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Part I

Towards Hamiltonian description of a
charged particle

1 Departure point (in terms of scientific knowledge)

The following is taken for granted.

In a flat space filled with vacuum, the most usual way to write the Maxwell equations is:

− 1

c2
∂IE

∂t
+∇× IB = µ0JI, (1.1)

∂IB

∂t
+∇× IE = 0, (1.2)

∇ · IE =
1

ε0
ρρ, (1.3)

∇ · IB = 0. (1.4)

Equation (1.1) is called ”Ampere’s Theorem”, equation (1.2) ”Faraday’s Law” and (1.3) ”Poisson’s
Equation”.
ε0 is the ”Vacuum Electric Permittivity” and µ0 the ”Vacuum Magnetic Permeability”. They are
linked together by: µ0ε0 = 1/c2, where c is the ”Light Velocity in the Vacuum”.
System ((1.1) - (1.4)) models the time-space evolution of the ”Electric Field” IE = IE(t,x), and the
”Magnetic Field” IB = IB(t,x), seen by an observer in an inertial frame of reference. ρρ = ρρ(t,x)
stands for the ”Charge Density” filling the space and JI = JI(t,x) for the ”Current Density” (seen
in the inertial frame of reference).

If a particle of mass m, charge q and velocity (in the inertial frame of reference) v0 is situated in
position x0 at time t0, it feels the following ”Lorentz’s Force” .

IF(t0,x0,v0) = q(IE(t0,x0) + v0 × IB(t0,x0)). (1.5)

Hence applying ”Newton’s Law”, the considered particle follows a trajectory in the ”Position-Velocity
Space” (X,V) = (X(t),V(t)) = (X(t; x0,v0, t0),V(t; x0,v0, t0)) which is solution to:

∂X

∂t
= V, X(t0; x0,v0, t0) = x0, (1.6)

m
∂V

∂t
= IF(t,X,V), V(t0; x0,v0, t0) = v0, (1.7)

or, in its expanded shapes:

∂X

∂t
(t) = V(t), X(t0) = x0, (1.8)

m
∂V

∂t
(t) = IF(t,X(t),V(t)), V(t0) = v0, (1.9)

or

∂X

∂t
(t; x0,v0, t0) = V(t; x0,v0, t0), X(t0; x0,v0, t0) = x0, (1.10)

m
∂V

∂t
(t; x0,v0, t0) = IF(t,X(t; x0,v0, t0),V(t; x0,v0, t0)), V(t0; x0,v0, t0) = v0. (1.11)
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2 Status of mathematical objects in game I

Above, all the mathematical objects in game are the same. They are scalar or vector fields defined
on the position space X , which is a subset of RN or RN itself, with N = 3 (or may be 2 or 1 in
simplified models that will no be considered in the near sequel).
In view of generalizing the point of view, it is clever to question on their intrinsic status. For this,
first, a weakened version of Newton’s Law saying: ”mass times acceleration of a particle equals the
force acting on it” has to be considered.

2.1 D’Alembert’s version of Newton’s Law

This version which is sometimes called ”D’Alembert’s Principle” consists in considering in any point
x of X all the ”Virtual Displacements” or ”Admissible Displacements” which are the elements of
the tangent space TxX of X in x. Here, in any point x, TxX and X may be considered as the same
space.
It says: in any point x of X such that, for a given time s, X(s; x0,v0, t0) = x, for any Admissible
Displacement ν of TxX the ”Virtual Work” of the force IF which writes IF(t,X(s),V(s)) · ν equals

the ”Virtual Work” of the inertial force m
∂V

∂t
which writes m

∂V

∂t
(s) · ν

Defining the ”Momentum” IM = IM(t) = IM(t; x0,v0, t0) associated with the trajectory (X(t; x0,v0, t0),
V(t; x0,v0, t0)), by

IM(t; x0,v0, t0) = mV(t; x0,v0, t0) (2.1)

”D’Alembert’s Principle” writes :

Principle 2.1 In any point x of X such that, for a given time s, X(s; x0,v0, t0) = x, the following
equality holds for any ν of TxX ,

(
IF(s,X(s),V(s))− ∂IM

∂t
(s)
)
· ν = 0. (2.2)

Moreover, this equality characterizes trajectory X(.).

Remark 2.2 Defining m0 as mv0, it is relevant to use the following notation IM(t; x0,m0, t0) in
place of IM(t; x0,v0, t0). From now, this notation will be used.

2.2 Status of the force IF and of the momentum IM in a given point x of
TxX

Once (2.2) is set, the force IF(s,X(s),V(s)) and the inertial force
∂IM

∂t
(s) may be seen as objects

acting on elements in TxX via an inner product (here denoted by ”·”). Hence, intrinsically they

they can be represented by elements denoted F(s,X(s),V(s)) and
∂M̃

∂t
(s) of the cotangent space

T∗xX of X in x. This allows to avoid the inner product. Since
∂M̃

∂t
(s) is in T∗xX , M̃ has to be in a

manifold whose tangent space is T∗xX , then it is not irrelevant to consider that M̃ is also in T∗xX .

As a conclusion : In a point x of X such that, for a given time s, X(s; x0,v0, t0) = x the
force F(s,X(s; x0,v0, t0),V(s; x0,v0, t0)) and of the momentum M̃(s; x0,v0, t0) may be considered
as elements of the cotangent space T∗xX .
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Once set this conclusion, the question of the definition of the momentum is asked. It has to be
defined intrinsically and (2.1) has to be an expression of this intrinsic definition within a coordinates
system inside which the inner product has its usual expression. Hence, a mappingMx from TxX to
T∗xX has to be built.
A way to build this mapping consists, for any v in TxX , in defining Mx(v) as the unique linear
form or 1-form such as 〈Mx(v),v/|v|〉 = sup{〈Mx(v), ν〉, ν ∈ TxX} and 〈Mx(v),v〉 = m|v|2.
Another way, which is equivalent, consists in considering the differentiable function L̄x : TxX → R
defined by

L̄x(v) =
1

2
m|v|2, (2.3)

and in saying that Mx(v) is the differential of L̄x in v, i.e.

Mx(v) = dvL̄x. (2.4)

(Since L̄x : TxX → R, dvL̄x : Tv(TxX ) → R and since TxX is a vector space, Tv(TxX ) may be
identified with TxX for any v in TxX .)

Remark 2.3 Notice that defining such a one-to-one linear application Mx from TxX onto T∗xX in
any x ∈ X , in a way regular enough with respect to x and such that 〈Mx(ν), ν′〉 = 〈Mx(ν′), ν〉 for
any ν ∈ TxX and any ν′ ∈ TxX for any x ∈ X , defines a metric on X by considering 〈Mx(ν), ν′〉 as
the inner product of ν by ν′.

With this mapping at hand, the momentum M̃(t; x0,m0, t0) associated with trajectory (X(t; x0,v0, t0),
V(t; x0,v0, t0)) is defined as

M̃(t; x0,m0, t0) =MX(t;x0,v0,t0)(V(t; x0,v0, t0)). (2.5)

Remark 2.4 If in place of classical mechanics, the framework is special theory of relativity, then
(2.1) is replaced by:

IM =

(
1− |V|

2

c2

)−1/2

mV. (2.6)

Using as function L̄x : TxX 7→ R: L̄x(v) = mc2
(

1−
√

1− |v|
2

c2

)
, setting again Mx(v) = dvL̄x, the

momentum IM defined by (2.6) is associated with the following element of T∗xX : M̃ =MX(V).

Remark 2.5 Above, if, in place of choosing L̄x(v) = 1
2m|v|

2, for any φ(x) depending only on the
position variable L̄x(v) = 1

2m|v|
2 − φ(x) is chosen, dvL̄x is left unchanged and then setting again

Mx(v) = dvL̄x the definition of the momentum M̃ =MX(V) is valid again.

2.3 Status of the force F and of the momentum M̃

Firstly, reinterpreting the Lorentz’s Force expression (1.5), it may be deduced the following: From
the fields IE and IB defined on X at any time t, for any vector field W defined on X , at any time t,
a Lorentz’s Force Field is defined on X by

IF(t,x,W) = q(IE(t,x) + W × IB(t,x)), (2.7)

for any x in X .
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Remark 2.6 As W is here a vector field, it would be more correct to use an expanded notation
W(x) in expression (2.7) to give:

IF(t,x,W(x)) = q(IE(t,x) + W(x)× IB(t,x)). (2.8)

As a conclusion : The force felt by a particle of charge q being in x0 with velocity v0 is then the
value IF(t,x0,W(x0)) of IF in x0, where the force field IF(t,x,W) is computed with a vector field
W which is such that W(x0) = v0.
Secondly, in view of the conclusion of subsection 2.2, in any point x of X , IF and IM may be
represented by linear forms or 1-forms on TxX .

As a conclusion : Hence, for any time, the two vector fields IF(t, ., .) and IM(t) defined on X may
be, more relevantly, represented by two differential 1-forms on X : F(t) and M̃(t).

In the sequel, for any n ≤ N , for a time-dependent differential n-form K(t) defined on X , in any x
of X , {K(t,x)} will denote the n-form (TxX )n 7→ R which is the value of the differential n-form at
x.

2.4 Status of the electric field

In view of Lorentz’s Force expression (2.7), it seems to be reasonable to consider the force and the
Electric Field to be represented by objects of the same nature.

As a conclusion : Hence the Electric Field IE(t, .) will be represented by a differential 1-form E(t)
on X .
(As a consequence, the charge q have the status of a number or of a linear operator from TxX to
TxX in every x of X .)

2.5 Status of the magnetic field

If, in any x of X the tangent space TxX is equipped with an inner product ”·” and a cross product
”×”, any differential 2-form (possibly time-dependant) B(t) defined on X can be represented by the
vector field IB(t, .) on X whose value in any x of X is such that

{B(t,x)}(ν, ν′) = IB(t,x) · (ν × ν′) = (IB(t,x)× ν) · ν′ = (ν′ × IB(t,x)) · ν,
for any ν and ν′ in TxX . (2.9)

Moreover, for any vector field W defined on X , the interior product iWB(t) of B(t) by W and
which results as the differential 1-form whose value in any x of X is:

iWB(t,x) : ν 7→ {B(t,x)}(W(x), ν), (2.10)

for any ν in TxX , is represented by the vector field IB(t, .)×W = −W × IB(t, .) (whose value in a
point x of X is −W(x)× IB(t,x)).

As a conclusion : Using these remarks, the Magnetic Field IB(t, .) is represented by the differential
2-form B(t). B(t) and IB(t, .) are linked by (2.9).

Reinterpreting, once again, the expression of the Lorentz’s Force within the framework of differential
forms, it may be deduced the following: From the differential 1-form E(t) and the differential 2-form

6



B(t) defined on X at any time t, for any vector field W defined on X , at any time t, a Lorentz’s
Force differential 1-Form is defined on X by

F(t) = q(E(t)− iWB(t)). (2.11)

As a conclusion: The object permitting to compute, in any x0 of X , the Virtual Work of the
Lorentz’s Force for any Admissible Displacement of a particle of mass m being in x0 with velocity
v0 is then the value {F(t,x0)} where F is defined by (2.11) with a vector field W which is such that
W(x0) = v0.

2.6 On Lorentz’s Force writing

The first way to write Lorentz’s Force is the one presented via formula (2.11), lines above it and
interior product definition (2.10). There is another way to define the interior product, more compli-
cated, but useful in the sequel and involving the tangent bundle TX which is defined, at any time
t, by TX = ∪x∈X (x,TxX ).

First, having a time-dependent differential 1-form A(t) defined on X , a function or differential 0-form
◦
ιA(t) may be defined on TX by setting

◦
ιA(t,x,v) =

◦
ιvA(t,x) = {A(t,x)}(v). (2.12)

More generally, if K(t) is a time-dependent differential n-form defined on X , time-dependant dif-

ferential (n − 1)-form
◦
ιK(t) may be defined on TX . To do this, it has to be noticed that, in any

point (x,v) of TX , tangent space T(x,v)

(
TX
)

may be identified with TxX × TxX , and making

such an identification leads to the fact that any vector of T(x,v)

(
TX
)

may be written as (ν, υ) with

ν ∈ TxX and υ ∈ TxX . Then,
◦
ιK(t) is defined by setting, for any ((ν1, υ1), . . . , (νn−1, υn−1)) in(

T(x,v)

(
TX
))n−1

,

{
◦
ιK(t,x,v)}((ν1, υ1), . . . , (νn−1, υn−1)) = {

◦
ιvK(t,x)}((ν1, υ1), . . . , (νn−1, υn−1))

= {K(t,x)}(v, ν1, . . . , νn−1). (2.13)

Beside this, if K(t) is a differential n-form on TX , for any (x,v) of TX it defines a n-form on TxX
(D(x,v) Π)K

{(D(x,v) Π)K(t)}(ν1, . . . , νn) = {K(t,x,v)}((ν1, 0), . . . , (νn, 0)), (2.14)

for any (ν1, . . . , νn) in (TxX )n.

Then, the interior product iWB(t) may be defined using

iWB(t,x) =
(
D(x,W(x)) Π

)( ◦
ιB
)
. (2.15)

and Lorentz’s Force may be written as

F(t,x) = q
(
E(t)−

(
D(x,W(x)) Π

)( ◦
ιB
))
. (2.16)

The interest of this shape is that it enables to write the force F(t,X(t)) in a given point of the
trajectory X(t), as an element of T∗X(t)X (considering the Position-Velocity trajectory (X(t),V(t)))
by

F(t,X(t)) = q
(
E(X(t))−

(
D(X(t),V(t)) Π

)( ◦
ιB
))
. (2.17)

without introducing any vector field W.
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2.7 Remark on notation, Pushforward and Pullback

The goal of this subsection is to justify the notation (D(x,v) Π)K(t) used in formula (2.14) and after.
Having the tangent bundle TX , the following projection may be defined:

Π : TX → X
(x,v) 7→ x .

(2.18)

Once this is done, in any (x,v) of TX , the differential d(x,v)Π of Π is defined by

d(x,v)Π : T(x,v)

(
TX
)
→ TxX

(ν, υ) 7→ ν ,
(2.19)

since, as already noticed, T(x,v)

(
TX
)

may be identified with TxX ×TxX , meaning that any vector

of T(x,v)

(
TX
)

may be written as (ν, υ) with ν ∈ TxX and υ ∈ TxX . The following application

Π∗(x,v) : T∗xX → T∗(x,v)

(
TX
)

π 7→ Π∗(x,v)(π) ,
(2.20)

may also be defined by setting, for any (ν, υ) in T(x,v)

(
TX
)
,

〈Π∗(x,v)(π), (ν, υ)〉 = 〈π,d(x,v)Π((ν, υ))〉 = 〈π, ν〉. (2.21)

It is clear that this application is one-to-one onto its image Π∗(x,v)(T
∗
xX ). It may be noticed that

ker
(
d(x,v)Π

)
=
{

(ν, υ) ∈ T(x,v)

(
TX
)
, ν = 0

}
=
{

(0, υ), υ ∈ TxX
}
, (2.22)

Π∗(x,v)(T
∗
xX ) =

{
π ∈ T∗(x,v)

(
TX
)
,∀(ν, υ) ∈ T(x,v)

(
TX
)
, 〈π, (ν, υ)〉 = 〈π, (ν, 0)〉

}
, (2.23)

and consequently, that

π ∈ Π∗(x,v)(T
∗
xX ) if and only if 〈π, (ν, υ)〉 = 0,∀(ν, υ) ∈ ker

(
d(x,v)Π

)
, (2.24)

(ν, υ) ∈ ker
(
d(x,v)Π

)
if and only if 〈π, (ν, υ)〉 = 0,∀π ∈ Π∗(x,v)(T

∗
xX ). (2.25)

Then, as there exits a natural projection

D⊥(x,v) Π : T(x,v)

(
TX
)
→ ker

(
d(x,v)Π

)
(ν, υ) 7→ (0, υ),

(2.26)

a second one may be defined:

D(x,v) Π : T∗(x,v)

(
TX
)
→ Π∗(x,v)(T

∗
xX )

π 7→ π − π ◦ D⊥(x,v) .
(2.27)

In other words, (D(x,v) Π)(π) is defined by 〈(D(x,v) Π)(π), (ν, υ)〉 = 〈π, (ν, 0)〉 for any (ν, υ) in

T(x,v)

(
TX
)
.

Having (D(x,v) Π) on hand, it is easy to see that (D(x,v) Π) defined by (2.14), when it applies on
1-forms, is

D(x,v) Π : T∗(x,v)

(
TX
)
→ T∗xX

π 7→
(
(Π∗(x,v))

−1 ◦ (D(x,v) Π)
)
π.

(2.28)

Indication : (d(x,v)Π)(ν, υ) is called the ”Pushforward” of (ν, υ) by Π in (x,v) and Π∗(x,v)(π)
the ”Pullback” of π by Π in (x,v).
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2.8 Faraday’s Law from differential form point of view

As, for any x of X , {B(t,x)} is a 2-form on TxX ,
{∂B

∂t
(t,x)

}
is also a 2-form on TxX . Hence, if

the differential 2-form B is regular enough,
∂B

∂t
(t) is also a differential 2-form on X .

Beside this, if E is the differential 1-form represented by the vector field IE (or, in other words, if in
any x of X , the 1-form {E(t,x)} on TxX , which is equipped with an inner product ”·” and a cross
product ”×”, writes

{E(t,x)} = (IE(t,x))· , (2.29)

then the exterior derivative dE of E (which is a differential 2-form if E is regular enough) is rep-
resented by the vector field ∇× IE. (This means that, in any x of X , the following formula holds:
{dxE(t)}(ν, ν′) = (∇× IE)(t,x) · (ν × ν′) = ((∇× IE)(t,x)× ν) · ν′ for any ν and ν′ in TxX .)
As a consequence of what is just said, Faraday’s Law (1.2) may be seen as the following differential
2-form equality:

∂B

∂t
+ dE = 0. (2.30)

2.9 On Ampere’s Theorem compatibility with differential form viewpoint

As, for any x of X , {E(t,x)} is a 1-form on TxX , or equivalently is in T∗xX ,
{∂E

∂t
(t,x)

}
is also in

T∗xX . Another way to see this consists in noticing that naturally, (x, {E(t,x)}) is in the cotangent

bundle T∗X . (By the way, T∗X = ∪x∈X (x,T∗xX ) has a manifold structure.) Then
∂(x, {E(t,x)})

∂t
=(∂x

∂t
,
∂{E(t,x)}

∂t

)
=
(

0,
{∂E(t,x)

∂t

})
is in T(x,{E(t,x)})

(
T∗X

)
; and this tangent space may be iden-

tified with TxX ×T∗xX .
Beside this, if the vector field IB on X represents the differential 2-form on X , ∇ × IB cannot be
clearly interpreted in terms of differential forms.
Then interpreting Ampere’s Theorem (1.1) in the framework of the differential forms is not as easy
as for the Faraday’s Law.

Nonetheless, a vector field may represent a differential 1-form (see(2.29)) or a differential 2-form
(see(2.9)). Hence rewriting Ampere’s Theorem as

−∂(ε0IE)

∂t
+∇× (µ0

−1IB) = JI, (2.31)

and considering the new vector fields ID and IH defined from IE and IB by:

ID = ε0IE, IB = µ0IH, (2.32)

the following is reached

−∂ID

∂t
+∇× IH = JI, (2.33)

In (2.33) ID and IH are to be considered as vector fields representing respectively a differential 2-form
D and a differential 1-form H. Consistently, in (2.32) the multiplications by ε0 and µ0 have to be
considered as operators transforming vector fields representing differential 1-forms into vector fields
representing differential 2-forms.
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2.10 Status of the Current Density

Watching equation (2.33), if, as announced, ID represents a differential 2-form and IH a differential
1-form then ∇×IH represents a differential 2-form and then JI has to represent a differential 2-form.
The question is now: does this last assertion make sense? or may-be more: why does this last
assertion make sense? To help the providing of an answer to this question, it has to be noticed that
the essential role to be played by a current density is to be integrated on surfaces to give current
fluxes, and that precisely, differential 2-forms may be integrated on surfaces.
Then, a current density may be represented by a differential 2-form J on X by setting that the
current flux (associated with the considered current density) through any surface is the integral of
J over this surface.

2.11 Ampere’s Theorem from differential form point of view

Defining two ”Hodge Operators” εεε andµµ that transform differential 1-forms into differential (N−1)-
forms (differential 2-forms here since N = 3) and setting

D = εεεE, B = µµH (2.34)

Ampere’s Theorem may be interpreted in terms of differential forms exactly as Faraday’s Law may
and then reads:

−∂D

∂t
+ dH = J, (2.35)

(or

−∂(εεεE)

∂t
+ d(µµ−1B) = J ). (2.36)

2.12 Magnetic Field divergence free equation from differential form point
of view

if B is the differential 2-form represented by the vector field IB (or, in other words, if in any x of

X , the 2-form {B(t,x)} on TxX is defined by (2.9)) then the exterior derivative dB of B (which is
a differential 3-form if B is regular enough) is represented by the function ∇ · IB. This means that
in any x of X , the following formula holds:

{dxB(t)}(ν, ν′, ν′′) = (∇ · IB(t,x))((ν × ν′) · ν′′) for any ν, ν′ and ν′′ in TxX (2.37)

With this remark, equation (1.4) reads

dB = 0. (2.38)

2.13 Poisson’s Equation from differential form point of view

Rewriting equation (1.3) as

∇ · (ε0IE) = ρρ, (2.39)

introducing the charge density differential 3-form ρ, it can be read:

d(εεεE) = ρ, (2.40)

or

dD = ρ. (2.41)
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2.14 Status of the Charge Density

The role of the Charge Density is to be integrated over any tridimensional set in order to give charge
contained within this set. Precisely, differential 3-forms may be integrated over tridimensional sets.
Then, it is consistent to represent a charge density by the differential 3-form ρ.

2.15 Maxwell System in the differential forms framework

Summarizing all the above versions of the equations of the Maxwell System, it gives

−∂D

∂t
+ dH = J, (2.42)

∂B

∂t
+ dE = 0, (2.43)

dD = ρ, (2.44)

dB = 0. (2.45)

with

D = εεεE, B = µµH. (2.46)

In ((2.42)-(2.46)) E and H are 1-forms on the position space X ; B, D and J are 2-forms on X ; and;
ρ is a 3-form on X . Operators εεε and µµ are Hodge Operators mapping one-to-one the 1-forms on
X onto the 2-forms on X .

3 From Newton to Lagrange

3.1 Maxwell System with Electric and Magnetic Potentials

As on X the forms with zero exterior derivatives are the exterior derivatives, from (2.45) it can be
deduced that there exists a differential 1-form A on X such that

B = dA (3.1)

Then, inserting this in (2.43) yields d
(∂A

∂t
+ E

)
= 0. From this last equality, it can be deduced

that there exists a 0-form Φ such that
(∂A

∂t
+ E

)
= −dΦ, or

E = −dΦ− ∂A

∂t
. (3.2)

Equations (2.42) and (2.44) yield:

−
∂
(
− εεεdΦ− εεε∂A

∂t

)
∂t

+ d(µµ−1dA) = J (3.3)

d
(
− εεεdΦ− εεε∂A

∂t

)
= ρ, (3.4)
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or

∂
(
εεε∂A

∂t

)
∂t

+
∂(εεεdΦ)

∂t
+ d(µµ−1dA) = J (3.5)

−d
(
εεε∂A

∂t

)
− d(εεεdΦ) = ρ, (3.6)

(If Hodge operators εεε and µµ depend neither on time nor on position, these last equations read

εεε∂
2A

∂t2
+ εεε∂(dΦ)

∂t
+ d(µµ−1dA) = J, (3.7)

−∂(d(εεεA))

∂t
− d(εεεdΦ) = ρ. ) (3.8)

3.2 On momentum choice

3.2.1 Momentum possibly associated with a differential 1-form

Reinterpreting equality (2.2) with the differential form point of view, consists, once M̃(t; x0,m0, t0)
is defined from the Position-Velocity trajectory (X(t),V(t)) = (X(t; x0,v0, t0),V(t; x0,v0, t0)) by
(2.5), (2.4) and (2.3), in considering that the Position-Velocity trajectory (X(t),V(t)) is solution to{

(F− ∂M̃

∂t
)(t,X(t))

}
ν = 0, (3.9)

for all ν in TX(t)X , where F(t) is defined, at any time t, from the differential 1-form E(t) and the

differential 2-form B(t) by (2.11) with a vector field v which is such that v((X(t)) = V(t).
But, if a regular differential 1-form A is defined on X , it is not forbidden to associate with Position-
Velocity trajectory (X(t),V(t)) the following momentum

M(t) =M[A]
X(t)(V(t)), (3.10)

with

M[A]
x (v) =Mx(v) + {qA(t,x)} = dvL̄x + {qA(t,x)}, (3.11)

where Mx is defined by (2.4) and L̄x by (2.3).

Remark 3.1 Following remark 2.3, replacing Mx by M[A]
x may be seen as replacing the metric on

X by another operator on TxX ×TxX which is no more an inner product.

3.2.2 Time derivative of the momentum

Considering TX = ∪x∈X (x,TxX ), at any time t,

BM[A] : (x,v) 7→
(
x,M[A]

x (v)
)

=
(
x,M[A](x,v)

)
, (3.12)

may be seen as a one-to-one mapping from TX onto T∗X . (BM[A] could be called the bundlization

ofM[A]
x andM[A](x,v) is the tangent space’s componant of this bundlization in (x,v).) The value

d(x,v)M
[A] of its differential dM[A] in (x,v) maps T(x,v)

(
TX
)

onto T
(x,M[A]

x (v))

(
T∗X

)
. Tangent

space T(x,v)

(
TX
)

may be identified with TxX × TxX and T
(x,M[A]

x (v))

(
T∗X

)
with TxX × T∗xX .

Looking at (X(.),V(.)) as a trajectory on TX , it is mapped to a trajectory (X(.),M(.)) on T∗X , and
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its tangent vector
(∂X

∂t
(t),

∂V

∂t
(t)
)

in (X(t),V(t)) is mapped to the tangent vector
(∂X

∂t
(t),

∂M

∂t
(t)
)

of trajectory (X(.),M(.)) in (X(t),M(t)) by the differential d(X(t),V(t))M
[A] to which the time

partial derivative of {qA(t,x)} has to be added. In other words,(∂X

∂t
(t),

∂M

∂t
(t)
)

= d(X(t),V(t))(BM
[A])
(∂X

∂t
(t),

∂V

∂t
(t)
)

+
(

0,
{
q
∂A

∂t
(t,X(t))

})
. (3.13)

To compute d(X(t),V(t))(BM
[A]) the following chart of a neighborhood B(X(t)) of X(t) on X is used

C : B(X(t)) → RN

x 7→ q = (q1,q2,q3).
(3.14)

On RN stands the canonical frame (eq1 , eq2 , eq3). Then (3.15) may be rewritten as C(x) = q1eq1 +
q2eq2 + q3eq3 . For every x ∈ X , the following chart is used on TxX :

dxC : TxX → RN (= TqRN )

v 7→ q̇ = (q̇1, q̇2, q̇3).
(3.15)

Taking the same frame as previously but naming it (∂q1 , ∂q2 , ∂q3), (3.15) reads also dxC(v) =
q̇1∂q1 + q̇2∂q2 + q̇3∂q3

Another way to formulate this consists in saying that the following chart in the following neighbor-
hood ∪x∈B(X(t))(x,TxX ) of (X(t),V(t)) on TX is used:

(C,dxC) : ∪x∈B((X(t))(x,TxX ) → RN × RN

(x,v) 7→ (q, q̇) = ((q1,q2,q3), (q̇1, q̇2, q̇3)),
(3.16)

which also reads : (C,dxC)(x,v) = q1eq1 + q2eq2 + q3eq3 + q̇1∂q1 + q̇2∂q2 + q̇3∂q3 .

Beside this, since C : B(X(t))→ RN it may be seen as N or 3 regular functions or differential 0-forms

(C1, C2, C3), the exterior derivatives or differentials dxC1 = dxC1, dxC2 = dxC2, dxC3 = dxC3 may be
considered in every x ∈ X . They define a frame on T∗xX which is denoted (dq1, dq2, dq3). (dq1 is
nothing but v 7→ q̇1.) In this frame any 1-form m has the following coordinates p = (p1,p2,p3) =
p1dq1 + p2dq2 + p3dq3. Then, the following chart is built on T∗xX :

DxC : T∗xX → RN (= T∗qRN )

m 7→ p = (p1,p2,p3).
(3.17)

Another way to formulate this consists in following, in a simpler manner, the way followed in
subsection 2.7 while defining (D(x,v) Π) from Π∗(x,v). Indeed, C∗x may be defined as

C∗x : RN (= T∗qRN ) → T∗xX , (3.18)

in defining the Pullback C∗x(p) of p in x, by setting for any ν in TxX ,

〈C∗x(p), ν〉 = 〈C∗x(p1,p2,p3), ν〉 = 〈C∗x(p1dq1 + p2dq2 + p3dq3), ν〉

= 〈p1dq1 + p2dq2 + p3dq3,dxC(ν)〉 = 〈p1dq1 + p2dq2 + p3dq3, (q̇1, q̇2, q̇3)〉

= 〈p1dq1 + p2dq2 + p3dq3, q̇1∂q1
+ q̇2∂q2

+ q̇3∂q3
〉 = p1q̇1 + p2q̇2 + p3q̇3. (3.19)
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Easyly, C∗x is one-to-one onto T∗xX and DxC = (C∗x)−1. This may of course be taken as the
defininition of DxC.
Once DxC is properly introduced, it is possible to consider that the following chart, in neighborhood
∪x∈B(X(t))(x,T

∗
xX ) of (X(t),M(t)) on T∗X , is used:

(C,DxC) : ∪x∈B((X(t))(x,T
∗
xX ) → RN × RN

(x,m) 7→ (q,p) = ((q1,q2,q3), (p1,p2,p3)),
(3.20)

or (C,DxC)(x,m) = q1eq1
+ q2eq2

+ q3eq3
+ p1dq1 + p2dq2 + p3dq3.

Using those charts, Ă1(t,q), Ă2(t,q) and Ă3(t,q) are functions on RN which are the coordinates
of A, they are defined to be such that

(C,DxC)(x,A(t,x)) = q1eq1 + q2eq2 + q3eq3 + Ă1(t,q)dq1 + Ă2(t,q)dq2 + Ă3(t,q)dq3, (3.21)

and Ă is the associated vector, i.e. Ă = (Ă1, Ă2, Ă3). Function L̆q is the expression of L̄x within
the coordinate system. It is such that

L̄x(v) = L̆q(q̇), with (q, q̇) = (C,dxC)(x,v), (3.22)

Mapping BM̆
[A]

which maps one-to-one RN ×RN onto RN ×RN is the expression of BM[A] within
the coordinate systems. It is such that

(C,DxC)(BM[A](x,v))

= BM̆
[A]

(q, q̇) = (q,M̆
[A]

q (q̇)) = (q,M̆
[A]

(q, q̇)), with (q, q̇) = (C,dxC)(x,v). (3.23)

Mapping BM̆
[A]

may be expressed as

BM̆
[A]

(q, q̇) = q1eq1
+ q2eq2

+ q3eq3

+

(
∂L̆q
∂q̇1

(q̇) + qĂ1(q)

)
dq1 +

(
∂L̆q
∂q̇2

(q̇) + qĂ2(q)

)
dq2 +

(
∂L̆q
∂q̇3

(q̇) + qĂ3(q)

)
dq3. (3.24)

Matrix ∇(q,q̇)(BM̆
[A]

) is an expression of d(q,q̇)(BM̆
[A]

) which is an expression of d(x,v)(BM
[A])

within the coordinates. This means, differentiating (3.23), that(
d(BM[A](x,v))(C,DxC)

)(
d(x,v)(BM

[A])
)

=
(
d(q,q̇)(BM̆

[A]
)
)(
d(x,v)(C,dxC)

)
, (3.25)
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and matrix ∇(q,q̇)(BM̆
[A]

) has the following expression:

∇(q,q̇)(BM̆
[A]

) =

IRN 0

∂

(
∂L̆q
∂q̇1

+qĂ1

)
∂q1

∂

(
∂L̆q
∂q̇1

+qĂ1

)
∂q2

∂

(
∂L̆q
∂q̇1

+qĂ1

)
∂q3

∂

(
∂L̆q
∂q̇2

+qĂ2

)
∂q1

∂

(
∂L̆q
∂q̇2

+qĂ2

)
∂q2

∂

(
∂L̆q
∂q̇2

+qĂ2

)
∂q3

∂

(
∂L̆q
∂q̇3

+qĂ3

)
∂q1

∂

(
∂L̆q
∂q̇3

+qĂ3

)
∂q2

∂

(
∂L̆q
∂q̇3

+qĂ3

)
∂q3




∂2L̆q

∂q1∂q̇1

∂2L̆q

∂q2∂q̇1

∂2L̆q

∂q3∂q̇1

∂2L̆q

∂q1∂q̇2

∂2L̆q

∂q2∂q̇2

∂2L̆q

∂q3∂q̇2

∂2L̆q

∂q1∂q̇3

∂2L̆q

∂q2∂q̇3

∂2L̆q

∂q3∂q̇3




=

 IRN 0

∇qM̆
[A]

∇q̇M̆
[A]

 . (3.26)

Defining trajectories Q(t) = C(X(t)), Q̇(t) = (dX(t)C)(V(t)) and P(t) = (DX(t)C)(M(t)) within the
coordinate systems, equation (3.13) may be translated into(∂Q

∂t
(t),

∂P

∂t
(t)
)

= d(Q(t),Q̇(t))(BM̆
[A]

)
(∂Q

∂t
(t),

∂Q̇

∂t
(t)
)

+
(

0,
{
q
∂Ă

∂t
(t,Q(t))

})
,

=
(
∇(Q(t),Q̇(t))(BM̆

[A]
)
)(∂Q

∂t
(t),

∂Q̇

∂t
(t)
)

+
(

0,
{
q
∂Ă

∂t
(t,Q(t))

})
.

(3.27)

Introducing BM[ ] : (x,v) 7→
(
x,Mx(v)

)
=
(
x,M[ ](x,v)

)
mapping TX to T∗X , whose differential

d(x,v)(BM
[ ]) is represented, within the coordinate systems, by

∇(q,q̇)(BM̆
[ ]

) =



IRN 0

∂

(
∂L̆q
∂q̇1

)
∂q1

∂

(
∂L̆q
∂q̇1

)
∂q2

∂

(
∂L̆q
∂q̇1

)
∂q3

∂

(
∂L̆q
∂q̇2

)
∂q1

∂

(
∂L̆q
∂q̇2

)
∂q2

∂

(
∂L̆q
∂q̇2

)
∂q3

∂

(
∂L̆q
∂q̇3

)
∂q1

∂

(
∂L̆q
∂q̇3

)
∂q2

∂

(
∂L̆q
∂q̇3

)
∂q3




∂2L̆q

∂q1∂q̇1

∂2L̆q

∂q2∂q̇1

∂2L̆q

∂q3∂q̇1

∂2L̆q

∂q1∂q̇2

∂2L̆q

∂q2∂q̇2

∂2L̆q

∂q3∂q̇2

∂2L̆q

∂q1∂q̇3

∂2L̆q

∂q2∂q̇3

∂2L̆q

∂q3∂q̇3




=

 IRN 0

∇qM̆
[ ]
∇q̇M̆

[ ]

 , (3.28)

(which means this matrix is a representation of d(x,v)(BM
[ ]) defined as(

d(BM[ ](x,v))(C,DxC)
)(
d(x,v)(BM

[ ])
)

=
(
d(q,q̇)(BM̆

[ ]
)
)(
d(x,v)(C,dxC)

)
) (3.29)

equality (3.26) reads

∇(q,q̇)(BM̆
[A]

) = ∇(q,q̇)(BM̆
[ ]

) +



0 0

q


∂Ă1

∂q1

∂Ă1

∂q2

∂Ă1

∂q3

∂Ă2

∂q1

∂Ă2

∂q2

∂Ă2

∂q3

∂Ă3

∂q1

∂Ă3

∂q2

∂Ă3

∂q3

 0


. (3.30)
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Another shape will now be given to (3.27). Since Ă(t,q) = Ă1(t,q)dq1 +Ă2(t,q)dq2 +Ă3(t,q)dq3,

dqĂ =

(
∂Ă3

∂q2
− ∂Ă2

∂q3

)
dq2 ∧ dq3 +

(
∂Ă3

∂q1
− ∂Ă1

∂q3

)
dq1 ∧ dq3 +

(
∂Ă2

∂q1
− ∂Ă1

∂q2

)
dq1 ∧ dq2,

(3.31)

which is the expression of dxA in the coordinate system associated with frame (dq2 ∧ dq3, dq1 ∧
dq3, dq1 ∧ dq2), then the expression of differential 1-form iW(dA), which is the interior product
of dA by any vector field W, has the following expression within the coordinate system associated
with frame (dq1, dq2, dq3):

iW̆(dĂ) =

(
∂Ă3

∂q2
− ∂Ă2

∂q3

)
(W̆2 dq3 − W̆3 dq2) +

(
∂Ă3

∂q1
− ∂Ă1

∂q3

)
(W̆1 dq3 − W̆3 dq1)

+

(
∂Ă2

∂q1
− ∂Ă1

∂q2

)
(W̆1 dq2 − W̆2 dq1) =

([
∂Ă1

∂q2
− ∂Ă2

∂q1

]
W̆2 +

[
∂Ă1

∂q3
− ∂Ă3

∂q1

]
W̆3

)
dq1

+

([
∂Ă2

∂q3
− ∂Ă3

∂q2

]
W̆3 +

[
∂Ă2

∂q1
− ∂Ă1

∂q2

]
W̆1

)
dq2

+

([
∂Ă3

∂q1
− ∂Ă1

∂q3

]
W̆1 +

[
∂Ă3

∂q2
− ∂Ă2

∂q3

]
W̆2

)
dq3. (3.32)

On the other hand, iWA has the following expression:

iW̆Ă = Ă1(t,q)W̆1(q) + Ă2(t,q)W̆2(q) + Ă3(t,q)W̆3(q), (3.33)

and, as a consequence, if W̆ is independent of q, the exterior derivative dx(iWA) of iWA in x
writes, within the coordinate system,

dq(iW̆Ă) =

(
∂Ă1

∂q1
W̆1 +

∂Ă2

∂q1
W̆2 +

∂Ă3

∂q1
W̆3

)
dq1

+

(
∂Ă1

∂q2
W̆1 +

∂Ă2

∂q2
W̆2 +

∂Ă3

∂q2
W̆3

)
dq2 +

(
∂Ă1

∂q3
W̆1 +

∂Ă2

∂q3
W̆2 +

∂Ă3

∂q3
W̆3

)
dq3. (3.34)

Coupling (3.27) (with (3.24) or (3.30)) on the one hand, and, on the other hand, (3.32) and (3.33),
the following equality holds:

(
∂Q

∂t
(t),

∂P

∂t
(t)

)
=

(
0,
{
q
∂Ă

∂t
(t,Q(t))

})
+
(
∇(q,q̇)(BM̆

[ ]

q )
)(∂Q

∂t
(t),

∂Q̇

∂t
(t)

)
+
(

0,
{
q i˘̃

V(dĂ)(t,Q(t))
})

+
(

0,
{
qd(i˘̃

VĂ)(t,Q(t))
})

, (3.35)

where
˘̃
V is a the vector field which is such that

˘̃
V(X(t)) = V(t) and whose coordinates dxC(

˘̃
V(x))

are independant of x in a neighborhood of X(t).
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Remark 3.2 Notice that the above computation suppose that vector field W̆ is independent of
q. But this computation is independent of the coordinate system within which the computation is

done. Then, vector field
˘̃
V that needs to be used in formula (3.35) may be any vector field which

does not depend on the space variable in a given coordinate system.

As a consequence,

∂M

∂t
(t) =

∂M̃

∂t
(t) +

{
q
∂A

∂t
(t,X(t))

}
+ {q iṼ(dA)(t,X(t))}+ {qd(iṼA)(t,X(t))},

=
∂M̃

∂t
(t) +

{
q
∂A

∂t
(t,X(t))

}
+ {q lṼA(t,X(t))}

(3.36)

where the ”Lie Derivative” lṼA of differential 1-form A is along the vector field Ṽ which is such

that Ṽ(x) = V(t) for any x in X .

3.2.3 Pullback, Lie Derivative and Cartan’s Formula

The Lie Derivative of a differential time independent 1-form A along a regular vector field v, is
defined in any point x of X by

{lWA(x)} =
∂({gs∗x}(A(gs(x)))

∂s
(0), (3.37)

or

{lWA(x)}(ν) =
∂({A(gs(x))}({dxgs}(ν)))

∂s
(0), (3.38)

for every ν in TxX , where gs∗x is the ”Pullback in x” by the flow gs of the field W. To be precise,
gs is such that for any s, gs maps one-to-one X onto X and

∂(gs(x))

∂s
= W(gs(x)), g0(x) = x. (3.39)

For any s, its differential dgs is such that for any x in X , dxg
s maps one-to-one TxX onto Tgs(x)X

(or, in other words (gs,dgs) maps one-to-one TX onto TX ). Then, for any π in T∗gs(x)X and any ν
in TxX , the following quantity may be computed:

〈π,dxgs(ν)〉. (3.40)

This defines the Pullback gs∗x of any π in T∗gs(x)X towards T∗xX or

{gs∗x(π)}(ν) = 〈gs∗x(π), ν〉 = 〈π,dxgs(ν)〉 = π
(
dxg

s(ν)
)
. (3.41)

Moreover, since for any s, gs is a diffeomorphism with (gs)−1 = g−s, (g−s, gs∗g−s) maps one-to-one

T∗X onto T∗X ((g−s, gs∗g−s)(x, π)) = (g−s(x), gs∗g−s(x)(π)).

If now π(k) is a k-form on Tgs(x)X the Pullback gs∗x of π(k) may also be set by

{gs∗x(π(k))}(ν1, . . . , νk) = π(k)
(
dxg

s(ν1), . . . ,dxg
s(νk)

)
, (3.42)

for any ν1, . . . , νk in TxX ,
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The Lie Derivative of a differential time dependent 1-form A(t) along a regular vector field W, is
defined in any point x of X by

{lWA(t,x)} =
∂({gs∗x}(A(t, gs(x)))

∂s
(0), (3.43)

for every ν in TxX ,
”Cartan’s Formula” gives the following expression of the Lie Derivative:

lWA = iW(dA) + d(iWA). (3.44)

Remark 3.3 The following formulas are vector field analogous of ”Cartan’s Formula”. For a vector
fields IA and a constant vector field W, ∇IA standing for the Jacobian Matrix of IA and ∇(IA ·W)
for the gradient of IA ·W,

(∇IA)W = (∇× IA)×W +∇(IA ·W). (3.45)

In the case when W is not constant, the following holds:

∇(IA ·W) = ((∇IA)T )W + ((∇W)T )IA, (3.46)

(∇IA)W = (∇× IA)×W + (∇IA)TW. (3.47)

Then,

(∇IA)W + ((∇W)T )IA = (∇IA− (∇IA)T )W + ((∇IA)T )W + ((∇W)T )IA

= (∇× IA)×W +∇(IA ·W). (3.48)

Clearly, the left hand sides of (3.45) and (3.48) are the vector representations, by (2.9), of differential

1-form lWA if IA is the vector representation of differential 1-form A. Beside this, (∇× IA)×W is

the vector representation of differential 2-form iW(dA) and ∇(IA ·W) is the vector representation

of differential 2-form d(iWA).

Remark 3.4 The Lie Derivative of any differential n-form K or any time-dependent differential
n-form K(t) on X may be defined by (3.37) and (3.43) replacing A by K. Always replacing A by K,
Cartan’s Formula (3.44) is valid for any differential n-form K, with the convention that the interior
product of any differential 0-form with any vector field is 0.

Remark 3.5 The value of the Lie Derivative of a 0-form along any vector field W in any x of X
does not depend on the way W vary around x. if n ≥ 1, the value of the Lie Derivative of a n-form
along any vector field W in any x of X depends on the way W vary around x.

3.2.4 Another expression of the time-derivative of the momentum

Watching (3.36) reveals a kind of incoherence since it gives an expression of ∂M∂t (t), which is pointwise,
involving an operator using a vector field (defined in a neighborhood of the considered point). As a
consequence, the involved vector field has to be chosen independent of the position variable within
the coordinate system in which the computation is led. Then (3.36) cannot give rise to an intrinsic
formulation of ∂M

∂t (t), although such a kind of intrinsic formulation exists, since (3.27) may be
written in the following shape, which does not depend on coordinate systems:(∂X

∂t
(t),

∂M

∂t
(t)
)

= d(X(t),V(t))M
[A]
(∂X

∂t
(t),

∂V

∂t
(t)
)

+
(

0,
{
q
∂A

∂t
(t,X(t))

})
. (3.49)
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The goal is is now to write a version of (3.36) which may give rise to an intrinsic formulation. For

this, in place of computing iW̆Ă (see (3.33)),
◦
ιW̆Ă, which is an expression of

◦
ιWA, is computed.

◦
ιWA is defined as differential 0-form on TX by

◦
ιA(t,x,v) =

◦
ιvA(t,x) = {A(t,x)}(v). (3.50)

This, expressed in coordinate systems, gives:

◦
ιq̇Ă(t,q) = Ă1(t,q)q̇1 + Ă2(t,q)q̇2 + Ă3(t,q)q̇3. (3.51)

Computing the exterior derivative d(
◦
ιĂ) of the differential 0-form

◦
ιĂ, which is a differential 1-form

on TX , yields, in the coordinates systems:

d(q,q̇)(
◦
ιĂ) =

(
∂Ă1

∂q1
(t,q) q̇1 +

∂Ă2

∂q1
(t,q) q̇2 +

∂Ă3

∂q1
(t,q) q̇3

)
dq1

+

(
∂Ă1

∂q2
(t,q) q̇1 +

∂Ă2

∂q2
(t,q) q̇2 +

∂Ă3

∂q2
(t,q) q̇3

)
dq2

+

(
∂Ă1

∂q3
(t,q) q̇1 +

∂Ă2

∂q3
(t,q) q̇2 +

∂Ă3

∂q3
(t,q) q̇3

)
dq3

+ Ă1(t,q)dq̇1 + Ă2(t,q)dq̇2 + Ă3(t,q)dq̇3, (3.52)

and using the operator D(q,q̇)Π : T∗(q,q̇)(R
N × RN ))→ T∗q(RN ), defined by (2.28) in a more general

setting,

(D(q,q̇)Π)
(
d(
◦
ιĂ)

)
=

(
∂Ă1

∂q1
(t,q) q̇1 +

∂Ă2

∂q1
(t,q) q̇2 +

∂Ă3

∂q1
(t,q) q̇3

)
dq1

+

(
∂Ă1

∂q2
(t,q) q̇1 +

∂Ă2

∂q2
(t,q) q̇2 +

∂Ă3

∂q2
(t,q) q̇3

)
dq2

+

(
∂Ă1

∂q3
(t,q) q̇1 +

∂Ă2

∂q3
(t,q) q̇2 +

∂Ă3

∂q3
(t,q) q̇3

)
dq3, (3.53)

is obtained. (D(q,q̇)Π)
(
d(
◦
ιĂ)

)
is the expression, in the coordinate systems, of (D(x,v) Π)

(
d(
◦
ιA)

)
.

As a consequence, for a given vector field W defined on X , (D(q,W̆(q))Π)
(
d(
◦
ιĂ)

)
which is an

expression of (D(x,W(x))Π)
(
d(
◦
ιĂ)

)
has the following shape:

(D(q,W̆(q))Π)
(
d(
◦
ιĂ)

)
=

(
∂Ă1

∂q1
(t,q)W̆1(q) +

∂Ă2

∂q1
(t,q)W̆2(q) +

∂Ă3

∂q1
(t,q)W̆3(q)

)
dq1

+

(
∂Ă1

∂q2
(t,q)W̆1(q) +

∂Ă2

∂q2
(t,q)W̆2(q) +

∂Ă3

∂q2
(t,q)W̆3(q)

)
dq2

+

(
∂Ă1

∂q3
(t,q)W̆1(q) +

∂Ă2

∂q3
(t,q)W̆2(q) +

∂Ă3

∂q3
(t,q)W̆3(q)

)
dq3, (3.54)
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which is similar to the shape of (3.34), but without assuming anything like an independence of the
vector field with respect to the variable.

Computationally, in the same way as (3.36) is gotten, the following holds:

∂M

∂t
(t) =

∂M̃

∂t
(t) +

{
q
∂A

∂t
(t,X(t))

}
+ {q (D(X(t),V(t))Π)

( ◦
ι(dA(t))

)
}+ {q (D(X(t),V(t))Π)

(
d(
◦
ιA(t))

)
}, (3.55)

3.2.5 Pseudo-Force possibly associated with a differential 1-form

As a consequence of (3.36), or preferably (3.55), equation (3.9) is equivalent to{
(F + q

∂A

∂t
+ q iṼdA + qd(iṼA)− ∂M

∂t
)(t,X(t))

}
ν = 0, (3.56)

for a vector field
˘̃
V such that

˘̃
V(X(t)) = V(t) and whose coordinates dxC(

˘̃
V(x)) are independant

of x in a neighborhood of X(t), or to{
(F(t) + q

∂A

∂t
(t) + q(D(X(t),V(t))Π)

( ◦
ι(dA(t))

)
+ q(D(X(t),V(t))Π)

(
d(
◦
ιA(t))

)
− ∂M

∂t
(t)
}
ν = 0,

(3.57)

for all ν in TX(t)X . Defining the following 1-form F[A] by:

F[A](t) = F(t) + q
∂A

∂t
(t) + qd(iṼA(t)) + qd(iṼA(t)), (3.58)

or

F[A](t) = F(t) + q
∂A

∂t
(t) + q(D(X(t),V(t))Π)

( ◦
ι(dA(t))

)
+ q(D(X(t),V(t))Π)

(
d(
◦
ιA(t))

)
, (3.59)

for every time t, (3.56) reads also {
(F[A] − ∂M

∂t
)(t,X(t))

}
ν = 0, (3.60)

for all ν in TX(t)X .

3.3 A pertinent momentum

Correlating formulas (3.58), (3.1), (3.2) and (2.11), leads to consider that linking momentum M(t)
with Position-Velocity trajectory (X(t),V(t)) by (3.10) with the differential 1-form A which is the
Magnetic Potential, i.e. which is such that (3.1) holds, is pertinent. Indeed, under this assumption,
the Lorentz’s Force differential 1-form is given by

F(t) = q(−dΦ(t)− ∂A

∂t
(t)− iṼ(dA)(t)), (3.61)

then

F[A](t) = q(−dΦ(t) + qd(iṼA(t)), (3.62)
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and then (3.60) gives{
(−qdΦ + qd(iṼA)− ∂M

∂t
)(t,X(t))

}
ν =

{
qd
(
− Φ + (iṼA)

)
− ∂M

∂t
)(t,X(t))

}
ν = 0, (3.63)

where vector field Ṽ is such that Ṽ(x) = V(t) for any x in X .

{iṼA(t,x)}(ν) is nothing but {A(t,x)}(Ṽ(x)). Hence iṼA is nothing but the function or differential

0-form whose value in any x is {A(t,x)}(Ṽ(x)).

Making the same, but using the viewpoint used for establishing formula (3.59) or (2.17), leads to
write

F(t) = q

(
− dΦ(t)− ∂A

∂t
(t)− q(D(X(t),V(t))Π)

( ◦
ι(dA(t))

))
, (3.64)

And to define

F[A](t) = q(−dΦ(t) + q(D(X(t),V(t))Π)
(
d(
◦
ιA(t))

)
. (3.65)

Then (3.60) gives{
− qdΦ(t,X(t)) + q(D(X(t),V(t))Π)

(
d(
◦
ιA(t))

)
− ∂M

∂t
(t)
}
ν = 0, (3.66)

3.4 The Lagrange Function

Remembering that the Position-Velocity Space is nothing but TX = ∪x∈X (x,TxX ), setting on TX
the following function:

L[A] : TX → R

(x,v) 7→ L[A](t,x,v) = L̄x(v) + {qA(t,x)}(v)− qΦ(t,x) =
1

2
m|v|2 + {qA(t,x)}(v)− qΦ(t,x)

=
1

2
m|v|2 + q

◦
ιvA(t,x)− qΦ(t,x),

(3.67)

called ”Lagrange Function”, the two following functions may be considered. They consist in fixing
v or x:

_[A]

Lv : X → R

x 7→ L[A](t,x,v) = L̄x(v) + {qA(t,x)}(v)− qΦ(t,x) =
1

2
m|v|2 + {qA(t,x)}(v)− qΦ(t,x)

=
1

2
m|v|2 + q

◦
ιvA(t,x)− qΦ(t,x),

(3.68)

L̄ [A]
x : TxX → R

v 7→ L[A](t,x,v) = L̄x(v) + {qA(t,x)}(v)− qΦ(t,x) =
1

2
m|v|2 + {qA(t,x)}(v)− qΦ(t,x)

=
1

2
m|v|2 + q

◦
ιvA(t,x)− qΦ(t,x).

(3.69)
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An easy computation gives

dx
_[A]

Lv = q(D(x,v)Π)
(
d(
◦
ιA(t))

)
− qdx(Φ(t)), (3.70)

dvL̄ [A]
x = dvL̄x + {qA(t,x)} =M[A]

x (v), (3.71)

and, as a consequence, (3.63) or (3.66) reads

{(∂(dV(t)L̄
[A]
X(t))

∂t
− dX(t)

_[A]

LV(t)

)}
(ν) = 0, (3.72)

for all ν in TX(t)X .

Concerning the differential dL[A] of L[A], noticing (as already done) that tangent space T(x,v)

(
TX
)

may be identified with TxX × TxX , and that making such an identification leads to the fact that
any vector of T(x,v)

(
TX
)

may be written as (ν, υ) with ν ∈ TxX and υ ∈ TxX , it may set out the
following formula:

{
d(x,v)L[A]

}
(ν, υ) =

{
dvL̄ [A]

x

}
(υ) +

{
dx

_[A]

Lv

}
(ν). (3.73)

3.5 The Lagrange’s formulation : Hamilton’s Least Action Principle

At this level, D’Alembert’s Principle 2.1 may be expressed in the following way: The trajectory
X(t) = X(t; x0,v0, t0) starting in x0 with velocity v0 at time t0 of a particle of mass m and charge
q traveling in X endowed with differential N -form ρ and differential 2-form J representing charge
and current densities, is solution to (3.72) coupled with

V(t) =
∂X

∂t
(t), V(t0) = v0, (3.74)

where L[A],
_[A]

Lv and L̄ [A]
x are defined by (3.67), (3.68) and (3.69) with A and Φ solutions to (3.5)

and (3.6).
Fixing now a given time t1 > t0, the position X(t1) = X(t1; x0,v0, t0) and the velocity V(t1) =
V(t1; x0,v0, t0) of the particle at time t1 may be considered. Any regular curve Y(t) = Y(t; x0,v0, t0)
with associated velocity U(t) = U(t; x0,v0, t0), i.e.

U(t) =
∂Y

∂t
(t), (3.75)

such that Y(t0) = X(t0) and Y(t1) = X(t1) may also be considered. It is clear that for any time t

U(t) =
∂Y

∂t
(t) is in TY(t)X . (3.76)

For such a curve Y(t), with velocity U(t), in any Y(t), an element y(t) of TY(t)X is considered

making the mapping t 7→ (Y(t),y(t)) to be regular from [t0, t1] to TX and satisfying y(t0) = 0 in
TY(t0)X = TX(t0)X and y(t1) = 0 in TY(t1)X = TX(t1)X . The vector u(t), defined by

u(t) =
∂y
∂t

(t), (3.77)

is also considered.
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Computing the following integral, for Y(t), U(t) and y(t) previously introduced, yields∫ 1

0

{∂(dU(t)L̄
[A]
Y(t))

∂t
− dY(t)

_[A]

LU(t)

)}
(y(t)) dt =

−
∫ 1

0

{
dU(t)L̄

[A]
Y(t)

}
(u(t)) +

{
dY(t)

_[A]

LU(t)

}
(y(t)) dt = −

∫ 1

0

{
d(Y(t),U(t))L[A]

}
(y(t),u(t)) dt,

(3.78)

which quantifies the variation of the following ”Action Functional”

A((Y(.)) =

∫ 1

0

L[A](Y(t),U(t)) dt, (3.79)

under a trajectory variation quantified by y(t). Reinterpreting now equation (3.72), it may be
deduced that ∫ 1

0

{
d(X(t),V(t))L[A]

}
(y(t),u(t)) dt = 0 (3.80)

for any trajectory variation quantified by y(t). This means that trajectory (X(t),V(t)) is a critical
point (and in fact a minimum) of the Action Functional.

This leads to the following first version of ”Hamilton’s Least Action Principle”.

Principle 3.6 The trajectory X(t; x0,v0, t0) starting in x0 with velocity v0 at time t0 of a particle
of mass m and charge q traveling in X endowed with differential N -form ρ and differential 2-form J
representing charge and current densities, is the minimizer of Action Functional A defined by (3.79)
(coupled with (3.74)) with L[A] defined by (3.67), where A and Φ are solutions to (3.5) and (3.6).

4 Towards Hamiltonian Formulation

4.1 Legendre’s Transform

With every function L[A] mapping TX to R, such that v 7→ L[A](x,v) is convex for any x in X , the
following function LtoH defined on ∪x∈X (x,TxX ×T∗xX ) by

LtoH(t,x,v,m) = 〈m,v〉 − L[A](t,x,v), (4.1)

may be associated. Then fixing x and m, the value V [A]
x (m) of v minimizing LtoH(x,v,m) may be

considered. It is characterized as the value of v minimizing LtoH(x,v,m), or, since this function is
regular, by differentiating, by

d(V[A]
x (m))L̄

[A]
x = m. (4.2)

Now the ”Legendre’s Transform” H[A] of L[A] is defined as mapping T∗X to R by setting

H[A](t,x,m) = LtoH(t,x,V [A]
x (m),m) = 〈m,V [A]

x (m)〉 − L[A](t,x,V [A]
x (m)). (4.3)

4.2 Hamiltonian Function definition

The manifold T∗xX in which (x,m) lays is called ”Phase Space” and the Legendre’s Transform of the
Lagrange Function is defined as the ”Hamiltonian Function”. In other words, if in (4.1) and (4.3),
L[A] is the Lagrange Function defined by (3.67), H[A] is the ”Hamiltonian Function” associated with
L[A] or with the question of determining the behavior of a particle of mass m and charge q traveling
in X endowed with differential N -form ρ and differential 2-form J representing charge and current
densities. ”Hamiltonian Function” H[A] is defined on manifold T∗xX .
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4.3 On Hamilton’s Least Action Principle in Phase Space

Hamiltonian Function H[A] is involved in a version of the Least Action Principle which cannot be
stated at this level because it needs Symplectic Geometry or Hamiltonian Mechanics material.

4.4 Hamiltonian shape of Dynamical System in Phase Space

Nevertheless, at this level, a version of Dynamical System (1.6), (1.7) or, which is equivalent, of
D’Alembert’s Principle (see its successive versions: (2.2), (3.9), (3.56), (3.66)) may be written in a
comfortable way which involves the Hamiltonian Function.

Fixing successively m or x from H[A] the following functions are defined:

_

H
[A]

m : X → R
x 7→ H(x,m),

(4.4)

H̄[A]
x : T∗xX → R

m 7→ H(x,m).
(4.5)

Concerning the differential dH[A] of H[A], since in any (x,m), tangent space T(x,m)

(
T∗X

)
may be

identified with TxX ×T∗xX , and since making such an identification leads to the fact that any vector
of T(x,m)

(
T∗X

)
writes (ν, π), ν ∈ TxX and π ∈ T∗xX , the following may be written:{

d(x,m)H[A]
}

(ν, π) =
{
dx

_

H
[A]

m

}
(ν) +

{
dmH̄[A]

x

}
(π). (4.6)

On another hand, the differential of H may be computed using equality (4.3). In order to achieve

this computation, the following mapping BV [A]:

BV [A] : T∗X → TX

(x,m) 7→ (x,V [A]
x (m)) = (x,V [A](x,m)),

(4.7)

is defined for any time t. This definition is in the same spirit as the one of M[A] from M[A]
x , see

paragraph 3.2.2. For fixed x in X , V̄ [A]
x is V [A]

x seen as a function on T∗xX :

V̄ [A]
x : T∗xX → TxX

m 7→ V [A]
x (m),

(4.8)

and for fixed m, V [A]
m is defined as:

_

V
[A]

m : X → TxX

x 7→ V [A]
x (m).

(4.9)

Then, from (4.3),

{
dx

_

H
[A]

m

}
(ν) =

〈
m, {dx

_

V
[A]

m }(ν)
〉
−
{
dx

_[A]

L
(V[A]

x (m))

}
(ν)−

{
d(V[A]

x (m))L̄
[A]
x

}(
{dx

_

V
[A]

m }(ν)
)

= −
{
dx

_[A]

L
(V[A]

x (m))

}
(ν), (4.10)

the last equality being gotten from (4.2); or, in other words,

dx
_

H
[A]

m = −dx
_[A]

L
(V[A]

x (m))
. (4.11)
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In this writing, dx
_[A]

L
(V[A]

x (m))
stands for application dx

_[A]

Lv computed in v = V [A]
x (m). (It could be

written that dx
_[A]

L
(V[A]

x (m))
= (dx

_[A]

L )
v=V[A]

x (m)
and not dx

_[A]

L
(V[A]

x (m))
= dx(

_[A]

LV[A]
x (m)

).)

In the same spirit,{
dmH̄[A]

x

}
(π) = 〈π,V [A]

x (m)〉+
〈
m, {dmV̄

[A]
x }(π)

〉
−
{
d(V[A]

x (m))L̄
[A]
x

}(
{dmV̄

[A]
x }(π)

)
= 〈π,V [A]

x (m)〉, (4.12)

or, in other words,

dmH̄[A]
x = 〈 · ,V [A]

x (m)〉. (4.13)

This last equation means that dmHx may be represented by an element of TxX : V [A]
x (m), by the

help of the duality product between T∗xX and TxX .
Using (4.11) and (4.13) in (4.6) give{

d(x,m)H[A]
}

(ν, π) = −
{
dx

_[A]

L
(V[A]

x (m))

}
(ν) + 〈π,V [A]

x (m)〉. (4.14)

From the equality just gotten, it is possible to deduce an expression of the system satisfied by the
Phase Space Trajectory (X(t),M(t)). This will be done in three step. The first one consists in
noticing that from the following equality

d(V[A]
x (m))L̄x + qA(t,x) = m, (4.15)

which is a direct rewriting of (4.2), and from (3.11) it may be deduced that for any x laying in X ,
any m in T∗xX and any v in TxX ,

M[A]
x (V [A]

x (m)) = m and V [A]
x (M[A]

x (v)) = v, (4.16)

meaning that M[A]
x and V [A]

x are reverse functions one of each other.
In the second step, from (3.66) and (3.70) it may be set that, for any t and any ν of TX(t)X ,{∂M

∂t
(t)− dX(t)

_[A]

LV(t)

}
(ν) = 0, (4.17)

or {∂M

∂t
(t)− dX(t)

_[A]

L
(V[A]

x (M(t)))

}
(ν) = 0, (4.18)

or, using (4.11), {∂M

∂t
(t) + dX(t)

_

H
[A]

M(t)

}
(ν) = 0. (4.19)

In the third step, it needs to be noticed that

∂X

∂t
(t) = V(t) = V [A]

X(t)(M(t)), (4.20)

and then, (4.13) yields 〈
π,
∂X

∂t
(t)
〉

=
{
dM(t)H̄

[A]
X(t)

}
(π), (4.21)

for any π in T∗X(t)X .

(4.19), (4.21) is the standard writing of dynamical system (1.6), (1.7) in Hamiltonian shape.
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4.5 Usual Hamiltonian shape in coordinate systems of Dynamical System
in Phase Space

Let H̆[A] be the expression of H[A] in coordinate systems (q,p) induced by charts C : B(x0)→ RN ,
dxC andDxC (see (3.14), (3.15) and (3.17)) in a neighborhood of initial position x0 (X(t0; x0,v0, t0) =
x0), meaning

H[A](x,m) = H̆[A](q,p), with (q,p) = (C,DxC)(x,m). (4.22)

As soon as X(t) remains in B(x0), the coordinates (Q(t),P(t)) of (X(t),M(t)) (i.e. (Q(t),P(t)) =
(C,DxC)(X(t),M(t))) is the solution of the translation of (4.19) and (4.21) in these coordinate
systems, i.e.

∂P

∂t
(t) = −(∇qH̆[A])(t,Q(t),P(t)), (4.23)

∂Q

∂t
(t) = (∇pH̆[A])(t,Q(t),P(t)), (4.24)

which usually reads:

∂P

∂t
(t) = −∂H̆

[A]

∂q
(t,Q(t),P(t)), (4.25)

∂Q

∂t
(t) =

∂H̆[A]

∂p
(t,Q(t),P(t)). (4.26)

4.6 Expression of Hamiltonian Function I

Using (2.3) of L̄x(v) and the fact that X is a Riemannian Manifold, an expression of Hamiltonian
Function H may be given. Indeed from (2.3) and (3.71),{

dvL̄ [A]
x

}
(v) =

{
dvL̄x

}
(v) + {qA(t,x)}(v) = 2L̄x(v) + {qA(t,x)}(v). (4.27)

Then from (3.68),

2L̄x(v) = 2L[A](t,x,v)− 2{qA(t,x)}(v) + 2qΦ(t,x). (4.28)

Hence, {
dvL̄ [A]

x

}
(v) = 2L[A](t,x,v)− {qA(t,x)}(v) + 2qΦ(t,x), (4.29)

and consequently, because of (4.2),

〈m,V [A]
x (m)〉 =

{
(dV[A]

x (m))L̄
[A]
x

}
(V [A]

x (m))

= 2L[A](t,x,V [A]
x (m))− {qA(t,x)}(V [A]

x (m)) + 2qΦ(t,x). (4.30)

Using expression (4.3) of Hamiltonian Function H and (4.30) yields

H[A](t,x,m) = 2L[A](t,x,V [A]
x (m))− {qA(t,x)}(V [A]

x (m)) + 2qΦ(t,x)− L[A](t,x,V [A]
x (m))

= L[A](t,x,V [A]
x (m))− {qA(t,x)}(V [A]

x (m)) + 2qΦ(t,x)

= L̄x(V [A]
x (m)) + qΦ(t,x). (4.31)
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4.7 Expression of Hamiltonian Function II

In order to give an expression of (4.31) within coordinate systems taking into account that X is flat,

L̆q defined by (3.22), Ă defined by (3.21) and Φ̆ defined, for any time t, by

Φ(t,x) = Φ̆(t,q), with q = Cx, (4.32)

are used. This leads to the following definition of L̆ [A]

L[A](t,x,v) = L̆ [A](t,q, q̇), with (q, q̇) = (C,dxC)(x,v). (4.33)

Expression of L̆ [A] is the following:

L̆ [A](t,q, q̇) = L̆q(q̇) + {qĂ(t,q)}(q̇)− qΦ̆(t,q) =
1

2
m|q̇|2 + qĂ(t,q) · q̇− qΦ̆(t,q), (4.34)

(∇qL̆ [A])(t,q, q̇) and (∇q̇L̆ [A])(t,q, q̇) are expression of dx
_[A]

Lv and dvL̄
[A]
x within the coordinates

and

(∇q̇L̆ [A])(t,q, q̇) = mq̇ + qĂ(t,q). (4.35)

Hence, defining V̆
[A]

q as the representation of V [A]
x within the coordinates, i.e.

(C,dxC)(BV
[A](x,m)) = (C,dxC)(x,V

[A]
x (m)) = (C,dxC)(x,V

[A](x,m))

= BV̆
[A]

(q,p) = (q, V̆
[A]

q (p)) = (q, V̆
[A]

(q,p)), with (q,p) = (C,DxC)(x,m), (4.36)

(4.2) yields

V̆
[A]

q (p) = m−1
(
p− qĂ(t,q)

)
, (4.37)

which is the reverse of

M̆
[A]

q (q̇) = mq̇ + qĂ(t,q). (4.38)

Finally, writing (4.31) within the coordinates gives

H̆[A](t,q,p) = L̆q(V̆
[A]

q (p)) + qΦ(t,x) =
1

2m

∣∣p− qĂ(t,q)
∣∣2 + qΦ(t,q). (4.39)

Part II

Hamiltonian formulation of dynamics of a
charged particle in an electromagnetic
field

5 What does mean making ”Hamiltonian Mechanics”, or
equivalently, ”Symplectic Geometry”

Making ”Symplectic Geometry” consists in considering a manifold provided with a closed non-
degenerated differential 2-form which is called a ”Symplectic Manifold”.
If X is a manifold, its cotangent bundle T∗xX is naturally provided with a closed non-degenerated
differential 2-form making of it a ”Symplectic Manifold”. Then making Hamiltonian Machanics
consits in making Symplectic Geometry on T∗xX .
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5.1 Symplectic structure of T∗X
5.1.1 Tangent and Cotangent Bundles

In the previous part, position space X was RN with N = 3, 2 or 1. In most results and computations
previously led, the fact that X was a flat Riemannian manifold was not necessary.
From now, X is considered as a differential manifold of dimension N , in any point x of X lays its
tangent space TxX and stands its cotangent space T∗xX . From them may be defined the ”Tangent
Bundle”

TX = ∪x∈X (x,TxX ), (5.1)

and the ”Cotangent Bundle”

T∗X = ∪x∈X (x,T∗xX ). (5.2)

TX and T∗X may be seen as differentiable manifolds of dimension 2N using charts (C,dxC) defined
by (3.14), (3.15) and (3.16) and (C,DxC) defined by (3.14), (3.17) and (3.20).

As already noticed in the case X = RN , in any (x,v) of TX , tangent space T(x,v)

(
TX
)

may be

identified with TxX × TxX , meaning that any vector of T(x,v)

(
TX
)

may be written as (ν, υ) with

ν ∈ TxX and υ ∈ TxX . In a similar way, in any (x,m) of T∗X , tangent space T(x,m)

(
T∗X

)
may

be identified with TxX ×T∗xX , and making this identification leads that any vector of T(x,m)

(
T∗X

)
writes (ν, π) with ν ∈ TxX and π ∈ T∗xX .

5.1.2 Natural differential 1-forme γ on T∗X

In any (x,m) of T∗X , to any (ν, π) of T(x,m)

(
T∗X

)
(= TxX × T∗xX ), it may be associated the

following number in a natural way

m(ν) = 〈m, ν〉. (5.3)

This defines a natural differential 1-form γ on T∗X whose value {γ(x,m)} in any (x,m) of T∗X is
given by

{γ(x,m)}(ν, π) = m(ν) = 〈m, ν〉, (5.4)

for any (ν, π) of T(x,m)

(
T∗X

)
.

Expression of differential 1-form γ within the coordinate systems may be given. (It will be given is
the case N = 3.) For this, considering a given x0 of X , a neighborhood B(x0) of x0 and the charts
(C,dxC) defined by (3.14) (with B(X(t)) replaced by B(x0)), (3.15) and (3.16) (with B(X(t)) replaced
by B(x0)) and (C,DxC) defined by (3.14),(with B(X(t)) replaced by B(x0)), (3.17) and (3.20) (with
B(X(t)) replaced by B(x0)). Using this, for all x in B(x0) and all m in T∗xX , (C,DxC)(x,m) =
q1eq1 + q2eq2 + q3eq3 + p1dq1 + p2dq2 + p3dq3 and then

(C,DxC)(x, γ(x,m)) = q1eq1 + q2eq2 + q3eq3 + p1dq1 + p2dq2 + p3dq3, (5.5)

or in short

DxC(γ(x,m)) = p1dq1 + p2dq2 + p3dq3, (5.6)

and in shorter

(DxC)(γ(x,m)) = p dq, (5.7)
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which is only a notation saying{
(DxC)(γ(x,m))

}
((d(x,m)(C,DxC))(ν, π)) =

{
(DxC)(γ(x,m))

}
((dxC)ν, (DxC)π))

=
{
p dq}(ν̆, π̆) =

{
p dq}(ν̆1∂q1 + ν̆2∂q2 + ν̆3∂q3 + π̆1dq1 + π̆2dq2 + π̆3dq3)

= p1ν̆1 + p2ν̆2 + p3ν̆3. (5.8)

In other words the differential 1-form γ̆ defined on (C,dxC)
(
∪x∈B(x0) (x,TxX )

)
⊂ RN × RN and

representing γ, meaning

{γ(x,m)}(ν, π) = {γ̆(q,p))}((dxC)ν, (DxC)π)), with (q,p) = (C,DxC)(x,m), (5.9)

is

γ̆(q,p) = p dq. (5.10)

5.1.3 Natural differential 2-forme ω on T∗X

In any (x,m) of T∗X , to any couple ((ν, π), (ν′, π′)) of (T(x,m)

(
T∗X

)
)2 (= (TxX ×T∗xX )2), it may

be associated the following number:

π(ν′)− π′(ν) = 〈π, ν′〉 − 〈π′, ν〉, (5.11)

This is clearly a two-form on T(x,m)

(
T∗X

)
, then formula (5.8) defines a differential 2-form ω on T∗X

whose value {ω(x,m)} in any (x,m) of X is given by

{ω(x,m)}((ν, π), (ν′, π′)) = π(ν′)− π′(ν) = 〈π, ν′〉 − 〈π′, ν〉, (5.12)

for any ((ν, π), (ν′, π′)) of (T(x,m)

(
T∗X

)
)2.

Expression of differential 2-form ω within the coordinates will be given in the case when N = 3.
For this chart (C,DxC), already used lines above, will be used. Its differential d(x,m)(C,DxC), which

is the induced chart on T(x,m)

(
T∗X

)
, is also used. Using (as usual) identification T(x,m)

(
T∗X

)
=

(TxX ×T∗xX ) and the fact that d(x,m)(C,DxC) = (dxC,DxC),

d(x,m)(C,DxC)(ν, π) = (dxC(ν),DxC(π)) = ν̆1∂q1
+ ν̆2∂q2

+ ν̆3∂q3
+ π̆1dq1 + π̆2dq2 + π̆3dq3,

(5.13)

d(x,m)(C,DxC)(ν′, π′) = (dxC(ν′),DxC(π′)) = ν̆′1∂q1
+ ν̆′2∂q2

+ ν̆′3∂q3
+ π̆′1dq1 + π̆′2dq2 + π̆′3dq3,

(5.14)

and in view of (5.12),

{ω(x,m)}((ν, π), (ν′, π′)) = π̆1ν̆
′
1 + π̆2ν̆

′
2 + π̆3ν̆

′
3 − π̆′1ν̆1 − π̆′2ν̆2 − π̆′3ν̆3

=

∣∣∣∣∣∣π̆1 ν̆1

π̆′1 ν̆′1

∣∣∣∣∣∣+

∣∣∣∣∣∣π̆2 ν̆2

π̆′2 ν̆′2

∣∣∣∣∣∣+

∣∣∣∣∣∣π̆3 ν̆3

π̆′3 ν̆′3

∣∣∣∣∣∣
=

∣∣∣∣∣∣ dp1((ν̆, π̆)) dq1((ν̆, π̆))

dp1((ν̆′, π̆′)) dq1((ν̆′, π̆′))

∣∣∣∣∣∣+

∣∣∣∣∣∣ dp2((ν̆, π̆)) dq2((ν̆, π̆))

dp2((ν̆′, π̆′)) dq2((ν̆′, π̆′))

∣∣∣∣∣∣+

∣∣∣∣∣∣ dp3((ν̆, π̆)) dq3((ν̆, π̆))

dp3((ν̆′, π̆′)) dq3((ν̆′, π̆′))

∣∣∣∣∣∣
= dp1 ∧ dq1((ν̆, π̆), ((ν̆′, π̆′)) + dp2 ∧ dq2((ν̆, π̆), (ν̆′, π̆′)) + dp3 ∧ dq3((ν̆, π̆), (ν̆′, π̆′))

= dp ∧ dq((ν̆, π̆), (ν̆′, π̆′)), (5.15)
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with the convention that dp ∧ dq is only a notation for what precedes.
In other words the differential 2-form ω̆ defined on ∪x∈B(x0)(x,TxX ) ⊂ RN × RN and representing
ω, meaning

{ω(x,m)}((ν, π), (ν′, π′)) = {ω̆(q,p))}
(
((dxC)ν, (DxC)π)), ((dxC)ν′, (DxC)π′))

)
,

with (q,p) = (C,DxC)(x,m), (5.16)

is

ω̆(q,p) = dp ∧ dq. (5.17)

This last equality is a chart-dependant computation that shows the following chart-independant
result:

ω = dγ. (5.18)

5.1.4 Other differential 1-forme on T∗X : γ[A]

If a regular time dependant differential 1-form A(t) is defined on X , it is not forbidden to associate,
in any (x,m) of T∗X , to any (ν, π) of T(x,m)

(
T∗X

)
(= TxX ×T∗xX ) the following number

{γ[A](t,x}(ν) = m(ν) + {qA(t,x)}(ν) = 〈m, ν〉+ {qA(t,x)}(ν). (5.19)

This defines the differential 1-form γ[A] on T∗X whose expression in the coordinate systems is

(DxC)(γ[A](x,m)) = γ̆[A](q,p) = (p1 + qĂ1(t))dq1 + (p2 + qĂ2(t))dq2 + (p3 + qĂ3(t))dq3

= (p + qĂ(t)) dq, (5.20)

where (C,DxC)(x,m) = q1eq1 + q2eq2 + q3eq3 + p1dq1 + p2dq2 + p3dq3 and (C,DxC)(x,A(t,x)) =

q1eq1 + q2eq2 + q3eq3 + Ă1(t,q)dq1 + Ă2(t,q)dq2 + Ă3(t,q)dq3.

5.1.5 Intrinsic expression of differential 1-forms γ[A] in terms of Pullback

It may be defined the following projection:

Π∗ : T∗X → X
(x,m) 7→ x ,

(5.21)

the Pushforward by Π∗: d(x,m)Π
∗ in any (x,m) of T∗X :

d(x,m)Π
∗ : T(x,v)

(
T∗X

)
→ TxX

(ν, π) 7→ ν ,
(5.22)

the Pullback by Π∗: Π∗∗(x,m) in any (x,m) of T∗X :

Π∗∗(x,m) : T∗xX → T∗(x,m)

(
T∗X

)
µ 7→ Π∗∗(x,m)(µ) ,

(5.23)

with, for any (ν, π) of T(x,m)

(
T∗X

)
(= TxX ×T∗xX )

〈Π∗∗(x,m)(µ), (ν, π)〉 = {Π∗∗(x,m)(µ)}(ν, π) = µ(ν) = 〈µ, ν〉, (5.24)
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and the Pullback by Π∗

Π∗∗ : Λ(X ) → Λ
(
T∗X

)
A 7→ Π∗∗(A) ,

(5.25)

defined by

(Π∗∗(A))(x,m) = Π∗∗(x,m)(A(x)). (5.26)

As a mater of fact, in view of (5.19), it may be written:

γ[A](t) = γ + Π∗∗(qA(t)) = Π∗∗(m) + Π∗∗(qA(t)) (5.27)

5.1.6 On Pullback of k-forms

In the previous paragraph, Pullbacks by Π∗ of 1-forms of T∗xX to 1-forms of T∗(x,m)

(
T∗X

)
in a given

point (x,m) of T∗X and of differential 1-forms on X to differential 1-forms on T∗X are defined.
Those Pullback definitions may be extended to k-forms for any k.
In the following T∗x

kX stands for the set of k-forms on TxX and Λk(X ) for the set of differential
k-forms defined on X .
Then Pullback Π∗∗(x,m) in any (x,m) of T∗X may be extended in the following way:

Π∗∗(x,m) : T∗x
kX → T∗ k(x,m)

(
T∗X

)
κ 7→ Π∗∗(x,m)(κ) ,

(5.28)

where for any ((ν1, π1), . . . , (νk, πk)) of (T(x,m)

(
T∗X

)
)k

{Π∗∗(x,v)(κ)}((ν1, π1), . . . , (νk, πk)) = {κ}(ν1, . . . νk). (5.29)

In the same way, Pullback Π∗∗ may be extended as

Π∗∗ : Λk(X ) → Λk
(
T∗X

)
K 7→ Π∗∗(K) ,

(5.30)

defined, in any (x,m) of T∗X as

(Π∗∗(K))(x,m) = Π∗∗(x,m)(K(x)). (5.31)

5.1.7 Expression of Pullback of 1-forms and 2-forms within coordinate systems when
N = 3

Considering again a given x0 of X , a neighborhood B(x0) of x0 and charts from B(x0) to RN
with associated frames (eq1 , eq2 , eq3) to locate position points, (∂q1 , ∂q2 , ∂q3) for velocity vectors,
(dq1, dq2, dq3) for differential 1-forms, (where at this level dq1 is defined as the mapping v 7→ q̇1

from TxX to RN , etc.), (dq3 ∧ dq1, dq1 ∧ dq2, dq2 ∧ dq3) for differential 2-forms and (dq1 ∧ dq2 ∧
dq3) for differential 3-forms; (C,DxC) from ∪x∈B(x0)(x,T

∗
xX ) to RN × RN with associated frames

(eq1
, eq2

, eq3
, dq1, dq2, dq3) to locate position-momentum in phase space, (∂q1

, ∂q2
, ∂q3

, dq1, dq2, dq3)
to locate vectors of tangent space T(x,m)

(
T∗X

)
, (dq1, dq2, dq3, dp1, dp2, dp3) for differential 1-forms

and (dq1 ∧ dq2, dq1 ∧ dq3, dq1 ∧ dp1, dq1 ∧ dp2, dq1 ∧ dp3, dq2 ∧ dq3, dq2 ∧ dp1, dq2 ∧ dp2, dq2 ∧
dp3, dq3 ∧ dp1, dq3 ∧ dp2, dq3 ∧ dp3, dp1 ∧ dp2, dp1 ∧ dp3, dp2 ∧ dp3) for differential 2-forms.
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Then considering a differential 1-form A on X and its expression Ă1(q)dq1 + Ă2(q)dq2 + Ă3(q)dq3

within coordinate systems. Expression of Π∗∗(A) is the following : Ă1(q)dq1 + Ă2(q)dq2 +

Ă3(q)dq3 + 0dp1 + 0dp3 + 0dp3 = Ă1(q)dq1 + Ă2(q)dq2 + Ă3(q)dq3. In other words, despite
A are not of the same nature, they have the same expression within coordinate systems.
This is the same for a differential 2-form B with expression B̆1dq3∧dq1 +B̆2dq2∧dq3 +B̆3dq3∧dq1

and whom expression of Π∗∗(B) is also B̆1dq3 ∧ dq1 + B̆2dq2 ∧ dq3 + B̆3dq3 ∧ dq1 having in mind
that there are component with worth 0 on the other frame vectors.

5.1.8 Other differential 2-forme on T∗X : ω[A]

In a natural way, the following differential 2-form may be defined on T∗X :

ω[A] = dγ[A] = dγ + d(Π∗∗(qA)). (5.32)

It may be shown that differential 2-form ω[A] has also the following expression:

ω[A] = dγ[A] = dγ + (Π∗∗(qdA)). (5.33)

To see this, the simplest way consists in leading a computation within coordinates. (This compu-
tation will be restricted to the case N = 3.) The point is to notice that the following computation
concerning exterior derivative of A in coordinate system induced by C

d
(
Ă1(q)dq1 + Ă2(q)dq2 + Ă3(q)dq3

)
=

(
∂Ă2

∂q1
(q)− ∂Ă1

∂q2
(q)

)
dq1 ∧ dq2

+

(
∂Ă3

∂q2
(q)− ∂Ă2

∂q3
(q)

)
dq2 ∧ dq3 +

(
∂Ă1

∂q3
(q)− ∂Ă3

∂q1
(q)

)
dq3 ∧ dq1, (5.34)

remains valid when seen within coordinates induced by (C,DxC), with frame (eq1 , eq2 , eq3 , dq1, dq2,
dq3) on (C,DxC)T∗X , with frame (dq1, dq2, dq3, dp1, dp2, dp3) for differential 1-forms on (C,DxC)T∗X
and with frame (dq1 ∧ dq2, dq1 ∧ dq3, dq1 ∧ dp1, dq1 ∧ dp2, dq1 ∧ dp3, dq2 ∧ dq3, dq2 ∧ dp1, dq2 ∧
dp2, dq2∧dp3, dq3∧dp1, dq3∧dp2, dq3∧dp3, dp1∧dp2, dp1∧dp3, dp2∧dp3) for differential 2-forms
on (C,DxC)T∗X . In other words, the left hand side of (5.34) may be interpreted as the expression
of the exterior derivative dA of A in the coordinates induced by C or as the expression d

(
Π∗∗(A)

)
of Π∗∗(A) in the coordinates induced by (C,DxC). In the same way, the right hand side of (5.34)

which is the natural expression of dA is also the expression of (Π∗∗(dA)).

From (5.33) and expression (5.11) of ω = dγ it may be obtained the following expression of differ-
ential 2-form ω[A]:

{ω[A](x,m)}((ν, π), (ν′, π′)) = 〈π, ν′〉 − 〈π′, ν〉+
{

Π∗∗(x,m)(qdxA)
}

((ν, π), (ν′, π′))

= 〈π, ν′〉 − 〈π′, ν〉+
{
qdxA

}
(ν, ν′), (5.35)

where formula (5.30) was used to get expression of
{

Π∗∗(x,m)(qdxA)
}

5.2 Differential 1-form representation by vector fields

5.2.1 Representations of a 1-forms by vectors

In any (x,m) of T∗X , to any vector (ν, π) of T(x,m)

(
T∗X

)
(= TxX × T∗xX ) it may be associated

1-forms I−1
(x,m)(ν, π) and I

[A]
(x,m)

−1
(ν, π) of T∗(x,m)

(
T∗X

)
with the help of ω or ω[A]. They are defined
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by {
I−1
(x,m)(ν, π)

}
(ν′, π′) =

〈
I−1
(x,m)(ν, π), (ν′, π′)

〉
= {ω(x,m)}((ν′, π′), (ν, π)) (5.36){

I
[A]
(x,m)

−1
(ν, π)

}
(ν′, π′) =

〈
I

[A]
(x,m)

−1
(ν, π), (ν′, π′)

〉
= {ω[A](x,m)}((ν′, π′), (ν, π)) (5.37)

for any (ν′, π′) of T(x,m)

(
T∗X

)
. Linear applications I−1

(x,m)(ν, π) and I
[A]
(x,m)

−1
(ν, π) are one-to-one from

T(x,m)

(
T∗X

)
onto T∗(x,m)

(
T∗X

)
and their respective reverse applications are denoted by I(x,m) and

I
[A]
(x,m).

Expressions of I(x,m) and I
[A]
(x,m) are now going to be investigated. For this, something whose spirit

was touched at the end of paragraph 4.4 will be done. Once identification of T(x,m)

(
T∗X

)
with

TxX ×T∗xX is done, which consists in writing any element of T(x,m)

(
T∗X

)
as (ν, π) with ν ∈ TxX

and π ∈ T∗xX , it is consistant to identify T∗(x,m)

(
T∗X

)
with T∗xX ×TxX . This consists in saying that

(µ, υ) of T∗(x,m)

(
T∗X

)
with µ ∈ T∗xX and υ ∈ TxX acts on any (ν′, π′) of T(x,m)

(
T∗X

)
by formula:{

(µ, υ)
}

(ν′, π′) =
〈
(µ, υ), (ν′, π′)

〉
=
〈
µ, ν′

〉
+
〈
π′, υ

〉
. (5.38)

Using expression (5.12) of {ω(x,m)}((ν′, π′), (ν, π)), equality (5.36) yields{
I−1
(x,m)(ν, π)

}
(ν′, π′) = 〈π′, ν〉 − 〈π, ν′〉, (5.39)

and, using (5.38), it may be gotten that (µ, υ) is the image of (ν, π) under I−1
(x,m) if

µ = −π and υ = ν, (5.40)

and that (ν, π) is the image of (µ, υ) under I(x,m) if

ν = υ and π = −µ. (5.41)

In other words

I−1
(x,m) : T(x,m)

(
T∗X

)
(=TxX ×T∗xX ) → T∗(x,m)

(
T∗X

)
(=T∗xX ×TxX )

(ν,π) 7→ I−1
(x,m)(ν, π) =(−π, ν),

(5.42)

I(x,m) : T∗(x,m)

(
T∗X

)
(=T∗xX ×TxX ) → T(x,m)

(
T∗X

)
(=TxX ×T∗xX )

(µ,υ) 7→ I(x,m)(µ, υ) =(υ,−µ).
(5.43)

Using expression (5.35) of differential 2-form ω[A], equality (5.37) yields{
I

[A]
(x,m)

−1
(ν, π)

}
(ν′, π′) = 〈π′, ν〉 − 〈π, ν′〉+

{
qdxA

}
(ν′, ν). (5.44)

Then having (5.38) in mind, it may be gotten that (µ, υ) is the image of (ν, π) under I−1
(x,m) if

µ = −π +
{
qdxA

}
(., ν) = −(π +

{
qdxA

}
(ν, .)) and υ = ν, (5.45)

or

ν = υ and π = −(µ+
{
qdxA

}
(υ, .)). (5.46)
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In section 2.6, for any x ∈ X and any v ∈ TxX , it was introduced operator
◦
ιv (see (2.13)) as

mapping T∗x
kX to T∗ k−1

(x,v)

(
TX
)

and operator
◦
ι as mapping Λk(X ) to Λk−1

(
TX
)
.

In a close manner, for any x ∈ X and any ν ∈ TxX operator
∗
ιν :

∗
ιν : T∗x

kX → T∗x
k−1X

κ 7→
∗
ινκ

(5.47)

may be defined by setting
{ ∗
ινκ

}
(ν1, . . . , νk−1) = {κ}(ν, ν1, . . . , νk−1). Using this notation, (5.40)

reads

µ = −(π + q
∗
ινdxA) and υ = ν, (5.48)

and (5.46)

ν = υ and π = −(µ+ q
∗
ιυdxA). (5.49)

Then, the following definition of I
[A]
(x,m)

−1
and I

[A]
(x,m) are gotten:

I
[A]
(x,m)

−1
: T(x,m)

(
T∗X

)
(= TxX ×T∗xX ) → T∗(x,m)

(
T∗X

)
(=T∗xX ×TxX )

(ν,π) 7→ I
[A]
(x,m)

−1
(ν, π) = (−(π + q

∗
ινdxA), ν),

(5.50)

I
[A]
(x,m) : T∗(x,m)

(
T∗X

)
(=T∗xX ×TxX ) → T(x,m)

(
T∗X

)
(=TxX ×T∗xX )

(µ,υ) 7→ I
[A]
(x,m)(µ, υ) = (υ,− (µ+ q

∗
ιυdxA)).

(5.51)

5.2.2 Representations of a differential 1-form by vector fields

Denoting by V(T∗X ) the space of regular vector fields on T∗X , an element W of this space writes
W =W(x,m) = (W(x,m),N(x,m)) where for any (x,m) of T∗X , W(x,m) ∈ TxX and N(x,m) ∈
T∗xX . Any differential 1-form M on T∗X writes M = M(x,m) = (Ñ(x,m),W̃(x,m)).
The following linear applications may be defined:

I−1 : V(T∗X ) → Λ(T∗X )

W =(W,N) 7→ I−1(W)
(5.52)

where
(
I−1(W)

)
(x,m) = I−1

(x,m)(W(x,m),N(x,m)) = (−(N(x,m)),W(x,m)),

I [A]−1
: V(T∗X ) → Λ(T∗X )

W =(W,N) 7→ I [A]−1
(W),

(5.53)

where
(
I [A]−1

(W)
)
(x,m) = I

[A]
(x,m)(W(x,m),N(x,m)) = (−(N(x,m) + q

∗
ιW(x,m)dxA),W(x,m)),

I : Λ(T∗X ) → V(T∗X )

M =(Ñ,W̃) 7→ I(M),
(5.54)
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where
(
I(M)

)
(x,m) = I(x,m)(Ñ(x,m),W̃(x,m)) = (W̃(x,m),−(Ñ(x,m)),

and

I [A] : Λ(T∗X ) → V(T∗X )

M =(Ñ,W̃) 7→ I [A](M),
(5.55)

where
(
I [A](M)

)
(x,m) = I

[A]
(x,m)(Ñ(x,m),W̃(x,m)) = (W̃(x,m),−(Ñ(x,m) + q

∗
ιW̃(x,m)dxA)).

I(M) and I [A](M) are vector fields on T∗X representing differential form M on T∗X .

5.3 Remarks about notations

Operator
∗
ιν : T∗x

kX → T∗x
k−1X was just introduced by (5.47), in any x ∈ X and for any ν ∈ TxX .

Remark 5.1 This may also be done, in the same way, for
∗
ι(ν,π) : T∗ k(x,m)

(
T∗X

)
→ T∗ k−1

(x,m)

(
T∗X

)
in

any (x,m) ∈ T∗X and for any (ν, π) ∈ T(x,m)

(
T∗X

)
.

Remark 5.2 Operator
∗
ιν is linked with interior product operator iW : Λk(X )→ Λk−1(X ) defined

for any regular vector field W of V(X ) by(
iWK

)
(x) =

∗
ιW(x)(K(x)), (5.56)

in any x of X .

In subsection 2.6, it was built operators
◦
ιν (for any ν of TxX ) and

◦
ι. They were defined as

◦
ιν : T∗x

kX → T∗ k−1
(x,ν)

(
TX
)

k 7→
◦
ινk,

(5.57)

with,
{ ◦
ινk

}
((ν1, π1), . . . , (νn−1, πn−1)) = {k}(ν, ν1, . . . , νn−1) and

◦
ι : Λk(X ) → Λk−1(TX )

K 7→
◦
ιK,

(5.58)

with (
◦
ιK)(x,v) =

◦
ιv(K(x)).

Remark 5.3 generalizing (2.15) to any differential k-form K in the following way:
(
iWK

)
(x) =(

D(x,W(x)) Π
)( ◦
ιK
)
, the following formula may be deduced

∗
ιW(x)(K(x)) =

(
D(x,W(x)) Π

)( ◦
ιK
)
. (5.59)

Remark 5.4 Using the interior product of differential forms by vector fields on T∗X , (5.36) and

(5.37) say nothing but that the following expressions of I−1 and I [A]−1
may be given:

I−1(W) = I−1(W,N) = iWω = i(W,N)ω, (5.60)

I [A]−1
(W) = I [A]−1

(W,N) = iWω[A] = i(W,N)ω
[A]. (5.61)
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Remark 5.5 With the remark just made, it can be stated that for any differential 1-form M on
T∗X , I(M) and I [A](M) satisfy

M = i(I(M))ω and M = i(I[A](M))ω
[A]. (5.62)

5.4 Volume forms

5.4.1 Building volume forms ω∧N and ω[A]∧N

Remembering that ω∧2 = ω ∧ ω is defined by

ω ∧ ω
(
(ν1, π1), (ν2, π2), (ν3, π3), (ν4, π4)

)
= 2ω

(
(ν1, π1), (ν2, π2)

)
ω
(
(ν3, π3), (ν4, π4)

)
− 2ω

(
(ν1, π1), (ν3, π3)

)
ω
(
(ν2, π2), (ν4, π4)

)
+ 2ω

(
(ν1, π1), (ν4, π4)

)
ω
(
(ν2, π2), (ν3, π3)

)
, (5.63)

and ω∧3 = ω ∧ ω ∧ ω by

ω ∧ ω ∧ ω
(
(ν1, π1), (ν2, π2), (ν3, π3), (ν4, π4), (ν5, π5), (ν6, π6)

)
= ω ∧ ω

(
(ν1, π1), (ν2, π2), (ν3, π3), (ν4, π4)

)
ω
(
(ν5, π5), (ν6, π6))

)
− ω ∧ ω

(
(ν1, π1), (ν2, π2), (ν3, π3), (ν5, π5)

)
ω
(
(ν4, π4), (ν6, π6))

)
+ ω ∧ ω

(
(ν1, π1), (ν2, π2), (ν4, π4), (ν5, π5)

)
ω
(
(ν3, π3), (ν6, π6))

)
− ω ∧ ω

(
(ν1, π1), (ν3, π3), (ν4, π4), (ν5, π5)

)
ω
(
(ν2, π2), (ν6, π6))

)
+ ω ∧ ω

(
(ν2, π2), (ν3, π3), (ν4, π4), (ν5, π5)

)
ω
(
(ν1, π1), (ν6, π6))

)
+ ω ∧ ω

(
(ν1, π1), (ν2, π2), (ν3, π3), (ν6, π6)

)
ω
(
(ν4, π4), (ν5, π5))

)
− ω ∧ ω

(
(ν1, π1), (ν2, π2), (ν4, π4), (ν6, π6)

)
ω
(
(ν3, π3), (ν5, π5))

)
+ ω ∧ ω

(
(ν1, π1), (ν3, π3), (ν4, π4), (ν6, π6)

)
ω
(
(ν2, π2), (ν5, π5))

)
− ω ∧ ω

(
(ν2, π2), (ν3, π3), (ν4, π4), (ν6, π6)

)
ω
(
(ν1, π1), (ν5, π5))

)
+ ω ∧ ω

(
(ν1, π1), (ν2, π2), (ν5, π5), (ν6, π6)

)
ω
(
(ν3, π3), (ν4, π4))

)
− ω ∧ ω

(
(ν1, π1), (ν3, π3), (ν5, π5), (ν6, π6)

)
ω
(
(ν2, π2), (ν4, π4))

)
+ ω ∧ ω

(
(ν2, π2), (ν3, π3), (ν5, π5), (ν6, π6)

)
ω
(
(ν1, π1), (ν4, π4))

)
+ ω ∧ ω

(
(ν1, π1), (ν4, π4), (ν5, π5), (ν6, π6)

)
ω
(
(ν2, π2), (ν3, π3))

)
+ ω ∧ ω

(
(ν3, π3), (ν4, π4), (ν5, π5), (ν6, π6)

)
ω
(
(ν1, π1), (ν2, π2))

)
,

(5.64)
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or by

ω ∧ ω ∧ ω
(
(ν1, π1), (ν2, π2), (ν3, π3), (ν4, π4), (ν5, π5), (ν6, π6)

)
= 6ω

(
(ν1, π1), (ν2, π2)

)
ω
(
(ν3, π3), (ν4, π4)

)
ω
(
(ν5, π5), (ν6, π6)

)
− 4ω

(
(ν1, π1), (ν3, π3)

)
ω
(
(ν2, π2), (ν4, π4)

)
ω
(
(ν5, π5), (ν6, π6)

)
+ 6ω

(
(ν1, π1), (ν4, π4)

)
ω
(
(ν2, π2), (ν3, π3)

)
ω
(
(ν5, π5), (ν6, π6)

)
− 6ω

(
(ν1, π1), (ν2, π2)

)
ω
(
(ν3, π3), (ν5, π5)

)
ω
(
(ν4, π4), (ν6, π6)

)
+ 4ω

(
(ν1, π1), (ν3, π3)

)
ω
(
(ν2, π2), (ν5, π5)

)
ω
(
(ν4, π4), (ν6, π6)

)
− 6ω

(
(ν1, π1), (ν5, π5)

)
ω
(
(ν2, π2), (ν3, π3)

)
ω
(
(ν4, π4), (ν6, π6)

)
+ 6ω

(
(ν1, π1), (ν2, π2)

)
ω
(
(ν4, π4), (ν5, π5)

)
ω
(
(ν3, π3), (ν6, π6)

)
− 6ω

(
(ν1, π1), (ν4, π4)

)
ω
(
(ν2, π2), (ν5, π5)

)
ω
(
(ν3, π3), (ν6, π6)

)
+ 6ω

(
(ν1, π1), (ν5, π5)

)
ω
(
(ν2, π2), (ν4, π4)

)
ω
(
(ν3, π3), (ν6, π6)

)
− 4ω

(
(ν1, π1), (ν3, π3)

)
ω
(
(ν4, π4), (ν5, π5)

)
ω
(
(ν2, π2), (ν6, π6)

)
+ 4ω

(
(ν1, π1), (ν4, π4)

)
ω
(
(ν3, π3), (ν5, π5)

)
ω
(
(ν2, π2), (ν6, π6)

)
− 4ω

(
(ν1, π1), (ν5, π5)

)
ω
(
(ν3, π3), (ν4, π4)

)
ω
(
(ν2, π2), (ν6, π6)

)
+ 6ω

(
(ν2, π2), (ν3, π3)

)
ω
(
(ν4, π4), (ν5, π5)

)
ω
(
(ν1, π1), (ν6, π6)

)
− 6ω

(
(ν2, π2), (ν4, π4)

)
ω
(
(ν3, π3), (ν5, π5)

)
ω
(
(ν1, π1), (ν6, π6)

)
+ 6ω

(
(ν2, π2), (ν5, π5)

)
ω
(
(ν3, π3), (ν4, π4)

)
ω
(
(ν1, π1), (ν6, π6)

)
+ 2ω

(
(ν1, π1), (ν4, π4)

)
ω
(
(ν2, π2), (ν6, π6)

)
ω
(
(ν3, π3), (ν5, π5)

)
− 2ω

(
(ν2, π2), (ν6, π6)

)
ω
(
(ν3, π3), (ν4, π4)

)
ω
(
(ν1, π1), (ν5, π5)

)
,

(5.65)

clearly,

ω∧N = ω ∧ · · · ∧ ω︸ ︷︷ ︸
N times

=
(
dγ
)∧N

= dγ ∧ · · · ∧ dγ︸ ︷︷ ︸
N times

, (5.66)

and

ω[A]∧N = ω[A] ∧ · · · ∧ ω[A]︸ ︷︷ ︸
N times

=
(
dγ[A]

)∧N
= dγ[A] ∧ · · · ∧ dγ[A]︸ ︷︷ ︸

N times

, (5.67)

are volume forms (i.e. non-degenerated differential 2N -forms) on T∗X .

5.4.2 ω∧N and ω[A]∧N are the same volume form

In fact, the two volume forms previously built ω∧N and ω[A]∧N are the same one. The easiest way
to see this fact consists in making the computation within the coordinates system. In fact, in view
of equalities (5.18) and (5.33), it needs to be proven that(

dγ + (Π∗∗(qdA))
)∧N

=
(
dγ
)∧N

. (5.68)

This will be done is the cases N = 1, 2 and 3.

When N = 1, it is obvious since dA is 0.
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When N = 2,(
dγ + (Π∗∗(qdA))

)
∧
(
dγ + (Π∗∗(qdA))

)
=

(
dp1 ∧ dq1 + dp2 ∧ dq2 +

(
∂Ă2

∂q1
− ∂Ă1

∂q2

)
dq1 ∧ dq2

)
∧(

dp1 ∧ dq1 + dp2 ∧ dq2 +

(
∂Ă2

∂q1
− ∂Ă1

∂q2

)
dq1 ∧ dq2

)
= 0 + dp1 ∧ dq1 ∧ dp2 ∧ dq2 + 0 + dp2 ∧ dq2 ∧ dp1 ∧ dq1 + 0 + 0 + 0 + 0 + 0

= 2dp1 ∧ dq1 ∧ dp2 ∧ dq2 =
(
dp1 ∧ dq1 + dp2 ∧ dq2

)
∧
(
dp1 ∧ dq1 + dp2 ∧ dq2

)
=
(
dγ
)
∧
(
dγ
)
. (5.69)

When N = 3,(
dγ + (Π∗∗(qdA))

)
∧
(
dγ + (Π∗∗(qdA))

)
∧
(
dγ + (Π∗∗(qdA))

)
=

(
dp1 ∧ dq1 + dp2 ∧ dq2 + dp3 ∧ dq3

+

(
∂Ă2

∂q1
− ∂Ă1

∂q2

)
dq1 ∧ dq2 +

(
∂Ă3

∂q2
− ∂Ă2

∂q3

)
dq2 ∧ dq3 +

(
∂Ă1

∂q3
− ∂Ă3

∂q1

)
dq3 ∧ dq1,

)
∧(

dp1 ∧ dq1 + dp2 ∧ dq2 + dp3 ∧ dq3

+

(
∂Ă2

∂q1
− ∂Ă1

∂q2

)
dq1 ∧ dq2 +

(
∂Ă3

∂q2
− ∂Ă2

∂q3

)
dq2 ∧ dq3 +

(
∂Ă1

∂q3
− ∂Ă3

∂q1

)
dq3 ∧ dq1,

)
∧(

dp1 ∧ dq1 + dp2 ∧ dq2 + dp3 ∧ dq3

+

(
∂Ă2

∂q1
− ∂Ă1

∂q2

)
dq1 ∧ dq2 +

(
∂Ă3

∂q2
− ∂Ă2

∂q3

)
dq2 ∧ dq3 +

(
∂Ă1

∂q3
− ∂Ă3

∂q1

)
dq3 ∧ dq1,

)
= 3 times

(
(6 times 0) + 0 + 0 + dp1 ∧ dq1 ∧ dp2 ∧ dq2 ∧ dp3 ∧ dq3 + (3 times 0) + 0

+ dp1 ∧ dq1 ∧ dp3 ∧ dq3 ∧ dp2 ∧ dq2 + 0 + (3 times 0) + (3× 6 times 0)
)

+ 108 times 0

=
(
dp1 ∧ dq1 + dp2 ∧ dq2 ∧ dp3 ∧ dq3

)
∧
(
dp1 ∧ dq1 + dp2 ∧ dq2 ∧ dp3 ∧ dq3

)
=
(
dγ
)
∧
(
dγ
)
.

(5.70)

In fact the following formula holds true:

ω[A]∧N =
(
dγ + (Π∗∗(qdA))

)∧N
= ω∧N =

(
dγ
)∧N

= N dp1 ∧ dq1 ∧ dp2 ∧ dq2 ∧ · · · ∧ dpN ∧ dqN .

(5.71)

5.5 Vector fields and differential (2N − 1)-forms

With the help of the volume form ω∧N , to any vector field W = (W,N) of V(T∗X ) it may be
associated the following differential (2N − 1)-form: iW(ω∧N ). The inner product in game here is
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the one in T∗X . Then, in any (x,m) of T∗X the value of iW(ω∧N )(x,m) is given by{
iW(ω∧N )(x,m)

}(
(ν1, π1), . . . , (ν2N−1, π2N−1)

)
=
{

(ω∧N )(x,m)
}(
W(x,m), (ν1, π1), . . . , (ν2N−1, π2N−1)

)
=
{

(ω∧N )(x,m)
}(

(W(x,m),N(x,m)), (ν1, π1), . . . , (ν2N−1, π2N−1)
)
, (5.72)

for any 2N − 1 vectors (ν1, π1), . . . , (ν2N−1, π2N−1) of T(x,m)

(
T∗X

)
(= TxX ×T∗xX ).

It is interesting to compute expression of iW(ω∧N ) in frame ((dq1∧dp2∧dq2∧· · ·∧dpN∧dqN ), (dp1∧
dp2∧dq2∧· · ·∧dpN∧dqN ), . . . , (dp1∧dq1∧dp2∧dq2∧· · ·∧dqN ), (dp1∧dq1∧dp2∧dq2∧· · ·∧dpN ))
which a natural frame to express 2N −1 differential forms once charts (C,DxC) and (C,DxC) are set.
from (5.71), it is gotten:{

(ω∧N )(x,m)
}(

(W,N), (ν1, π1), . . . , (ν2N−1, π2N−1)
)

= N

∣∣∣∣∣∣∣∣∣∣∣

dp1(W̆, N̆) dq1(W̆, N̆) dp2(W̆, N̆) . . . dpN (W,N) dqN (W,N)

dp1(ν̆1, π̆1) dq1(ν̆1, π̆1) dp2(ν̆1, π̆1) . . . dpN (ν̆1, π̆1) dqN (ν̆1, π̆1)

dp1(ν̆2, π̆2) dp1(ν̆2, π̆2) dp2(ν̆2, π̆2) . . . dpN (ν̆2, π̆2) dqN (ν̆2, π̆2)

.

.

.
.
.
.

dp1(ν̆2N−1, π̆2N−1) dq1(ν̆2N−1, π̆2N−1) dp2(ν̆2N−1, π̆2N−1) . . . dpN (ν̆2N−1, π̆2N−1) dqN (ν̆2N−1, π̆2N−1)

∣∣∣∣∣∣∣∣∣∣∣

= N

∣∣∣∣∣∣∣∣∣∣∣

N̆1 W̆1 N̆2 . . . N̆N W̆N

dp1(ν̆1, π̆1) dq1(ν̆1, π̆1) dp2(ν̆1, π̆1) . . . dpN (ν̆1, π̆1) dqN (ν̆1, π̆1)

dp1(ν̆2, π̆2) dp1(ν̆2, π̆2) dp2(ν̆2, π̆2) . . . dpN (ν̆2, π̆2) dqN (ν̆2, π̆2)

.

.

.
.
.
.

dp1(ν̆2N−1, π̆2N−1) dq1(ν̆2N−1, π̆2N−1) dp2(ν̆2N−1, π̆2N−1) . . . dpN (ν̆2N−1, π̆2N−1) dqN (ν̆2N−1, π̆2N−1)

∣∣∣∣∣∣∣∣∣∣∣
= N

{
N̆1(dq1 ∧ dp2 ∧ dq2 ∧ · · · ∧ dpN ∧ dqN ) + W̆1(dp1 ∧ dp2 ∧ dq2 ∧ · · · ∧ dpN ∧ dqN ) + . . .

+ N̆N (dp1 ∧ dq1 ∧ dp2 ∧ dq2 ∧ · · · ∧ dqN ) + W̆N (dp1 ∧ dq1 ∧ dp2 ∧ dq2 ∧ · · · ∧ dpN ))
}

((ν̆1, π̆1), . . . (ν̆2N−1, π̆2N−1)). (5.73)

This computation shows that the components of iW(ω∧N ) in a natural frame for differential (2N−1)-
forms are the coordinates of W = (W,N) in a natural frame for vector fields.

As a consequence, application

V(T∗X ) → Λ2N−1(T∗X )

W =(W,N) 7→ iW(ω∧N )
(5.74)

is linear, one-to-one and onto.

5.6 Divergence of a vector field

By definition, the divergence Div(W) of any vector field W = (W,N) of V(T∗X ) is the function (or
differential 0-form) on T∗X which is such that

d(iW(ω∧N )) = Div(W) ω∧N . (5.75)
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Using Cartan’s Formula, which yields

lW(ω∧N ) = iW(d(ω∧N )) + d(iW(ω∧N )), (5.76)

and that d(ω∧N ) = 0, (5.75) also reads

lW(ω∧N ) = Div(W) ω∧N . (5.77)

Beside this, since by definition

{lW(ω∧N )(x,m)} =
∂({gs∗(x,m)}((ω∧N )(gs(x,m)))

∂s
(0), (5.78)

where gs is the flow associated with W and where gs∗(x,m) is the Pullback in (x,m) by flow gs .

Then, if a vector fieldW = (W,N) of V(T∗X ) is such that Div(W) = 0, its associated flow preserves
volume form ω∧N .

5.7 Pure Geometrical Operators transforming differential 1-forms into
differential (2N − 1)-forms

From a differential 1-form a vector field may be defined. Then from this vector field a differential
(2N−1)-form may be defined. This process is linear and reversible: From a differential (2N−1)-form
a vector field may be defined. Then from this vector field a differential 1-form may defined.
The two evoked processes only use the natural symplectic structure of T∗X . Then those opera-
tors transforming differential 1-forms into differential (2N − 1)-forms (and vice versa) are purely
geometric.
The precise definitions of those operators are now given.

∗ : Λ(T∗X ) → Λ2N−1(T∗X )

M =(Ñ,W̃) 7→ ∗M = i(I(M))(ω
∧N ),

(5.79)

∗[A] : Λ(T∗X ) → Λ2N−1(T∗X )

M =(Ñ,W̃) 7→ ∗[A]M = i(I[A](M))(ω
∧N ),

(5.80)

where the application mapping vector fields onto differential (2N − 1)-forms is given in (5.74) and
where I and I [A] are defined by (5.54) and (5.55). As ∗ and ∗[A] are clearly one-to-one and onto,
their reverse applications may be considered, with the same notation

∗ : Λ2N−1(T∗X ) → Λ(T∗X )

S 7→ ∗S,
(5.81)

∗[A] : Λ2N−1(T∗X ) → Λ(T∗X )

S 7→ ∗[A]S.
(5.82)
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5.8 Vector Field associated with a function

If H is a function (or a differential 0-form) defined on T∗X , its exterior derivative dH = dH may be

computed. This is a differential 1-form defined on T∗X with which vector fields I(dH) and I [A](dH),
with I defined by (5.54) and I [A] by (5.55), may be associated.
To get an expression of all above evoked object, it has to be noticed that function H may be
considered as a function of (x,m) ∈ T∗X with x ∈ X and m ∈ T∗xX . Then, as it was done in (4.4),
(4.5) the following functions may be considered

_

Hm : X → R
x 7→ H(t,x,m),

(5.83)

H̄x : T∗xX → R
m 7→ H(t,x,m),

(5.84)

and in any (x,m) ∈ T∗X for any (ν, π) ∈ T(x,m)

(
T∗X

)
, {d(x,m)H}(ν, π) = {d(x,m)H}(ν, π) ={

dx
_

Hm

}
(ν) +

{
dmH̄x

}
(π). In this writing, dx

_

Hm is clearly naturally an element of T∗xX but

dmH̄x is not naturally in TxX . Nevertheless, it is not a big issue to consider element (dmH̄x)% of
TxX defined by

{
dmH̄x

}
(π) =

〈
π, (dmH̄x)%

〉
for any π in T∗xX . Considering the identification of

T∗(x,m)

(
T∗X

)
by T∗xX ×TxX , equality {d(x,m)H}(ν, π) = {d(x,m)H}(ν, π) =

(
(dmH̄x)%,dx

_

Hm

)
can

be considered. Hence, in view of (5.43) and (5.51), the values of I(dH) and I [A](dH) in any (x,m)
is

I(x,m)(d(x,m)H) = I(x,m)(dx
_

Hm, (dmH̄x)%) = ((dmH̄x)%,−dx
_

Hm), (5.85)

I
[A]
(x,m)(d(x,p)H) = I

[A]
(x,m)(dx

_

Hm, (dmH̄x)%) = ((dmH̄x)%,−(dx
_

Hm + q
∗
ι((dmH̄x)%)dxA). (5.86)

when translated into the coordinate systems, those formulas read

Ĭ(q,p)(∇(q,p)H̆) = Ĭ(q,p)(∇qH̆,∇pH̆) = (∇pH̆,−∇qH̆), (5.87)

Ĭ
[A]
(q,p)(∇(q,p)H̆) = Ĭ

[A]
(q,p)(∇qH̆,∇pH̆) = (∇pH̆,−(∇qH̆+ q

∗
ι(∇pH̆)dxA)). (5.88)

6 Hamiltonian Formulation I

A first Hamiltonian formulation of dynamics of a charge particle in an electromagnetic field consists
in noticing, that with very small accommodations formulas (3.1) - (3.8), allowing the electromagnetic
field computation, (3.67) - (3.73), defining the Lagrange Function, and (4.1) - (4.21) leading to the
particle dynamics after using the Legendre’s Transform, are valid if X is a manifold on which
forms with zero exterior derivatives are exterior derivatives. (In order to claim this in a completely
convincing way, it would be nice to define Hodge Operators εεε and µµ, which has not been done yet.)

Then, considering, a position space X , its tangent bundle TX and its cotangent bundle T∗X the
particle dynamics is given as being its initial position and momentum transported by the flow
of vector field I(dH[A]) where Hamiltonian function H[A] is defined by (4.3), via the Legendre’s
Transform, from Lagrange Function defined by (3.67).

The dynamical system for (M,X), where momentum trajectory is linked with velocity trajectory V

by the following relation V = V [A]
x (M) or M =M[A]

x (V) which is a sub-product of the Legendre’s
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Trasform, is given by equations (4.19) and (4.21), which can be rewritten as

∂M

∂t
= −dX(t)

_

H
[A]

M , (6.1)

∂X

∂t
=
(
dMH̄

[A]
X

)%

, (6.2)

or within the coordinate systems by (4.23) and (4.24) or (4.25) and (4.26).

7 Hamiltonian Formulation II

7.1 The second Hamiltonian Formulation

In this section L stands for the Lagrange Function defined by (3.67) with A = 0, i.e.

L(t,x,v) = L̄x(v)− qΦ(t,x) =
1

2
m|v|2 − qΦ(t,x), (7.1)

With L are associated functions L̄v and
_

Lx by (3.69) and (3.70) (of course with A = 0 again). From
L it may be built Hamiltonian Function H by the mean of Legendre’s Transform. For this, formula
(4.2), with L[A] replaced by L, leads to a LtoH function and (4.3) to the definition of Vx, i.e.

d(Vx(m))L̄x = m. (7.2)

Interpreting (4.16) with A = 0 yields the fact that Vx is the reverse function ofMx defined by (3.11)
with A = 0, or equivalently by (2.4). Finally, (4.3) with A = 0, or

H(t,x,m) = LtoH(t,x,Vx(m),m) = 〈m,Vx(m)〉 − L(t,x,Vx(m)). (7.3)

defines the Hamiltonian Function associated with L.

Considering here again, a position space X , its tangent bundle TX and its cotangent bundle T∗X ,
it will be shown that the particle dynamics is given as being its initial position and momentum

transported by the flow of vector field
(
I [A](dH) − qΠ∗∗

(∂A

∂t

))
where Hamiltonian function H is

defined just above and pullback Π∗∗ is defined by (5.30).

Another way to say this consists in claiming that the dynamical system for (M̃,X), where momentum
trajectory is linked with velocity trajectory V by the following relation V = Vx(M̃) or M̃ =Mx(V)
(which is a sub-product of the Legendre’s Transform), is given by

∂M̃

∂t
= −

(
dX

_

HM̃ + q
∗
ι((dM̃H̄X)%)dXA

)
− q ∂A

∂t
(t,X), (7.4)

∂X

∂t
=
(
dM̃H̄X

)%

. (7.5)

7.2 Equivalence of the two Hamiltonian formulation

7.2.1 Link between the differentials of the two Hamiltonian Functions

There exists a link between Hamiltonian Functions H and H[A], where H[A] is defined by (4.3) from
Lagrange Function (3.67), which is not so difficult to set out. First, it has been set out (see (3.11)):

M[A]
x (v) =Mx(v) + qA(t,x). (7.6)
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Then, from (4.2), and since L[A](t,x,v) = L(t,x,v) + qA(t,x), it may be deduced:

d(V[A]
x (m))L̄x = m− qA(t,x). (7.7)

Comparing (7.7) and (7.3) simply leads to

V [A]
x (m) = Vx(m− qA(t,x)). (7.8)

Now, starting from (4.3), a direct computation gives:

H[A](t,x,m + qA(t,x)) = 〈m + qA(t,x),V [A]
x (m + qA(t,x))〉 − L[A](t,x,V [A]

x (m + qA(t,x)))

= 〈m + qA(t,x),Vx(m)〉 − L[A](t,x,Vx(m))

= 〈m + qA(t,x),Vx(m)〉 − L(t,x,Vx(m))− 〈qA(t,x),Vx(m)〉 = 〈m,Vx(m)〉 − L(t,x,Vx(m))

= H(t,x,m), (7.9)

using at the end (7.3). Hence

H(t,x,m) = H[A](t,x,m + qA(t,x)) and H[A](t,x,m) = H(t,x,m− qA(t,x)). (7.10)

From this last equality,

dmH̄[A]
x = d(m−qA(t,x))H̄x, (7.11)

dx
_

H
[A]

m = dx
_

H(m−qA(t,x)) − q(D(x,(d(m−qA(t,x))H̄x)%)
Π)
(
d(
◦
ιĂ)

)
, (7.12)

where operator D(x,v) Π : T∗(x,v)

(
TX
)
→ T∗xX is defined by a straightforward accommodation of

(2.28) to the case when X is a regular manifold.
Equality (7.11) is obvious. Equality is a bit more complicated to get. To get it, in the case when
N = 3, something of the spirit of what was done in subsection 3.2 has to be set out. This is what
it is done now.

Bundlization BA of A is first considered:

BA : X → T∗X
x 7→ (x,A(x)).

(7.13)

Its expression within the coordinates BĂ, which is such that (C,DxC)(BĂ(x)) = BĂ(q) = (q, Ă(q))
with q = C(x), is

BĂ(q,p) = q1eq1 + q2eq2 + q3eq3 + Ă1(q)dq1 + Ă2(q)dq2 + Ă3(q)dq3. (7.14)

The differential dx(BA) of BA in any x of X is represented by differential dq(BĂ) in the coordinate

systems, but also by ∇q(BĂ) which expression is:

∇q(BĂ) =



IRN
∂Ă1

∂q1

∂Ă1

∂q2

∂Ă1

∂q3

∂Ă2

∂q1

∂Ă2

∂q2

∂Ă2

∂q3

∂Ă3

∂q1

∂Ă3

∂q2

∂Ă3

∂q3




=

 IRN

∇qĂ

 . (7.15)
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Then H̆ and H̆[A] are the expressions of H and H[A] in the coordinates. In other words H(t,x,m) =
H̆(t,q,p) and H[A](t,x,m) = H̆[A](t,q,p) where (C,DxC)(x,m) = (q,p). Writing (7.10) in the
coordinates gives:

H̆[A](t,q,p) = H̆(t,q,p− qĂ(t,q)). (7.16)

Hence, ∇qH̆[A] which represents dx
_

H
[A]

m in the coordinates and ∇qH̆ which represents dx
_

Hm and

∇pH̆ which represents dmH̄x are linked by

∇qH̆[A](t,q,p) = ∇qH̆(t,q,p− qĂ(t,q))− q(∇qĂ(t,q))T
(
∇pH̆(t,q,p− qĂ(t,q))

)
. (7.17)

having a look on (3.54) and on computations leading to it, it is gotten that

(D(q,ν̆)Π)
(
d(
◦
ιĂ)

)
=

(
∂Ă1

∂q1
ν̆1 +

∂Ă2

∂q1
ν̆2 +

∂Ă3

∂q1
ν̆3

)
dq1

+

(
∂Ă1

∂q2
ν̆1 +

∂Ă2

∂q2
ν̆2 +

∂Ă3

∂q2
ν̆3

)
dq2 +

(
∂Ă1

∂q3
ν̆1 +

∂Ă2

∂q3
ν̆2 +

∂Ă3

∂q3
ν̆3

)
dq3, (7.18)

and then it can be deduced that (∇qĂ)T ν̆ is (D(q,ν̆)Π)
(
d(
◦
ιĂ)

)
and then is nothing but an expression

of (D(x,ν)Π)
(
d(
◦
ιA)

)
in the coordinate systems. Hence (7.17) is nothing but an expression of (7.12)

in the coordinate systems.

7.2.2 Link between the differentials of the two momentum trajectories

Since in a given point of the phase-space trajectory (X,M), M = M[A]
X (V) and V = VX(M̃) it is

deduced M =M[A]
X (VX(M̃)). Because of (7.6), it is finally gotten: M =MX(VX(M̃)) + qA(t,X) =

M̃ + qA(t,X) and

∂M

∂t
=
∂M̃

∂t
+ {q (D(X,V)Π)

( ◦
ι(dA)

)
}+ {q (D(X,V)Π)

(
d(
◦
ιA)

)
}+

{
q
∂A

∂t
(t,X)

}
, (7.19)

which is gotten by a computation in the coordinate systems of the same type as the one yielding
(3.55). Now using (5.59) and that

V =
∂X

∂t
=
(
dMH̄

[A]
X

)%

=
(
dM̃H̄X

)%

, (7.20)

which gives (7.5), equation (7.19) reads

∂M

∂t
=
∂M̃

∂t
+ q

∗
ι((dM̃H̄X)%)dXA + q (D(X,V)Π)

(
d(
◦
ιA)

)
+ q

∂A

∂t
(t,X). (7.21)

using finally (6.1) and (7.12),

∂M

∂t
= −dX

_

H
[A]

M = −dX
_

H(M−qA(t,X)) + q(D
(X,(d(M−qA(t,X))H̄X)%)

Π)
(
d(
◦
ιA)

)
= −dX

_

HM̃ + q(D
(X,(dM̃H̄X)%)

Π)
(
d(
◦
ιA)

)
(7.22)

equation for M̃:

∂M̃

∂t
= −

(
dX

_

HM̃ + q(D
(X,(dM̃H̄X)%)

Π)
(
d(
◦
ιA)

))
− q ∂A

∂t
(t,X), (7.23)

which is (7.4).
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8 Hodge Operators εεε and µµ

Classically, Hodge Operators εεε and µµ are linked with the metric on X . Essentially they allow to
give the way electromagnetic waves, or electromagnetic energy, propagate. Hence, they are linked
with the notion of geodesic, and this last notion is induced by the metric.
Here, no metric is explicitly considered (which is not absolutely true but which makes up the
framework in which the present Part of the document is built), but the Lagrange Function

L : TX → R
(x,v) 7→ L̄x(v),

(8.1)

with no force indicates a kind of propagation principle when no force acts on an object.
This is the point of view which is adopted here and that will be resumed to be.

8.1 Non degenerated scalar product on 1-forms induced by the Lagrange
Function

From Lagrange Function defined by (8.1), a Hamiltonian Function may be built. Doing this leads
to consider (4.1) with L[A] replaced by L and to define of Vx by

d(Vx(m))L̄x = m. (8.2)

In other words, in any x of X , there is a mapping which is defined as follows

Vx : T∗xX → TxX
m 7→ Vx(m),

(8.3)

Hence a non degenerated scalar product gx(., .) on 1-forms (or on T∗xX ) is defined in any x of X by

gx(π, µ) =
1

2

(
〈π,Vx(µ)〉+ 〈µ,Vx(π)〉

)
(8.4)

for any π ∈ T∗xX and any µ ∈ T∗xX .

8.2 Metric on X induced by the Lagrange Function

from the non degenerated scalar product defined by (8.3) and (8.4) a non degenerated scalar on TxX
in any x of X may be defined by:

gx(ν, υ) =
1

2

(
〈Mx(π),Vx(Mx(υ))〉+ 〈Mx(υ),Vx(Mx(ν))〉

)
(8.5)

for any π ∈ T∗xX and any µ ∈ T∗xX .
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