (2.19)

o) = v,

since, as already noticed, T'(x,v) (TX ) may be identified with T, X x T, X, meaning that any vector
of T (xv) (TX) may be written as (v,v) with v € TX and v € T,X. The following application

H* (x,v) : r];:X — T?x,v) (TX)

(2.20)
7T = 1_Lk(x,v) (ﬂ-) s

may also be defined by setting, for any (v,v) in T (xv,) (TX),

(I () (7), (1, 0)) = (T, i ) TT((v,0))) = (7, V). (2.21)
It is clear that this application is one-to-one onto its image IL (x,v)(T;X). It may be noticed that

ker (d(xy)l_[) = {(1/, v) € T(xv) (TX),V = O} = {(O,v), v E '];X}, (2.22)
[T (x,v) (TeX) = {T € T{y ) (TX),Y(1,0) € T vy (TX), (T, (v,0)) = (T, (1,0)) }, (2.23)
and consequently, that
T € Il (x,v) (TEX) if and only if (7, (v,v)) = 0,¥(v,v) € ker (d(x’v)l'[), (2.24)
(v,v) € ker (d(x)V)H) if and only if (7, (v,v)) = 0,V7 € L (x +) (TLX). (2.25)

Then, as there exits a natural projection
=1
’D(x7v) H . T(x7v) (TX) — ker (d(x,v)H)
(v,v) = (0,v),
a second one may be defined:

5(,(7‘,)1_[: T (TX) = T g,v) (T X)

(x7v)

o (2.27)
m = T —To D(x,v) .

In other words, (Div))(7) is defined by ((Dx,v)I)(7), (v,v)) = (m,(v,0)) for any (v,v) in
T x,v) (TX).

Having (5(,(,‘,) II) on hand, it is easy to see that (D(xy)II) defined by (2.14), when it applies on
1-forms, is
D(x,v)H: Tﬁ(kxyv) (TX) — ’]::X
o (2.28)
T = (M xv)) " 0 (Dxvy 1)) .

Indication : (d(x wiD (v, v) is called the "Pushforward” of (v,v) by Il in (x,v) and IL(xv)(T)

the ”Pullback” of 7 by II in (x,v).



2.8 Faraday’s Law from differential form point of view

As, for any x of X, {B(¢,x)} is a 2-form on T X, a—B t,x) ¢ is also a 2-form on T, X. Hence, if
ot

the differential 2-form B is regular enough, E(t) is also a differential 2-form on X'.

Beside this, if E is the differential 1-form represented by the vector field IE (or, in other words, if in
any x of X, the 1-form {E(¢,x)} on T, X, which is equipped with an inner product ”-” and a cross
product ” x”, writes

{E(t,x)} = (E(t,x))-, (2.29)

then the exterior derivative dE of E (which is a differential 2-form if E is regular enough) is rep-
resented by the vector field V x IE. (This means that, in any x of X, the following formula holds:
{dxE(®)}(v,v) = (VX E)(t,x) - (v x V') = (V x IE)(¢t,x) x v) - v/ for any v and v/ in TX.)

As a consequence of what is just said, Faraday’s Law (1.2) may be seen as the following differential
2-form equality:

%—? +dE =0. (2.30)

2.9 On Ampere’s Theorem compatibility with differential form viewpoint

E
As, for any x of X, {E(t,x)} is a 1-form on T, X, or equivalently is in T;X, {aa—t(t,x)} is also in

T;X. Another way to see this consists in noticing that naturally, (x, {E(t,x)}) is in the cotangent
o(x, {E(t
bundle T*X. (By the way, T*X = Uxcx(x, TyX') has a manifold structure.) Then Ox, {B(t, x)}) =

ot
(?T)t(’ %) = (O, {%}) isin Tx (E(tx)}) (T*X); and this tangent space may be iden-
tified with T, X x TSX.
Beside this, if the vector field B on X represents the differential 2-form on X', V x IB cannot be
clearly interpreted in terms of differential forms.
Then interpreting Ampere’s Theorem (1.1) in the framework of the differential forms is not as easy
as for the Faraday’s Law.

Nonetheless, a vector field may represent a differential 1-form (see(2.29)) or a differential 2-form
(see(2.9)). Hence rewriting Ampere’s Theorem as

B(EQ]E)
ot

and considering the new vector fields ID and IH defined from IE and 1B by:

+V x (o 'B) = I, (2.31)

D= EoE, B = [L()][‘I, (232)
the following is reached
oD
*W‘FVXHZI, (233)

In (2.33) ID and H are to be considered as vector fields representing respectively a differential 2-form
D and a differential 1-form H. Consistently, in (2.32) the multiplications by e¢ and po have to be
considered as operators transforming vector fields representing differential 1-forms into vector fields
representing differential 2-forms.



2.10 Status of the Current Density

Watching equation (2.33), if, as announced, ID represents a differential 2-form and H a differential
1-form then V x H represents a differential 2-form and then J has to represent a differential 2-form.
The question is now: does this last assertion make sense? or may-be more: why does this last
assertion make sense? To help the providing of an answer to this question, it has to be noticed that
the essential role to be played by a current density is to be integrated on surfaces to give current
fluxes, and that precisely, differential 2-forms may be integrated on surfaces.

Then, a current density may be represented by a differential 2-form J on X by setting that the
current flux (associated with the considered current density) through any surface is the integral of
J over this surface.

2.11 Ampere’s Theorem from differential form point of view

Defining two ”Hodge Operators” € and [4 that transform differential 1-forms into differential (N —1)-
forms (differential 2-forms here since N = 3) and setting

D=€E, B=puH (2.34)

Ampere’s Theorem may be interpreted in terms of differential forms exactly as Faraday’s Law may
and then reads:

oD
5+ dH = 7J, (2.35)
(or
_OER) dip—'B)=1J). (236)

ot

2.12 Magnetic Field divergence free equation from differential form point
of view

if B is the differential 2-form represented by the vector field B (or, in other words, if in any x of

X, the 2-form {B(t,x)} on T, X is defined by (2.9)) then the exterior derivative dB of B (which is
a differential 3-form if B is regular enough) is represented by the function V - IB. This means that
in any x of X', the following formula holds:

{de(t)}(V, Vo) = (V-B(t,x))((v x V') - V") for any v," and v"" in TX (2.37)
With this remark, equation (1.4) reads

dB = 0. (2.38)

2.13 Poisson’s Equation from differential form point of view

Rewriting equation (1.3) as

V- () = p, (2.39)
introducing the charge density differential 3-form p, it can be read:
d(€EE) = p, (2.40)
or
dD = p. (2.41)
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2.14 Status of the Charge Density

The role of the Charge Density is to be integrated over any tridimensional set in order to give charge
contained within this set. Precisely, differential 3-forms may be integrated over tridimensional sets.
Then, it is consistent to represent a charge density by the differential 3-form p.

2.15 Maxwell System in the differential forms framework

Summarizing all the above versions of the equations of the Maxwell System, it gives

faa—]t) +dH =17, (2.42)
88—]:’ +dE =0, (2.43)
dD = p, (2.44)
dB = 0. (2.45)
with
D=€E, B=puH. (2.46)

In ((2.42)-(2.46)) E and H are 1-forms on the position space X'; B, D and J are 2-forms on X’; and;
p is a 3-form on X. Operators € and 4 are Hodge Operators mapping one-to-one the 1-forms on
X onto the 2-forms on X.

3 From Newton to Lagrange

3.1 Maxwell System with Electric and Magnetic Potentials

As on X the forms with zero exterior derivatives are the exterior derivatives, from (2.45) it can be
deduced that there exists a differential 1-form A on & such that

B =dA (3.1)

0A
Then, inserting this in (2.43) yields d(a + E) = 0. From this last equality, it can be deduced

A
that there exists a 0-form ® such that (a— + E) = —d@, or

ot
E=—-do- %—"?. (3.2)
Equations (2.42) and (2.44) yield:
_a( _ 6d§t 627?) +d(u'dAa)y =13 (3.3)
d(ed@e%‘?) =, (3.4)
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or

0A
2(€5)  oed
ot I(Eae) -1 _
5t g +d(pday=1 (3.5)
A
—d(saat) —d(edd) = p, (3.6)
(If Hodge operators € and [t depend neither on time nor on position, these last equations read
PA  _9(da) .
Eom tE +d(p—da)y =17, (3.7)
adEA
—% —dede) =p.) (3.8)

3.2 On momentum choice
3.2.1 Momentum possibly associated with a differential 1-form

Reinterpreting equality (2.2) with the differential form point of view, consists, once M(t; X0, My, to)
is defined from the Position-Velocity trajectory (X(t), V(t)) = (X(t; %0, Vo, to), V (t;X0, Vo, to)) by
(2.5), (2.4) and (2.3), in considering that the Position-Velocity trajectory (X(t), V(t)) is solution to

oM
{F-SR)exm) =0, (3.9)
for all v in Ty, X, where F(?) is defined, at any time ¢, from the differential 1-form E(f) and the
differential 2-form B(¢) by (2.11) with a vector field v which is such that v((X(t)) = V(¥).

But, if a regular differential 1-form A is defined on X, it is not forbidden to associate with Position-
Velocity trajectory (X(t), V(¢)) the following momentum

M(t) = M (V(D)), (3.10)
with
MA () = M(v) + {gA(t.0)} = d, L + {gA(t. %)}, (3.11)

where M, is defined by (2.4) and L, by (2.3).

REMARK 3.1 Following remark 2.3, replacing M, by M,[(A] may be seen as replacing the metric on
X by another operator on T, X x T, X which is no more an inner product. [ |
3.2.2 Time derivative of the momentum

Considering TX = Uyxcx(x, T X), at any time ¢,
BMA: (x,v) = (x, MM (v)) = (x, M (x,v)), (3.12)

may be seen as a one-to-one mapping from TX onto T*X. (BM (Al could be called the bundlization
of MIA and MAl(x, v) is the tangent space’s componant of this bundlization in (x,v).) The value
d(XN)M[A] of its differential dM™) in (x,v) maps T (x,v) (TX) onto T(xyM)[‘A](v))(T*X). Tangent
space T (x,v) (TX) may be identified with T X x T,X and T(X7M)LA](V))(T*X) with TX x T;X.
Looking at (X(.), V(.)) as a trajectory on TX| it is mapped to a trajectory (X(.), M(.)) on T*X, and
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its tangent vector (aa—)t((t), %—Y(t)) in (X(t), V(¢)) is mapped to the tangent vector (88—):(16), aa—l\f(t))

of trajectory (X(.),M(.)) in (X(t),M(t)) by the differential dix;) v M™ to which the time
partial derivative of {gA(t,x)} has to be added. In other words,

(%(W %/I(t)) - d<X<t>,V<t>>(%M[A])(%(t)’ aa%[(t)) +(0 {q%(t’x(m})' (313)

To compute d(x(t),v(t))(%/\/l [A]) the following chart of a neighborhood B(X(t)) of X(t) on X is used

C: B(X(t) — RY

(3.14)
X —  q=(q1,92,93).

On R¥ stands the canonical frame (eq, ,€q,,€q;)- Then (3.15) may be rewritten as C(x) = qieq, +
d2€q, + gseq,. For every x € X, the following chart is used on T X

. N (_ N
de: Tx o RY (= T,RY) s
v = q = (Q1aq27q3)'

Taking the same frame as previously but naming it (dg,,0q,,0q,), (3.15) reads also d,C(v) =
Q16C11 + (.3128(12 + q3aq3
Another way to formulate this consists in saying that the following chart in the following neighbor-
hood Uyxepx @) (%, LX) of (X(t), V(t)) on TX is used:

(C,dC): Uxen(x) (6 TX) — RY xRN

(3.16)
(x,v) = (a,q) = ((a1,92,493), (41, 42, 43)),

which also reads : (C,d,C)(x,v) = qi1eq, + Q2€q, + q3€q, + 410, + 420q, + A30q, -

Beside this, since C : B(X(t)) — RY it may be seen as N or 3 regular functions or differential 0-forms
(C1,Cq,C3), the exterior derivatives or differentials dxcl =d.Cy, dxCQ =d,Cs, dxcg = d,C3 may be
considered in every x € X. They define a frame on T;X which is denoted (dqi,dqs,dqs). (dq; is
nothing but v + q;.) In this frame any 1-form m has the following coordinates p = (p1, p2, ps) =
P1dd: + p2dqa + psdqs. Then, the following chart is built on T;A":

nDC: T;x — RY (=T;RY)

(3.17)
m  — p=(p1,P2,P3)

Another way to formulate this consists in following, in a simpler manner, the way followed in
subsection 2.7 while defining (Dx,v)II) from IL (x vy. Indeed, C.x may be defined as

. N (__ *mp N *
Cox: RN (=TURY) — X, (3.18)
in defining the Pullback C.4(p) of p in x, by setting for any v in T, X,
(Cix(P); V) = (Cix(P1, P2, P3), V) = (Cax(P1da1 + P2dqz + P3das), v)

= (p1dqy + p2dqs + p3dqs, d,C(v)) = (p1dar + p2dqs + p3das, (41,92, 43))
= (p1dq1 + p2dqs + p3dds, 410q, + 420q, + A30q,) = P141 + P24z + p3ds.  (3.19)
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Easyly, C.x is one-to-one onto T;X and T4 C = (C.yx)~!. This may of course be taken as the
defininition of T, C.

Once T} C is properly introduced, it is possible to consider that the following chart, in neighborhood
Uxesx(t) (%, TEX) of (X(t), M(t)) on T*X, is used:

(C,Q(C) : UxEB((X(t))(er];:X) - RN X RN

(x,m) —  (q,p) = ((a1,92,43), (P1, P2, P3)), (3:20)

or (C,IC)(x,m) = qieq, + qzeq, + dszeq; + P1dd1 + P2dqz + p3dqs.
Using those charts, Al(t,q), Ag(t, q) and A, (t,q) are functions on R™ which are the coordinates
of A, they are defined to be such that

(C, BC)(x, A(t, X)) = qieq, + q2€q, + Aseq, + A1 (t,q)da + As(t, q)dqz + As(t, q)dgs, (3.21)

and A is the associated vector, i.e. A = (Al, A,, Ad) Function Iu/q is the expression of L, within
the coordinate system. It is such that

LX(V) = z’q(Q)» with (q, q) = (Cv dxC)(X, V)v (3'22)

v [A
Mapping ‘B./\/l[ ] which maps one-to-one RV x RY onto RN x R¥ is the expression of BM (Al within
the coordinate systems. It is such that

(€. BL)(BMH (x,v))
CaanyAl Al L v [A], . . o
. v [A]
Mapping BM~ ~ may be expressed as
VAl
BM (q,4) = dieq, + d2eq, + dzeq,

OLy A d 0Ly A d 0Ly A d 3.24
+ qu(q)Jrq 1(q) | dai + @(qhq 2(q) | daz + T%(q)Jrq 3(q) | das. (3.24)

Matrix V(qm(%./\;l[A]) is an expression of d(qvq)(%/\;l[A]) which is an expression of d ) (BM ATy
within the coordinates. This means, differentiating (3.23), that

(dsmrtia) 1)) (€. B C)) (d(x,v> (BMA] )) = (d<q,q> (BM [A])) (dixv) (€, ), (3.25)
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<A
and matrix V(qu)(%/\/l[ ]) has the following expression:

v [A]
v(01,151)(%-/\/1 ) =

I~ 0
R
oL o oL, o oL, o
a<ﬁ+qA1> 3(%*‘1‘*1) a(aq? +qA1> oI, 0%I,, 021,
da1 9q2 9az Oq1041 092041 Oqsdd:
aiq o 0ﬁq o aiq o oy oy oy
0( ax+aAs 0( sax+aAsz 0( ax+aAs &Ly 0Ly 0Ly
Ern BT Er 0q10q2 092092 993092
af, o of, o af, o %L %I, %L
—_9q . —_q . —_9q q q q
3( o3 +‘1A3) o < 7as +qu> a( 74 +"A3> 94104; 00204 99304
dq1 0q2 oqs
Ign 0

Defining trajectories Q(t) =

0
(5

o [A v [A
wm™ g

(3.26)

CX (1)), Q(t) = (dx(C)(V(1)) and P(t) = (D) C) (M(t)) within the

coordinate systems, equation (3.13) may be translated into

oP v [A]
(t)va(t)) = d(Q(t),Q(t))(%M )(

Q
ot
9Q

(t)

- [A]
= (Yiaw.am (BM ) (5

Introducing BM! : (x,v) (x, M (v)) = (x, Ml ](X7V)) mapping TX to T*X, whose differential
d(xw)(‘BM[ ]) is represented, within the coordinate systems, by

0Q
T ot

®) + (o {q%fa, Q)}).
220) + (0. {a% 1.Qun ).

(3.27)

Ign 0
or, oL, or,
w) o) o()
N da 9q2 das dq1041  0q20dq1  0qs0d
Vaa(BM ) =1 | sa) o oy o2f, oL, 0%,
891 092 893 9q10492 092092 9q3992
[ of, ol or, 9’L, 9*L, %L,
o(ms) o(ms) o(ms) Jai0a;  Dapda;  Dasdas
LT 0qz Oas
Ign 0
=l o1 o 1] (328)
VgM Vg M
(which means this matrix is a representation of d(xyv)(%/\/l[ 1) defined as
v [
(dwm[1<x’v>>(0773cc))(d<x,v><%f‘/‘[]>) = (d<q,q>(%M )) (dxv) (€, d0)) ) (3.29)
equality (3.26) reads
0 0
(] e OA;  9A,  9A,
Viaa (BM ) = Vigq) (BM )+ [ o0 o o (3.30)
q| A2 04, A, 0
Oax 0qz  Oqs
0A; 0A; 9A;
Oqx 0qz  Oqs
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Another shape will now be given to (3.27). Since A(t, q) = Al(t, q)dq; +A, (t,q)dqs +As (t,q)dqs,

y 0A; OA 0A; OA 0A, OA
dA =22 - Z2 ) dgy Adgs + | —2 — Z=2 ) dgy Adas + 222 ) dgy A dgs,
q a2 e q2 q3 oq. 093 q1 qs3 P s q1 q2

(3.31)

which is the expression of dxA in the coordinate system associated with frame (dgs A dqs,dq; A
dqs,dq; A dqz), then the expression of differential 1-form iw(dA), which is the interior product
of dA by any vector field W, has the following expression within the coordinate system associated
with frame (dqi,dqe, dqs):

S OA;  0A,\ . y OA;  OA;\ . y
< (dA) = | — — Wy dqs — Wsdqgs) + — W, dqs — Wsd
hy (dA) <8q2 8q3> (W2 dqs 3dqs) <3q1 8q3> (W1 dqs 3dqy)
OA,  OA;\ . y OA,  0A,| . OA,  0A;| .
+ — Widqs — Wad = — Wy + — W3 | d
(8(11 5(12> ( 1ad2 ? (11) (la(ﬂm 8011] ? [3013 a011] 3) A

OAy  OAs| .« OAy  OA,|
+ | == - W + — W, | d
([3013 5'012] s la(h 8012] 1) a
A Al A A, | .
0As _OA1lyy o (0As  O0As| dqs. (3.32)
0qs 0qs

Jay 0qs

On the other hand, iwA has the following expression:
A = A (t,Q)Wi(q) + As(t, ) Wa(a) + As(t, a) Wi(a), (3.33)

and, as a consequence, if W is independent of q, the exterior derivative dx(ZWA) of iWA in x
writes, within the coordinate system,

N
OA . DAy DAz OA, . BA,..  OAs..

! Wy das + LW, + S22 W, + =Wy | dqs. (3.34)
dqs dqs dqs

Coupling (3.27) (with (3.24) or (3.30)) on the one hand, and, on the other hand, (3.32) and (3.33),
the following equality holds:

(0.50) = (o, {qagi‘(t,Q(t))}) + (Vo (BA)) (%‘fm, %‘f(t))
+ (0. {adg(dA)t.Q)}) + (0, {ad(ixA) . Q()} ), (3.35)

v

where V is a the vector field which is such that V(X(t)) = V(t) and whose coordinates d,C(V (x))
are independant of x in a neighborhood of X().
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REMARK 3.2 Notice that the above computation suppose that vector field W is independent of
q. But this computation is independent of the coordinate system within which the computation is

done. Then, vector field V that needs to be used in formula (3.35) may be any vector field which
does not depend on the space variable in a given coordinate system. |

As a consequence,

) = 6@?(@ + {0 (6. X(0) | + fadg (dA)E X)) + fadlig A)E X(0), (3.36)
= TR0+ {0 X)) + fa Lo Al X (1)

where the ”Lie Derivative” l{,A of differential 1-form A is along the vector field V which is such
that V(x) = V(¢) for any x in X.
3.2.3 Pullback, Lie Derivative and Cartan’s Formula

The Lie Derivative of a differential time independent 1-form A along a regular vector field v, is
defined in any point x of X by

(o) = 2IHATE) ) (337
(A} = LA ) 339

for every v in T, X, where g7, is the "Pullback in x” by the flow g° of the field W. To be precise,
g°® is such that for any s, g° maps one-to-one & onto X and

A Wi (%), g°0x) =x. (3.30)

For any s, its differential dg® is such that for any x in X, d, g* maps one-to-one T, X onto Tgs(x)X

(or, in other words (g°, dg®) maps one-to-one TX onto TX'). Then, for any 7 in T, ()X and any v
in T X, the following quantity may be computed:

(m, deg® (v)). (3.40)

This defines the Pullback g7, of any 7 in T, & towards T;X or

9°(x)
{95 M}W) = (g2 (M), v) = (7, dheg* () = 7(dheg*(v)). (3.41)
Moreover, since for any s, g° is a diffeomorphism with (¢%)~! = g=*, (97°,9%,--) maps one-to-one

T"X onto T'X ((97°, 95— (%, 7)) = (97°(x), 92 =2 (50) (7))
If now 7 is a k-form on T,. X the Pullback g3, of 7(%) may also be set by

{95, ) = 7 (g (), dog® (04 ), (3.42)

for any vy,...,v; in T X,
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The Lie Derivative of a differential time dependent 1-form A(t) along a regular vector field W, is
defined in any point x of X by

for every v in T X,
”Cartan’s Formula” gives the following expression of the Lie Derivative:

lwA =ty (dA) + d(twA). (3.44)

REMARK 3.3 The following formulas are vector field analogous of ” Cartan’s Formula”. For a vector
fields A and a constant vector field W, VA standing for the Jacobian Matrix of A and V(A - W)
for the gradient of A - W,

(VAW = (Vx A) x W+ V(A -W). (3.45)
In the case when W is not constant, the following holds:

V(A - W)= (VAW + (VW) A, (3.46)
(VA)W = (V x A) x W+ (VA)'W. (3.47)

Then,

(VAW + (VW)T)A = (VA — (VA) W + (VA" YW + (VW) A
=(VxRA)xW+V(A-W). (3.48)

Clearly, the left hand sides of (3.45) and (3.48) are the vector representations, by (2.9), of differential
1-form ZWA if A is the vector representation of differential 1-form A. Beside this, (V x A) x W is
the vector representation of differential 2-form ’Lw(dA) and V(A - W) is the vector representation
of differential 2-form d(’I,WA) [ |

REMARK 3.4 The Lie Derivative of any differential n-form K or any time-dependent differential
n-form K(t) on X may be defined by (3.37) and (3.43) replacing A by K. Always replacing A by K,
Cartan’s Formula (3.44) is valid for any differential n-form K, with the convention that the interior
product of any differential 0-form with any vector field is 0. ]

REMARK 3.5 The value of the Lie Derivative of a 0-form along any vector field W in any x of X
does not depend on the way W vary around x. if n > 1, the value of the Lie Derivative of a n-form
along any vector field W in any x of X depends on the way W vary around x. |

3.2.4 Another expression of the time-derivative of the momentum

Watching (3.36) reveals a kind of incoherence since it gives an expression of %71\75/[ (t), which is pointwise,

involving an operator using a vector field (defined in a neighborhood of the considered point). As a
consequence, the involved vector field has to be chosen independent of the position variable within
the coordinate system in which the computation is led. Then (3.36) cannot give rise to an intrinsic
formulation of 92 (¢), although such a kind of intrinsic formulation exists, since (3.27) may be
written in the following shape, which does not depend on coordinate systems:
X M X A% A
(220, Z80) = doxovipM™ (220, 2 0) + (0. {22 xm))}). (349
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The goal is is now to write a version of (3.36) which may give rise to an intrinsic formulation. For
this, in place of computing T A (see (3.33)), Ly A, which is an expression of Ly A, is computed.
o
LwA is defined as differential O-form on TX by

LA, x,v) = L A(Lx) = {A(t, %)} (v). (3.50)

This, expressed in coordinate systems, gives:
L4A(t @) = As(t ) + At a)d + As(t @)ds. (3:51)
Computing the exterior derivative d ( Z A) of the differential 0-form f A, which is a differential 1-form

on TX, yields, in the coordinates systems:

o 4 0A, 0A, 0A;
(iaa)(LA) = <8q1 (ha)an+ 5= *(t,q) 42 + 5 o >(t,q) q3> dqy

q2

(2

and using the operator Dq )11 : T
setting,

8A1 6A 3A
+ (a (t,a)qr + — o 2(t,q) do + —— 0% 2(t, q)q3> dqs

oA, OA,
% (t,Q) i + 2 (t,q) G2 + »— o 2(t,q) Q3> das

Jas
+ Ai(t,q)ddy + As(t,q)dds + As(t,q)dds, (3.52)

(@ q)(]RN x RY)) — T(RY), defined by (2.28) in a more general

o OA OA, OA,
(D(q,Q)H) (d(LA)) = <8q1( , Q)+ — o, ( ,q) Qe + —— o (t q) %) dqy
OA, OA, OA4
+ t + —={(t, + , d
<8q (t,q) qu e 2(t,q) 4z an( q)q ) q2

() +aA
qa) 92 093

N A, .y +5)A
3(]3 ,q)d1 an

(t,a) 013) dqsz, (3.53)

is obtained. (D(q,q)11) (d(fA)) is the expression, in the coordinate systems, of (Dx,v)IT) (d(EA))
As a consequence, for a given vector field W' defined on X, (D, v (q) 1) (d(fA)) which is an
expression of (D w(x))II) (d(ZA)) has the following shape:

(Pqwiay ™) (A(LA)) = <m(?(tvq)wl(q) + 21: (t, Q) Wa(q) +

aq (t,Q)Ws(q )) dat

oA < oA s DA "
+ <1<t, DWi(a) + 5 =(t ) Wlq) + a(ljaq)vvs(q)) dagz

v

+ (“1 (L @Wila) + 52 () Wala) + 5 2 <t,q>v“v3<q>> das, (3.54)




which is similar to the shape of (3.34), but without assuming anything like an independence of the
vector field with respect to the variable.

Computationally, in the same way as (3.36) is gotten, the following holds:

OM oM OA
S =0 + {5t X(0) }

+{q (D(X(t),V(t))H)(z(dA(f)))} +{a (Dx vy (A(LA()}, (3.55)

3.2.5 Pseudo-Force possibly associated with a differential 1-form

As a consequence of (3.36), or preferably (3.55), equation (3.9) is equivalent to

[+ %2 4 gigda+qdiga) -~ S X }v =0, (3.56)

for a vector field V such that V(X(t)) = V(t) and whose coordinates d,C(V(x)) are independant
of x in a neighborhood of X(t), or to

{P6) + 4552 () + aPoxio.vioy M (L (AW)) + a(Pexco vy M (AEAD) ~ Tt} =0,
(3.57)
for all v in TX(t)X' Defining the following 1-form F[A] by:
FIN(1) = F(1) + 0o (1) + g (g A(H) + g dlig A(), (359)

or

FIAL (1) = F(1) + 42 () + a(Doxcoyvioy ) (LAAWD)) + aDxy vy (AEA®D)).  (3.59)

ot
for every time t, (3.56) reads also
oM
{EN - Z5) X (1) jv =0, (3.60)
for all v in Ty )X

3.3 A pertinent momentum

Correlating formulas (3.58), (3.1), (3.2) and (2.11), leads to consider that linking momentum M(t)
with Position-Velocity trajectory (X(t), V(¢)) by (3.10) with the differential 1-form A which is the
Magnetic Potential, i.e. which is such that (3.1) holds, is pertinent. Indeed, under this assumption,
the Lorentz’s Force differential 1-form is given by

F(1) = a(~d(t) - S (1) ~ iy (dA) (1), (3.61)
then
FIN) = o(~da(0) + g d(ig A () (3.62)
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and then (3.60) gives

{(cada +qdiga) - e x)}v

{mﬂ—¢+4%A»—%¥qu@&y:0,(&%)

where vector field V is such that V(x) = V(t) for any x in X
{1 A(t,x)}(v) is nothing but {A(t,x)}(V(x)). Hence %A is nothing but the function or differential

0-form whose value in any x is {A(¢,x) H(V (x)).

Making the same, but using the viewpoint used for establishing formula (3.59) or (2.17), leads to
write

P(0) = - dote) - G0 - aPx. vy ([(dAW) ) (3.64)
And to define
FIM () = (~d(t) + ¢(Dixco.viop D (ALA(R))- (3.65)
Then (3.60) gives
° oM
{ = ado@.X®) + ¢Px.v oD (ALAW)) - Z=(0) pr =0, (3.66)

3.4 The Lagrange Function

Remembering that the Position-Velocity Space is nothing but TX = Uyxecx (x, T, X), setting on TX
the following function:

ATy SR
(X>V) — LA (t,X, V) = Ex(") + {qA(t>X)}(V) - qCI)(t,X) = %mlv|2 + {qA(t7X)}(V) - q(I)(t,X)
= %m|v\2 + quA(t,x) —q®(t,x),
(3.67)

called ”Lagrange Function”, the two following functions may be considered. They consist in fixing
Vv or x:

_[A]
Ly X =R
x = LAt x,v) = L (v) + {qA(t, ) }(v) — ¢®(t,x) = %m|"|2 +{qA(t,x)}(v) — q®(t, x)
= %m\v|2 + quA(t,X) —q®(t,x),
(3.68)

LA X SR

v o £, v) = L(v) + {gA( x)H) — q®(tx) = gmiv? + {(gA (LX)} (v) — g2(1,%)

= Sl 4 gLy A (%)~ g2( ).

(3.69)
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An easy computation gives

de 4(D 1) (d 1)) — gy (® (3.70)
dvi}[(A] = dvix + {qA(tv X)} = M)[(A] (V)7 (3'71)

and, as a consequence, (3.63) or (3.66) reads

dV(t)EX(t A[A
{(78 dx 1y Lv ) )}(V) =0, (3.72)
for all v in TX(t)X‘

Concerning the differential dCIA) of £IA]) noticing (as already done) that tangent space T (x v)(TY)
may be identified with T, X x T,_X, and that making such an identification leads to the fact that
any vector of T4 v, (TX) may be written as (v,v) with v € T,X and v € T X, it may set out the
following formula:

[y £} (00) = {d LI} (0) + {d Ly} o) (3.73)

3.5 The Lagrange’s formulation : Hamilton’s Least Action Principle

At this level, D’Alembert’s Principle 2.1 may be expressed in the following way: The trajectory
X(t) = X(t;x0, Vo, to) starting in xo with velocity vo at time ¢y of a particle of mass m and charge
q traveling in X endowed with differential N-form p and differential 2-form J representing charge
and current densities, is solution to (3.72) coupled with

V()= D0, Vi) =vo (3.74)

A
where £[A]] E‘[, ] and £ are defined by (3.67), (3.68) and (3.69) with A and ® solutions to (3.5)
and (3.6).
Fixing now a given time t; > tg, the position X(¢1) = X(t1; X0, Vo,to) and the velocity V(t1) =
V (t1; X0, Vo, to) of the particle at time ¢; may be considered. Any regular curve Y (¢) = Y (¢; X0, Vo, to)
with associated velocity U(t) = U(¢; %o, vo, o), i.e

U(t) = —- (1), (3.75)

such that Y (t9) = X(¢p) and Y (¢;) = X(¢1) may also be considered. It is clear that for any time ¢

oy .. .
For such a curve Y(t), with velocity U(?), in any Y (¢), an element Y(t) of Ty, X is considered

making the mapping t — (Y (t),Y(t)) to be regular from [ty,t1] to TA and satisfying Y(ty) = 0 in

Ty (10)X = Tx (4, ¥ and Y1) =0in Ty, Yt = Tx(,)X- The vector U(t), defined by
8y
Ut 3.77

is also considered.
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Computing the following integral, for Y (¢), U(¢) and Y(t) previously introduced, yields

1 ZIAT
/0{3@}(2;5% —dy )EUA]w )}(y(t))dt:

-/ oo 28 ) + {dyio Evty YY) di = / {dovoo £ G0, u)
(3.78)

which quantifies the variation of the following ” Action Functional”

/ LAY (1), U() dt, (3.79)

under a trajectory variation quantified by Y(t). Reinterpreting now equation (3.72), it may be
deduced that

1
/O { i v £ Y0, uw) dt =0 (3.80)

for any trajectory variation quantified by Y/(¢). This means that trajectory (X(t), V(t)) is a critical
point (and in fact a minimum) of the Action Functional.

This leads to the following first version of "Hamilton’s Least Action Principle”.

PRINCIPLE 3.6 The trajectory X (t;xo, Vo, to) starting in xo with velocity vo at time to of a particle
of mass m and charge q traveling in X endowed with differential N-form p and differential 2-form J
representing charge and current densities, is the minimizer of Action Functional A defined by (3.79)
(coupled with (3.74)) with LA defined by (3.67), where A and ® are solutions to (3.5) and (3.6).

4 Towards Hamiltonian Formulation

4.1 Legendre’s Transform

With every function £/A mapping TX to R, such that v — L£IA](x,v) is convex for any x in X, the
following function £9 defined on Uxex (%, T X' x TX) b

L£H(t,x,v,m) = (m,v) — LAt x V), (4.1)
may be associated. Then fixing x and m, the value VA (m) of v minimizing £ (x, v, m) may be

considered. It is characterized as the value of v minimizing £9{(x, v, m), or, since this function is
regular, by differentiating, by

Now the "Legendre’s Transform” #] of £IA] is defined as mapping T*X to R by setting
HIA (¢, x,m) = £9(t, %, M (m), m) = (m, A (m)) — LA (¢, x, VA (m)). (4.3)

4.2 Hamiltonian Function definition

The manifold T;X" in which (x,m) lays is called ”Phase Space” and the Legendre’s Transform of the
Lagrange Function is defined as the "Hamiltonian Function”. In other words, if in (4.1) and (4.3),
LA is the Lagrange Function defined by (3.67), %4 is the ” Hamiltonian Function” associated with
LA or with the question of determining the behavior of a particle of mass m and charge g traveling
in X endowed with differential N-form p and differential 2-form J representing charge and current
densities. ”Hamiltonian Function” H[A! is defined on manifold T} X
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4.3 On Hamilton’s Least Action Principle in Phase Space

Hamiltonian Function !4 is involved in a version of the Least Action Principle which cannot be
stated at this level because it needs Symplectic Geometry or Hamiltonian Mechanics material.

4.4 Hamiltonian shape of Dynamical System in Phase Space

Nevertheless, at this level, a version of Dynamical System (1.6), (1.7) or, which is equivalent, of
D’Alembert’s Principle (see its successive versions: (2.2), (3.9), (3.56), (3.66)) may be written in a
comfortable way which involves the Hamiltonian Function.

Fixing successively m or x from H[4! the following functions are defined:

72y LR
m (4.4)
x — H(x,m),
HA Tr e - R
[ (4.5)

m — H(x, m).

Concerning the differential d#A) of H!Al, since in any (x,m), tangent space T (x m)(T*X) may be
identified with T, X x T;&', and since making such an identification leads to the fact that any vector
of T x,m) (T*X) writes (v,7), v € TX and 7 € T;X, the following may be written:

—[A] _
On another hand, the differential of # may be computed using equality (4.3). In order to achieve
this computation, the following mapping BYIAL.
BsYALL Ty 5 Tw

4.7
(xm) = (x, % (m)) = (x, VA (x, m)), o

is defined for any time ¢. This definition is in the same spirit as the one of MMBT from M,[(A], see
paragraph 3.2.2. For fixed x in X, V,EA] is V,gA] seen as a function on TSX:

AL Ty 5 T

m V)LA](m), (48)

and for fixed m, VILA] is defined as:

~[A
v[]

m

X —- TX

4.9
X V,LA] (m). 9

Then, from (4.3),

_ — ~[A] _ _
{AH ) = (m 1 }0)) — (L gy 30) — (g £} (Vi } )

~[A]
= _{dX‘C(Vx[A](m)) }(V), (4.10)
the last equality being gotten from (4.2); or, in other words,

~[A] ~[A]
UMy = = Ll gy - (4.11)
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~[A] ~[A]
In this writing, dxﬁ(V[A] (m)) stands for application d, £, computed in v = VA (m). (It could be

~[A] ~[A] ~[A] ~[A]
written that d, £ (A (mm)) = (d L) veylA) (g a0 DOt d L 44 (m)) = d,( (Lyal gy )
In the same splrlt

{dnHAH () = (m, VI () + (m, {d WM H) = { iy iy LT (M} ()
= (r, YA m)), (4.12)
or, in other words,
Ao Y = (- VA (m)). (4.13)

This last equation means that d,, 7, may be represented by an element of T, X V,EA] (m), by the
help of the duality product between T;X and T X.
Using (4.11) and (4.13) in (4.6) give

Al

~[
{d(xm)’H[A } v, ) —{dxﬁ( S (1 }(V) + <7T,V,£A](m)>. (4.14)

From the equality just gotten, it is possible to deduce an expression of the system satisfied by the
Phase Space Trajectory (X(¢), M(t)). This will be done in three step. The first one consists in
noticing that from the following equality

d(vx[A](m))Ex + qA(t,x) = m, (4.15)

which is a direct rewriting of (4.2), and from (3.11) it may be deduced that for any x laying in X,
any m in T;X and any v in T, X,

MBI VA () =m and YA M (v)) = v, (4.16)

meaning that M) and VA are reverse functions one of each other.
In the second step, from (3.66) and (3.70) it may be set that, for any ¢ and any v of Tx(t))(

8M A[A]
{ —dg @ Lv } v) =0, (4.17)
or
oM ~[A]
{50 ® = dx Logmiag ) =0, (4.18)
or, using (4.11),
8M A[A}
In the third step, it needs to be noticed that
0X
S ()= V(1) = W (M), (4:20)
and then, (4.13) yields
0X A
(m Sr ) = {dhae il (). (4.21)

for any 7 in T)’E(t).)(.
(4.19), (4.21) is the standard writing of dynamical system (1.6), (1.7) in Hamiltonian shape.
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4.5 Usual Hamiltonian shape in coordinate systems of Dynamical System
in Phase Space

Let HA be the expression of HA] in coordinate systems (q,p) induced by charts C : B(xo) — RY,
d,.C and D C (see (3.14), (3.15) and (3.17)) in a neighborhood of initial position xq (X (to; X0, Vo, o) =
Xp), meaning

#A(x,m) = #4)(q, p), with (q,p) = (C,kC)(x, m). (4.22)

As soon as X(t) remains in B(xg), the coordinates (Q(t), P(¢)) of (X(t), M(t)) (i.e. (Q(t),P(t)) =
(C,D.C)(X(t),M(t))) is the solution of the translation of (4.19) and (4.21) in these coordinate
systems, i.e.

opP

E(t) = —(Vq/)f[[A])(t, Q(t)’ P(t))> (4'23)
22 1) = (AN (1, Q). (1), (4.21)
which usually reads:
oP OHIA]
E(t) = dq (ta Q(t)’P(t))v (4'25)
0Q OHA
T = S —0.Q0.PO). (426)

4.6 Expression of Hamiltonian Function I

Using (2.3) of L, (v) and the fact that & is a Riemannian Manifold, an expression of Hamiltonian
Function H may be given. Indeed from (2.3) and (3.71),

{d L2} (v) = {d, L} (v) + {gA (%)} (v) = 2L (v) + {gA(t, )} (v). (4.27)
Then from (3.68),
oL, (v) = 2L (¢, x,v) — 2{qA(t,x) }(v) + 2¢D(¢,x). (4.28)
Hence,
{d L} (v) = 2LM(t, %, v) — {qA(t,x)}(v) + 242 (t, %), (4.29)
and consequently, because of (4.2),
(m, VA (m)) = {(dygn () LA (VA (m)
=2LM(¢,x, Y (m)) — {gA(t, )} (VA (m)) + 200 (t,x).  (4.30)
Using expression (4.3) of Hamiltonian Function H and (4.30) yields
HIA (2, %, m) = 2L (¢, %, VA (m)) — {gA (1)} (3 (m)) + 20 (1, x) — £4)(t,%,134 (m))
= LAt %, VM (m)) — {gA(t, %)} 04 (m)) + 2@, x)
= L,(VA (m)) + ¢®(t,x). (4.31)
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4.7 Expression of Hamiltonian Function II

In order to give an expression of (4.31) within coordinate systems taking into account that X is flat,
Eq defined by (3.22), A defined by (3.21) and @ defined, for any time t, by

®(t,x) = (t,q), with q=Cx, (4.32)
are used. This leads to the following definition of LIA]
LAt x,v) = LBt q,q), with (q,9) = (C,d.C)(x,V) (4.33)

Expression of LA is the following:

LBt q,q) = Ly(a) + {qA(t, @) @) — ¢®(t,q) = m|q|2 +qAt,q)-q—qd(t,q),  (4.34)

y ~1A] _
(Vy LA (¢, q,q) and (Vg L) (¢, q,q) are expression of d £, and dvﬂ,[(A] within the coordinates
and

(VLM (t,a,a) = ma + gA(t, q). (4.35)
Hence, defining ]V/O[IA] as the representation of V,gA] within the coordinates, i.e.

(€, d.C) BV (x, m)) = (C,d.C)(x, VA (m)) = (C,d.C)(x, V" (x, m))

—%f»[“% p) = (@) = @V (@p). with (q.p)=(C.BC)(xm). (430)

(4.2) yields

V, (p)=m""(p—qA(t,q)), (4.37)
which is the reverse of
v [A] . . <
My (4@) = mq+qA(t,q). (4.38)
Finally, writing (4.31) within the coordinates gives
N o o[A]
HA(t, q,p) = Ly(Vy () + q®(t,x) 7\10 —gA(t,q)|” + q®(t,q). (4.39)

Part 11
Hamiltonian formulation of dynamics of a

charged particle in an electromagnetic
field

5 What does mean making ”Hamiltonian Mechanics”, or
equivalently, ”Symplectic Geometry”

Making ”Symplectic Geometry” consists in considering a manifold provided with a closed non-
degenerated differential 2-form which is called a ”Symplectic Manifold”.

If X is a manifold, its cotangent bundle T;X" is naturally provided with a closed non-degenerated
differential 2-form making of it a ”Symplectic Manifold”. Then making Hamiltonian Machanics
consits in making Symplectic Geometry on T}X.
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5.1 Symplectic structure of T"X
5.1.1 Tangent and Cotangent Bundles

In the previous part, position space X was RY with N = 3, 2 or 1. In most results and computations
previously led, the fact that X was a flat Riemannian manifold was not necessary.

From now, X is considered as a differential manifold of dimension N, in any point x of X’ lays its
tangent space T, X and stands its cotangent space T,;X. From them may be defined the ”Tangent
Bundle”

TX = Uxex(x, TX), (5.1)
and the ”Cotangent Bundle”
T*X = Uxex (x, T)X). (5.2)

TX and T*Y may be seen as differentiable manifolds of dimension 2NN using charts (C, d,C) defined
by (3.14), (3.15) and (3.16) and (C, % C) defined by (3.14), (3.17) and (3.20).

As already noticed in the case X = RV, in any (x,v) of TX, tangent space Tixv) (TX) may be
identified with T, X x T, X', meaning that any vector of T4 ) (TX) may be written as (v,v) with
v e TA and v € TX. In a similar way, in any (x,m) of T"X, tangent space T (x m) (T*X) may
be identified with T X x T X', and making this identification leads that any vector of T (x m) (T*X )
writes (v, 7) with v € TX and 7 € T X.

5.1.2 Natural differential 1-forme v on T"Y

In any (x,m) of T*X, to any (v,m) of T(xm)(TX) (= TX x T;X), it may be associated the
following number in a natural way

m(v) = (m, v). (5.3)

This defines a natural differential 1-form v on T*X whose value {y(x,m)} in any (x,m) of T"X is
given by

{(y(x;m)}(v,m) = m(v) = (m,v), (5-4)

for any (v, m) of T (x m) (T*Y).

Expression of differential 1-form ~ within the coordinate systems may be given. (It will be given is
the case N = 3.) For this, considering a given xo of X', a neighborhood B(x¢) of xo and the charts
(C,d,C) defined by (3.14) (with B(X(t)) replaced by B(xq)), (3.15) and (3.16) (with B(X(t)) replaced
by B(x¢)) and (C, D C) defined by (3.14),(with B(X(t)) replaced by B(xg)), (3.17) and (3.20) (with
B(X(t)) replaced by B(x¢)). Using this, for all x in B(x¢) and all m in T;X, (C,%C)(x,m) =
di€q, + g2€q, + d3€q; + P1dq1 + P2dq2 + p3dqs and then

(C,IxC)(x,v(x,m)) = q1€q, + g2€q, + g3€q, + P1dq1 + P2dq2 + p3dqs, (5.5)
or in short
D C(y(x,m)) = p1dq: + p2dqz + P3dgs, (5.6)
and in shorter

(BC)(v(x,m)) = p dq, (5.7)
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which is only a notation saying

{(BC) (7(x, m)) } (i oy (C, BLC)) (1)) = {(BeC) (%, m)) } (A ), (DeC)))
= {p dq}(v,7) = {p dQ}(ﬁlaql + U90q, + V38q3 + m1dq; + 7r2dq2 + 7t3dqs)
= p11 + pai2 + pavs.  (5.8)

In other words the differential 1-form % defined on (C, dC)( Uxep(xo) (%, T X)) € RY x RY and
representing vy, meaning

{7, m)} (v, 7) = {3(a, p))}(dC)v, (BC)7)), with (q,p) = (C, BC)(x, m), (5.9)
Y(a,p) =p da. (5.10)

5.1.3 Natural differential 2-forme w on T"X

In any (x,m) of T'X, to any couple ((v,7), (v, 7)) of (T (x,m) (T*X))2 (= (T X x TfX)?), it may
be associated the following number:

(V) = ' (v) = {m,v/) — (), (5.11)

This is clearly a two-form on T'(x,m) (T*X ), then formula (5.8) defines a differential 2-form w on T*X
whose value {w(x,m)} in any (x,m) of X is given by

{wx,m)}((v,7), (V7)) = n(V) —7'(v) = (m, V) — (7", v), (5.12)

for any ((v,7), (v',7")) of (T (x,m) (T*X))Q.

Expression of differential 2-form w within the coordinates will be given in the case when N = 3.
For this chart (C, % C), already used lines above, will be used. Its differential d(xm) (C, . C), which
is the induced chart on Ty m) (T*X), is also used. Using (as usual) identification Ty m) (T*X) =
(T X x TX) and the fact that diy ) (C, BeC) = (d,C, L),

dx m)(C QKC V 7T dxc )) = 1516(11 + ’;28q2 + 538%3 + 7VT1d0h + 7\i—QdQQ + %qu&
(5.13)
i) (C, BC) (V') = (d C(V 7)) = 4 0q, + HOqy + V40q, + Tidaqy + Thdqe + 7hdqs,
(5.14)

and in view of (5.12),
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with the convention that dp A dq is only a notation for what precedes.
In other words the differential 2-form & defined on Uxep(xy) (%, TX) € RY x RY and representing
w, meaning

{w(x,m)}((v, W)ﬂ(Vlvwl)) {@(a,p ( dxc 7T))7((dxC)l/l7('DxC)7T/))),
with (q,p) = (C, B C)(x,m), (5.16)
w(q,p) = dp A dq. (5.17)

This last equality is a chart-dependant computation that shows the following chart-independant
result:

w = dn. (5.18)

5.1.4 Other differential 1-forme on T*Y : ~Al

If a regular time dependant differential 1-form A(¢) is defined on X, it is not forbidden to associate,
in any (x,m) of T*X, to any (v,m) of T(x m)(T*X) (= X x T;X) the following number

(Mt x}(v) = m(v) + {gA(t,x)}(v) = (m,v) + {gA(t, %)} (v). (5.19)
This defines the differential 1-form /4] on T*X’ whose expression in the coordinate systems is
(B C) (YA (x,m)) = 5™ (q, p) = (P1 + ¢As(1))dar + (P2 + qAs(t))daz + (ps + gAs(t))day
= (p+¢A(t)) dg, (5.20)
where (C, D C)(x,m) = Q1€q, T+ q2€q, +d3€q; + p1dd: + p2dqgs + p3dqs and (C, B.C)(x, A(t,x)) =
qieq, + G2eq, + qseq, + A1(t, q)day + As(t, q)dqz + As(t, q)dgs.
5.1.5 Intrinsic expression of differential 1-forms /4! in terms of Pullback

It may be defined the following projection:
I TX - X

5.21
(om) o x, 2
the Pushforward by TT*: dy ) TT*in any (x, m) of T*X:
d(x,m)H* i T (T*X) —- TX
(5.22)
(v, ) = v,
the Pullback by II*: IT% (x y) in any (x, m) of T*X:
M oy LA = T (TX)
(5.23)
1% = IT* *(x,m) (.u“) )
with, for any (v,7) of T m) (TX) (= TX x TiX)
<H**(x,m) (u“)a (V7 7T)> = {H**(x,m) (N)}(V7 ﬂ-) = N(V) = <:u7 V>a (524)
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and the Pullback by II*

I . A(X) — A(T)

5.25
A —  II%(A), (5.25)
defined by
(I (A)) (%, m) = IT% (x,m) (A (X)) (5.26)
As a mater of fact, in view of (5.19), it may be written:
YA(t) = 7 + % (gA (1)) = I (m) + IT% (gA(¢)) (5.27)

5.1.6 On Pullback of k-forms
In the previous paragraph, Pullbacks by II* of 1-forms of T;X to 1-forms of T} (T*X ) in a given

X, m
point (x,m) of T*X and of differential 1-forms on X to differential 1—forms( on )T*X are defined.
Those Pullback definitions may be extended to k-forms for any k.

In the following T**X stands for the set of k-forms on T, X and A¥(X) for the set of differential

k-forms defined on X

Then Pullback IT% (x m in any (x,m) of T*X may be extended in the following way:
em : LY = TR (TW)

(x,m)

- (5.28)
K — It *(x,m) (H) ’

where for any ((v1,71),..., (VK k) of (T(xm) (TX))*

{H**(xﬁv)(ﬂ)}((yl,m), coes Wy ) = {01, - . vE). (5.29)

In the same way, Pullback IT%, may be extended as

I . AF(X)  — AF(T) 5 30
K = I (K) (5.30)

defined, in any (x,m) of T*X as
(IT% (K)) (%, m) = IT% (x, m) (K(x)). (5.31)

5.1.7 Expression of Pullback of 1-forms and 2-forms within coordinate systems when
N=3

Considering again a given x¢ of X, a neighborhood B(xg) of xo and charts from B(xq) to RV

with associated frames (eq,,€q,,€q,) to locate position points, (Jq,,0q,,0q,) for velocity vectors,

(dai,dqse, dqs) for differential 1-forms, (where at this level dq; is defined as the mapping v — q;

from T,X to RV, etc.), (dgs A dqi,dq; A dqa, dgs A dqs) for differential 2-forms and (dq; A dga A

dqs) for differential 3-forms; (C, B C) from Uxep(xy) (X, TiX) to RY x RY with associated frames

(eqys€qss €qsdd1, dda, dqs) to locate position-momentum in phase space, (9q, , Oqs,, Oqs, dd1, dqz, dqs)
to locate vectors of tangent space T (x m) (T*X), (dai,dqs, dqs, dpy, dps, dps) for differential 1-forms

and (dqi A daa,dqi A dqs,dqr A dp1,dg; A dpe,dq; A dps, dgs A dgs,dgs A dp1,dqgs A dpa, dgs A

dps,dqs A dp1,dqs A dpa, dgs A dps,dpi A dpa,dp1 A dps, dpa A dps) for differential 2-forms.

31



Then considering a differential 1-form A on X and its expression A;(q)dq; + As(q)dgs + As(q)dqs
within coordinate systems. Expression of II%(A) is the following : A;(q)dq; + As(q)dqs +
Ag(q)dqg + 0dp; + 0dps + Odps = Al(q)dql + Ag(q)dqg + Ag((l)d(lg. In other words, despite
A are not of the same nature, they have the same expression within coordinate systems.

This is the same for a dlfferentlal 2-form B with expression Bldqg Adqy —|—B2dq2 Adqs —|—B3dq3 Adq
and whom expression of IT% (B) is also Bldqg Adqy + Bgdqg A dqs + Bgdq3 A dqp having in mind
that there are component with worth 0 on the other frame vectors.

5.1.8 Other differential 2-forme on T*Y : w4l
In a natural way, the following differential 2-form may be defined on T*X :

Wit = dy1A = dy 4 d(11%, (gA)). (5.32)
It may be shown that differential 2-form w4 has also the following expression:

WA = dyA = dy + 117, (gdA)). (5.33)
To see this, the simplest way consists in leading a computation within coordinates. (This compu-

tation will be restricted to the case N = 3.) The point is to notice that the following computation
concerning exterior derivative of A in coordinate system induced by C

y y y oA oA
d(Ai(q)das + As(q)das + As(q)das) = ( 2(q) = o (q)> dqi A dgs
dq 0qa
OA4 OA, > (3A1 OA; >
+( =2(q) - dgs A dqsz + — das Adqp, (5.34
(G2t - G2 )das Adas + (Getta) = G o) )das A dar, (6534)

remains valid when seen within coordinates induced by (C, Tk C), with frame (eq, , €q,, €q5, 441, dq2,
dqs) on (C, D, C)T*X, with frame (dq1, dqs, dqs, dp1, dp2, dps) for differential 1-forms on (C, B, C)T*X
and with frame (dq; A dqa, dq; A dqs,dqir A dp1,da; A dpa,dqi A dps, dgs A das,dgqs A dp1,das A
dp2, dqs Adps, dqs Adp1, dqs Adpa, das Adps, dp1 Adps, dp1 Adps, dpa Adps) for differential 2-forms
on (C,D.C)T*X. In other words, the left hand side of (5.34) may be interpreted as the expression
of the exterior derivative dA of A in the coordinates induced by C or as the expression d(IT*% (A))
of IT*%(A) in the coordinates induced by (C,};C). In the same way, the right hand side of (5.34)

which is the natural expression of dA is also the expression of (II*,(dA)).

From (5.33) and expression (5.11) of w = d it may be obtained the following expression of differ-
ential 2-form w!Al:

{W[A] (Xv m)}((y, ﬂ-)v (Vl7 71-,)) = <7Tv V/> - <7T,7 V> + {H**(x,m) (quA)}((Vv ﬂ-)’ (V/7 ﬂ-/))
= (m, V) — (7', v) + {quA}(u, V'), (5.35)

where formula (5.30) was used to get expression of {II*, (x’m)(quA)}

5.2 Differential 1-form representation by vector fields

5.2.1 Representations of a 1-forms by vectors

In any (x, m) of T*X, to any vector (v,m) of T(x,m)(T*Y) (= T X x TX) it may be associated
(v, 7) and A 1(1/, m) of T, . (T*Y) with the help of w or wl). They are defined

1-forms I, (,m)

(x,m)

(m)
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{I(;lm) (v,m) (/' 7') = <I(;%m)(u, ™), (', 7")) = {w(xm)}(/, 1), (v, 7)) (5.36)
411
(1m0 7 = (I ), (0, 7)) = (@ e m)} (1), (v, 7)) (5.37)
-1

for any (v, ') of T (x,m) (T*X). Linear applications I(X m)( 7) and I([ - m) (v, ) are one-to-one from
T (x,m) (T*X ) onto T’Ex’m) (T "X ) and their respective reverse applications are denoted by I(x m) and
[A]

Tcmy:
Expressions of I(xm) and [ ([f]m) are now going to be investigated. For this, something whose spirit
was touched at the end of paragraph 4.4 will be done. Once identification of Ty, m)( ) with
T, X x T;X is done, which consists in writing any element of T (x m) (T X) as (v,m) with v € TX
and 7 € T} X, it is consistant to identify T*x,m) (T*X ) with T;X x T, X. This consists in saying that
(1, v) of Tf, . (T"X) with p € T;X and v € T X acts on any (v/,7) of T (x m)(T*X) by formula:

(,m)
{(p, )}, 7") = ((p,0), @ 7)) = {p, ") + (7', 0). (5.38)
Using expression (5.12) of {w(x, m)}((v/,7), (v, 7)), equality (5.36) yields
{I(::m)(y, o}, 1) = (7 v) — (m, V), (5.39)
and, using (5.38), it may be gotten that (u,v) is the image of (v, 7) under I(x m) if
w=—mand v=uy, (5.40)
and that (v, 7) is the image of (u,v) under I m) if
v=vand 7= —pu. (5.41)

In other words

eyt Toom) (TX)(ETA x TX) 5 Ty (TH) (=TIX x TX)

" (5.42)
(v,m) — I m)(l/, ) =(—m,v),
Iom) t Tl (TA)(FLX X LX) = Tiom) (TX) (ELA x TX) (5.43)
(,U’7U) = I(x,m) (:U’7 U) :(U7 _/U’)
Using expression (5.35) of differential 2-form w!Al, equality (5.37) yields
-1
{I([;‘]m) (v,m) (' 7)) = (x',v) = (m, V) + {quA} (v, v) (5.44)

Then having (5.38) in mind, it may be gotten that (u,v) is the image of (v, 7) under I(_xlm) if

p=—-7+ {quA}(., v)=—(m+ {quA}(V, J)) and wv=vy, (5.45)

or

v=v and w=—(p+ {quA}(v, ))- (5.46)
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In section 2.6, for any x € X and any v € T,X, it was introduced operator Zv (see (2.13)) as
mapping ’];‘:‘kX to T& 71(TX) and operator L as mapping A*(X) to Ak_l(TX).

V)

*
In a close manner, for any x € X and any v € T, X operator L,:

L, Try o Ty )
K — L,k

v

may be defined by setting {ZVH}(Vl, cooyVh—1) = {k}(W,v1,...,vk—1). Using this notation, (5.40)
reads

p=—(m+ qz,,dxA) and v =v, (5.48)
and (5.46)

v=v and m=—(u+ qZUdXA). (5.49)
Then, the following definition of I a1~ and 1Y ) are gotten:

(x,m) (x,m

I T (TA) (= TA x TX) = Ty (TH) (=TIX x TLX)

o . oo ) (5.50)
(v,m) = IR ) = (— (7 + gL, d A),v),
A * * * % *

(1) o T2 () = (0, — (gL, dA)).

5.2.2 Representations of a differential 1-form by vector fields

Denoting by V(T*X) the space of regular vector fields on T*X, an element W of this space writes
W =W(x,m) = (W(x,m), N(x, m)) where for any (x,m) of T"¥, W(x,m) € T, X and N(x,m) €

T X. Any differential 1-form 9t on T"X writes M = M(x, m) = (N(x, m), W(x, m)).
The following linear applications may be defined:

It:  V(TWw) - A(TX)

W=(W,N) — I'W) (5:52)
where (I7'(W))(x,m) = I(::m)(W(x, m),N(x,m)) = (—(N(x,m)), W(x, m)),
[A]il . * 5k
M7 v(Tw) o A(TW) 5.53)

W=(W,N) s 147 w),

where (147" (W) (x,m) = 152 (W (3, m), N(x,m)) = (~(N(x,m) + ¢ b s o) CocA). W (x, ),

(x,

I+ A(TX) = V(TW)

o (5.54)
M=(N, W) — I(M),
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whctlere (1)) (x, m) = I(x m) (N(x,m), W(x,m)) = (W(x,m), —(N(x, m)),

M. AT - V(T™X)

M=(N, W)  14m), (559)

where (7141(9)) (x,m) = 72, (N(x,m), W(x,m)) = (W(x, m), ~(N(x,m) + ¢ Ly m) G A))-

(x,m)

I(9M) and T (9M) are vector fields on T*X representing differential form 9t on T*X.

5.3 Remarks about notations
Operator ZV : T;k'X — T;k_lX was just introduced by (5.47), in any x € X and for any v € T X.

REMARK 5.1 This may also be done, in the same way, for Z(V)Tr) : T(";ckm) (T*X) — T(’;kn;)l (T*X) in
any (x,m) € T*X and for any (v,7) € T m) (TX).

REMARK 5.2 Operator ZV is linked with interior product operator vy : AF(X) — A*~1(X) defined
for any regular vector field W of V(X)) by

*

(lwK) (%) = Ly (K(x)), (5.56)

in any x of X.

In subsection 2.6, it was built operators Z)y (for any v of T X) and L. They were defined as

L: Ty o Th(Tx
Ge) (1) (5.57)
k — Lk,
with, { Lyk}((l/l,m), coesWn-1,mn-1)) = {k}(¥,11,...,vp—1) and
Lo ALY — AT
] (5.58)

K — LK,
with (LK)(x,v) = Ly (K(x)).

REMARK 5.3 generalizing (2.15) to any differential k-form K in the following way: (?,WK) (x) =
(D(wi(x)) H) (EK)7 the following formula may be deduced

* [e]

bwx) (K(x)) = (D, wxn IT) (LK). (5.59)

REMARK 5.4 Using the interior product of differential forms by vector fields on T*Y, (5.36) and
(5.37) say nothing but that the following expressions of =1 and I (71 may be given:

I7' W) = I"{(W,N) = lyw = Lw nw (5.60)

A7 W) = T (W N) = Gyl = gy noy ). (5.61)
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REMARK 5.5 With the remark just made, it can be stated that for any differential 1-form 90t on

T*X, I(OM) and IMA1(OM) satisfy

(5.62)

Z(I(m))w and M= i(I[A](m))w[A].

m

5.4 Volume forms

5.4.1

Building volume forms w"" and w[A]/\N

Remembering that w”? = w A w is defined by

20.}((1/1, 7T1), (V2,7T2)) w((V377T3), (1/4, 7T4))

—2w((v1,m1), (v3,m3)) w((v2,m2), (va,ma)) + 2w ((v1,71), (va,Ta)) w((v2, m2), (v3,73)),

wAw((v1,m1), (v2,m2), (v3,73), (V4, T4))

(5.63)

and w"? =w AwAw by

—~

—~

—~

—~
N

wAw /\w((yl,ﬂ'l), (vg,
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or by

wAwAw((v1,m), (va, m2), (v3,73), (Va,74), (V5,75), (v6, T6))

(5.65)

clearly,

(5.66)

(dv)AN: d'y/\~-~/\d77

Nw

W= wA---

N times

N times

and

(5.67)

A d’Y[A] ,

N times

= dry[A]/\...

= B A AW = (dfy[A])/\N
N times

N
SIAIN
are volume forms (i.e. non-degenerated differential 2N-forms) on T*X.

5.4.2 w™ and w[A}AN are the same volume form

. . N .
In fact, the two volume forms previously built wV and WA are the same one. The easiest way

to see this fact consists in making the computation within the coordinates system. In fact, in view

of equalities (5.18) and (5.33), it needs to be proven that

(5.68)

(qdA))"™ = (dy)"".

*
*

(d’y + (IT

This will be done is the cases N = 1,2 and 3.

When N =1, it is obvious since dA is 0.
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When N = 2,

(dvy + (I (qdA))) A (dy + (I (qd A)))

0A, 0A
—(dpl/\dQ1+dP2/\dQQ+< 2 1)d(h/\d(l2>/\

Oq1  Oqq
oA, OA
dpl/\dq1+dp2/\dqg+< 2 1>dq1/\dq2
0q: 0q2

=0+dpi1 Adqy Adpa Adgs +0+dps Adga Adp1 Adgq; +0+0+0+0+0
= 2dpy Adqy A dpy Adgs = (dpy A dgy + dpa Adaz) A (dpy A dgy + dp2 A dgs)

= (dv) A (dy). (5.69)
When N = 3,

(dy+ (T (qdA))) A (dy + (T (qdA))) A (dy + (T (¢d A)))

= (dpl Adqi +dpa Adqgz + dps A dqs

0A, 0A OA; OA 0A, 0A
( 2 _ 1>dQ1/\dQQ+( _ 2>dQ2/\dQ3+<1— B)d%/\d(h, A
da1 0qa 0qs 0qs 0qs 0q

<dP1 Adqy + dpa A dqgs + dps A dgs

oA, OA 0A; OA oA, OA
+< 2 1>dq1/\dq2+( 3—2>dq2/\dq;s+<1— B)dqs/\dqh A
8q1 aQQ an q q

0q2

(dpl Adqi +dp2 Adqa +dps A dqgs

(s (G = G e s (G- G Y
= 3 times ((6 times 0) + 0 + 0 + dp;1 A dqy A dps A dgs A dps A dgs + (3 times 0) + 0
+dp1 N dgy A dps Adgs A dps A dga + 0+ (3 times 0) + (3 x 6 times 0)) + 108 times 0
= (dp1 A day +dp2 A das Adps Adas) A (dpi Aday + dpa Adae Adps Adas) = (dvy) A (dy).
(5.70)

In fact the following formula holds true:
N
WA — (dv + (H**(qu)))AN ="V = (d’y)AN = Ndp; Adqi Adpa Adga A-+- Adpy Adgp-

(5.71)

5.5 Vector fields and differential (2N — 1)-forms

With the help of the volume form w™V, to any vector field W = (W,N) of V(T*X) it may be
associated the following differential (2N — 1)-form: %),,(w”"). The inner product in game here is
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the one in T*Y. Then, in any (x,m) of T*X the value of %, (w"V)(x, m) is given by

{iw(wAN)(Xa m)}((l/la"rl)w-~7(V2N—1;7T2N—1))
= {(wAN)(x, m)}(W(x, 1’1’1), (1/1, 7'(1), ceay (1/2]\]_1,71'2]\/‘_1))
= {(w/\N)(x, m)} ((W(x, m),N(x,m)), (v1,m1),..., (Van—1, ﬂ'gN,l)), (5.72)

for any 2N — 1 vectors (v1,m1), ..., (van—1,Tan—1) of T (s m) (T*X) (= T X x TIX).

It is interesting to compute expression of iW (w"N) in frame ((dq; Adpa Adqa A- - -Adpx Aday ), (dp1 A
dpa Adga A+ - Adpy Adan), - - -, (dp1 Adgy Adpa Adaa A+ - -Aday ), (dp1 Adgi Adpa Adga A- - -Adpn))
which a natural frame to express 2N — 1 differential forms once charts (C, . C) and (C, I C) are set.
from (5.71), it is gotten:

{(w/\N)(X, l’Il)}((VVJV)7 (1/1, 7T1), ey (V2N7177T2N,1))

dp1 (W, N) dq: (W, N) dp2(W, N) e dpn (W, N) dqn (W, N)

dp1(¥1,71) dqi (v1,71) dpa2(P1,71) dpn (P1,71) dqn (¥1,71)

=N dpy (P2, 7t2) dp1 (P2, Tt2) dpa2 (P2, Tt2) dpn (P2, 7t2) dqn (P2, 7t2)
dp1(Van—1,%an—1) dqi(Pan—1,7on—1) dp2(Pan—1,7%2n—1) ... dpn(PVan—1,%2n—1) dan(Pan—1,T2n_1)

N, W, N, Ny Wi

dpy(¥1,71) dqi (v1,71) dpa2(P1,71) dpnN (P1,71) dqn (¥1,7%1)

=N dpy (P2, 7t2) dp1 (P2, Tt2) dpa2 (P2, Tt2) dpn (P2, 7t2) dqn (P2, 7t2)
dp1(Uan—1,%an—1) dqi(Pan—1,72on—1) dp2(Pan—1,7%2n—1) ... dpn(Pan—1,%2n—1) dan(Pan—1,%2n_1)

:N{Nl(dq1/\dpg/\dqgA---AdeAqu)+W1(dp1/\dpg/\dqg/\-~-/\de/\qu)+...
+ Ny (dpi Adai Adps Adaa A -+ Aday) + Wi (dpi Adai Adps Adga A -+ Adpn))}
(71, 71), .- (Pan—1,T2n—1)). (5.73)

This computation shows that the components of iw (w in a natural frame for differential (2N —1)-
forms are the coordinates of W = (W, N) in a natural frame for vector fields.

/\N)

As a consequence, application
V(T*X) —  APNTHTW)
) (5.74)
W=(W,N) =  ,w"V)

is linear, one-to-one and onto.

5.6 Divergence of a vector field

By definition, the divergence Div(W) of any vector field W = (W, N) of V(T*X) is the function (or
differential O0-form) on T*X" which is such that

d (T (W) = Diviw) w"V. (5.75)
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Using Cartan’s Formula, which yields
by (@) =ty (d(@"V)) + d (G (")), (5.76)
and that d(w"N) =0, (5.75) also reads
Ly ("N = Div(W) V. (5.77)

Beside this, since by definition

O({92 e H(@ ) (9% (x, m)))

{by (@) (x,m)} = o (0), (5.78)

where ¢° is the flow associated with W and where ¢ is the Pullback in (x,m) by flow ¢*® .

(,m)
Then, if a vector field W = (W, N) of V(T*X) is such that Div(W) = 0, its associated flow preserves
volume form w”N.

5.7 Pure Geometrical Operators transforming differential 1-forms into
differential (2N — 1)-forms

From a differential 1-form a vector field may be defined. Then from this vector field a differential
(2N —1)-form may be defined. This process is linear and reversible: From a differential (2N —1)-form
a vector field may be defined. Then from this vector field a differential 1-form may defined.

The two evoked processes only use the natural symplectic structure of T#X. Then those opera-
tors transforming differential 1-forms into differential (2N — 1)-forms (and vice versa) are purely
geometric.

The precise definitions of those operators are now given.

. ATX) = ANTUTW) 570)
5.79

Al AT — APNTHTHY)
o ‘ (5.80)
m :(Na W) = *[A]m = Z(I[A](m))(wAN)7

where the application mapping vector fields onto differential (2N — 1)-forms is given in (5.74) and
where I and I are defined by (5.54) and (5.55). As * and *I4] are clearly one-to-one and onto,
their reverse applications may be considered, with the same notation

¥ APNTL(Tw) 0 A(TWY)
(5.81)
(G} — *G,

AL ANy 5 AT
(5.82)
S kAl
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5.8 Vector Field associated with a function

If H is a function (or a differential 0-form) defined on T*X, its exterior derivative d = dH may be
computed. This is a differential 1-form defined on T*X" with which vector fields I (d?—[) and 114 (d’H),
with I defined by (5.54) and I4] by (5.55), may be associated.

To get an expression of all above evoked object, it has to be noticed that function H may be
considered as a function of (x,m) € T*Y with x € X and m € T,;X. Then, as it was done in (4.4),
(4.5) the following functions may be considered

Hm: X =R (5.83)
x — H(t,x,m),
Hy: TEX - R (5.84)

m — H(t,x,m),

and in any (x,m) € T*X for any (v,7) € T(x"in) (TX), {d(xym)’}-[}(u,w) = {d(x’m)'H}(I/,T() =
{dme} + {dm”z':l } . In this writing, d Hm is clearly naturally an element of T;X but

dp Hyx is not naturally in Tx/'\,’ Nevertheless, it is not a big issue to consider element (d,Hy)”* of
T X defined by {d, Hx}(m) = (m, (dyHx) A’> for any 7 in T;X. Con51der1ng the 1dent1ﬁcat10n of

T/ xm) (T*X) by T;X x TX, equality {dxm)H}(u 7) = {demyH} (1, ™) = ((dinHx)? A Hom ) can

be considered. Hence, in view of (5.43) and (5.51), the values of I(dH) and I)(dH) in any (x, m)
is

I(x m)(dx m)H) = I(x m) (dxﬁmv (dmﬁx)%) = ((dmﬁx)%, —dxﬁm), (5.85)
va)H = I([;? m) dXHm? de % = drnH (dxr}r‘Zm + qZ((qu:Lx)%)dxA) (586)

when translated into the coordinate systems, those formulas read

714

(x,m

\(d,

j(qvp)(v(q p)f'q) = f(q p)(v 72’ fo’q) = (Vpﬁa *Vq#)v (5.87)

A - o o *
1L (V™) = I (Yl W H) = (% H, —(VyH + gL (g 0 A)). (5.88)

6 Hamiltonian Formulation I

A first Hamiltonian formulation of dynamics of a charge particle in an electromagnetic field consists
in noticing, that with very small accommodations formulas (3.1) - (3.8), allowing the electromagnetic
field computation, (3.67) - (3.73), defining the Lagrange Function, and (4.1) - (4.21) leading to the
particle dynamics after using the Legendre’s Transform, are valid if X is a manifold on which
forms with zero exterior derivatives are exterior derivatives. (In order to claim this in a completely
convincing way, it would be nice to define Hodge Operators € and ft, which has not been done yet.)

Then, considering, a position space X, its tangent bundle TX and its cotangent bundle T*X the
particle dynamics is given as being its initial position and momentum transported by the flow
of vector field I (d’H[A]) where Hamiltonian function H4! is defined by (4.3), via the Legendre’s
Transform, from Lagrange Function defined by (3.67).

The dynamical system for (M, X), where momentum trajectory is linked with velocity trajectory V
by the following relation V = VA (M) or M = M) (V) which is a sub-product of the Legendre’s
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Trasform, is given by equations (4.19) and (4.21), which can be rewritten as

oM ~[A]
e —dx iy Hwm » (6.1)
o = () (6.2)
or within the coordinate systems by (4.23) and (4.24) or (4.25) and (4.26).
7 Hamiltonian Formulation II
7.1 The second Hamiltonian Formulation
In this section £ stands for the Lagrange Function defined by (3.67) with A =0, i.e.
_ 1
L(t,x,v) =L (v)—q®(t,x) = §m|v\2 — q®(t,x), (7.1)

With £ are associated functions £, and Ly by (3.69) and (3.70) (of course with A = 0 again). From
L it may be built Hamiltonian Function H by the mean of Legendre’s Transform. For this, formula
(4.2), with £ replaced by £, leads to a £ function and (4.3) to the definition of Vy, i.e.

Interpreting (4.16) with A = 0 yields the fact that Vy is the reverse function of M, defined by (3.11)
with A = 0, or equivalently by (2.4). Finally, (4.3) with A =0, or

H(t,x,m) = LH(t,x, Vx(m), m) = (m, Vx(m)) — L(t, %, Vx(m)). (7.3)
defines the Hamiltonian Function associated with L.

Considering here again, a position space X, its tangent bundle TX and its cotangent bundle T*X,
it will be shown that the particle dynamics is given as being its initial position and momentum

A
transported by the flow of vector field (I[A](d'H) — qH**(a—)) where Hamiltonian function # is

ot
defined just above and pullback IT*, is defined by (5.30).

Another way to say this consists in claiming that the dynamical system for (M, X), where momentum
trajectory is linked with velocity trajectory V by the following relation V = V(M) or M = M, (V)
(which is a sub-product of the Legendre’s Transform), is given by

OM

~ * 0A
W = 7(dX,H1\~/I + qL((qu_‘[x)%)dxA) - QW(@X), (74)
0X %

7.2 Equivalence of the two Hamiltonian formulation
7.2.1 Link between the differentials of the two Hamiltonian Functions

There exists a link between Hamiltonian Functions H and HA], where H[A] is defined by (4.3) from
Lagrange Function (3.67), which is not so difficult to set out. First, it has been set out (see (3.11)):

MBI (v) = M (v) + gA(t, x). (7.6)
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Then, from (4.2), and since LA(t,x,v) = L(t,x,v) + qA(t,x), it may be deduced:
d(vx[A](m))Ex =m — gA(t,x). (7.7)
Comparing (7.7) and (7.3) simply leads to
VM (m) = Vi(m — gA(t, x)). (7.8)
Now, starting from (4.3), a direct computation gives:
HA (%, m + gA(t,x)) = (m + gA(t, x), VA (m + gA(t,x))) — LA, x, VA (m + gA(t,x)))
= (m + gA(t,x), Ve (m)) — LA (£, x, Vy (m))

= <m + qA(t, X)7 Vx(m)> - ‘C(tv X, Vx(m)) - <qA(t7X)7 Vx(m>> = <m7 Vx(m)> - ‘C(tv X, Vx(m))
=H(t,x,m), (7.9)

using at the end (7.3). Hence
H(t,x,m) = HAN (£, x, m + gA(t,x)) and HA(t,x,m) = H(t,x, m — gA(t,x)). (7.10)

From this last equality,

A H2 = d(m—qA(t,x)),}'_[xv (7.11)
—[A] ~

dme = dx,H(quA(t,x)) — Q(D(x5(d(m—qA(t,x))7:[X)%)H) (d(LA)), (7.12)

where operator Dy 11 : sz,v) (TX ) — T}X is defined by a straightforward accommodation of
(2.28) to the case when X is a regular manifold.

Equality (7.11) is obvious. Equality is a bit more complicated to get. To get it, in the case when
N = 3, something of the spirit of what was done in subsection 3.2 has to be set out. This is what
it is done now.

Bundlization BA of A is first considered:
BA: X — ™Y
x = (x,Ax)).

¥ ¥

Its expression within the coordinates BA, which is such that (C, B C)(BA(x)) = BA(q) = (q, A(q))
with q = C(x), is

BA(q,p) = qieq, + A2€q, + Azeq, + A1(q)dar + As(q)dqs + Az(q)das. (7.14)

The differential d, (BA) of BA in any x of X is represented by differential dq(%;&) in the coordinate
systems, but also by Vq(%A) which expression is:

I]RN
A,  0A; BA, g~
7107 S I GG N S (7.15)
Ay  9A; DA, VoA
oqi 092 9qs
As  HAs A4

a1 9qz  Oas



Then H and HA! are the expressions of H and HA) in the coordinates. In other words H(t,x, m) =
H(t,q,p) and HA(t,x,m) = HAl(t,q,p) where (C,}.C)(x,m) = (q,p). Writing (7.10) in the
coordinates gives:

HA(t,q,p) = H(t,q.p — ¢A(t,q)). (7.16)

N _[A] . ~
Hence, VqH[A] which represents d,H,, in the coordinates and VyH which represents dyHm and
Vp’]:l which represents d,,,Hx are linked by

Vo' A (t,q,p) = VyH(t,a.p - gA(t ) — (VLA ) (BH(E a,p — ¢A(t,q).  (7.17)
having a look on (3.54) and on computations leading to it, it is gotten that
O v 8A1 o 6A2 o 6A3 o
DiainID(d(LA)) = 5 | d
(D(a,») )( ( )) <8q11/1+8qu2+6q1w> d1
dA dA oA oA oA A
+< 1. 2 5 3v>dq2+< 1. 25 3.

U1+ + 17 U+ Uy + U3 | dqs, (7.18
TR T by "+ 9y 3) G (T19)

and then it can be deduced that (VqA)Tﬁ is (D(q,») ) (d( EA)) and then is nothing but an expression

of (D)) (d( EA)) in the coordinate systems. Hence (7.17) is nothing but an expression of (7.12)
in the coordinate systems.

7.2.2 Link between the differentials of the two momentum trajectories

Since in a given point of the phase-space trajectory (X, M), M = M%A] (V) and V = B (M) it is
deduced M = WA](&(M)). Because of (7.6), it is finally gotten: M = My (W (M)) + qA(t,X) =
M + gA(t,X) and
oM OM o o 0A
S = S P (LA} + {a P () + {aZ e}, (719)
ot ot ot
which is gotten by a computation in the coordinate systems of the same type as the one yielding
(3.55). Now using (5.59) and that

X _rAT\% _\%
V- - (dMH[;(”) - (dMHX) , (7.20)
which gives (7.5), equation (7.19) reads
OM oM |« o OA
W = ﬁ +4q [’((dMﬂx)%)dXA +4q (D(X,V)H) (d(LA)) + QE(ta X) (721)
using finally (6.1) and (7.12),
oM ~[A] -~ o
ot - Tt = — A Haganx) + Q(D(x,(dm,qA(t,x»ﬁx)%>H) (d(bAD

= —dxHyg + a0y gD (AEA))  (722)

equation for M:

B = (et + 4Dy gy D (AER)) ) — a5 0.0, (7.23)

which is (7.4).
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8 Hodge Operators € and pu

Classically, Hodge Operators € and [4 are linked with the metric on &'. Essentially they allow to
give the way electromagnetic waves, or electromagnetic energy, propagate. Hence, they are linked
with the notion of geodesic, and this last notion is induced by the metric.

Here, no metric is explicitly considered (which is not absolutely true but which makes up the
framework in which the present Part of the document is built), but the Lagrange Function

L: TX —R

(x,v) = L (v), (81)

with no force indicates a kind of propagation principle when no force acts on an object.
This is the point of view which is adopted here and that will be resumed to be.

8.1 Non degenerated scalar product on 1-forms induced by the Lagrange
Function

From Lagrange Function defined by (8.1), a Hamiltonian Function may be built. Doing this leads
to consider (4.1) with LAl replaced by L and to define of Vy by

In other words, in any x of X', there is a mapping which is defined as follows

Ve: TX o T X

m — Vy(m), (83)

Hence a non degenerated scalar product gx(.,.) on 1-forms (or on T,;X) is defined in any x of X by
1
o) = 5 (7 Vi) + (el (8.0
for any m € T; X and any p € T;X.

8.2 Metric on X induced by the Lagrange Function

from the non degenerated scalar product defined by (8.3) and (8.4) a non degenerated scalar on T, X
in any x of X may be defined by:

gl 0) = <<Mx<7r>, VM (0)) + (Mg (0), vxwx(u)») (8.5)

for any m € T;X and any p € T;X.
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