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FIRST ORDER TWO-SCALE PARTICLE-IN-CELL NUMERICAL
METHOD FOR VLASOV EQUATION

Emmanuel Frénod1, 2, Michaël Gutnic2 and Sever A. Hirstoaga2

Abstract. The aim of this work is to build an accurate numerical method for the simula-
tion of the long time evolution of the Vlasov solution fε with an electric field Eε = E0+εE1

for small ε. To this purpose, we use the Two-Scale Convergence theory to determine a first
order approximation F + εF1 of fε, then particle approximations to build an algorithm to
obtain a numerical approximation of F + εF1.

Résumé. On cherche à construire une méthode numérique pour l’évolution en temps long
de la solution fε de l’équation de Vlasov avec un champ électrique Eε = E0 + εE1 pour ε
petit. À cet effet, on utilise la théorie de la convergence à deux échelles pour obtenir une
approximation d’ordre un F + εF1 de fε, puis une méthode particulaire pour construire
l’algorithme d’approximation numérique de F + εF1.
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1. Introduction

In this paper, we are interested in the solution fε to the following Vlasov problem set in a
bi-dimensional phase space 

∂fε

∂t
+
v

ε

∂fε

∂r
+
(
Eε − r

ε

) ∂fε

∂v
= 0,

fε(t = 0, r, v) = f0(r, v).

(1.1)
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where fε : (t, r, v) 7→ fε(t, r, v), for t ∈ [0, T ), r ∈ R+ and v ∈ R. In (1.1), let

Eε(t, r) = E0

(
t,
t

ε
, r
)

+ εE1

(
t,
t

ε
, r
)
, (1.2)

where Ei=0,1 : (t, τ, r) 7→ Ei=0,1(t, τ, r) are regular and 2π-periodic with respect to τ . Our purpose
is to build a numerical method which is efficient for simulating the long time evolution of fε in the
limit ε→ 0.

In Section 2, we use Two-Scale Convergence theory to determine a first-order approximation
of fε, that is fε(t, r, v) ≈ F (t, t/ε, r, v) + ε F1(t, t/ε, r, v) where F : (t, τ, r, v) 7→ F (t, τ, r, v) and
F1 : (t, τ, r, v) 7→ F (t, τ, r, v) are 2π-periodic functions with respect to τ ∈ R.

We first remember in Section 2.1 that, for the zero order term, there exists a function G :
(t, q, u) 7→ G(t, q, u) solution of an initial boundary condition partial differential problem such that
F (t, τ, r, v) = G(t,Rτ (r, v)), where Rτ is the 2D-rotation of angle τ . In Section 2.2, we handle first
order term and show that there exist two functions G1 : (t, q, u) 7→ G1(t, q, u) and W : (t, τ, q, u) 7→
W (t, τ, q, u) such that F1(t, τ, r, v) = G1(t,Rτ (r, v)) + W (t, τ,Rτ (r, v)) where W can be computed
from ∇q,uG and G1 is yet the solution of an initial boundary condition partial differential problem.

In Section 3, we introduce a Particle-in-Cell based approximation to build a numerical algorithm
which will allow us to solve numerically the problems satisfied by G and G1 as well as to compute
a numerical approximation of W .

2. On Two-Scale Convergence statements. Main Result

The concept of Two-Scale Convergence was introduced at the end of the 80’s by Nguetseng [?,?].
In 1992, Allaire gave a very understandable proof of this result [?]. Then several authors used
this theory to build numerical methods called Two-Scale Numerical Methods (e.g. Frénod and
Sonnendrücker [?], Frénod, Salvarani and Sonnendrücker [?], or Mouton [?]). For more details
about Two-Scale Convergence theory, we refer to these authors and their references.

Let us here only recall the definition of the Two-Scale Convergence.

Definition 2.1. A function fε : (t, r, v) ∈ [0, T )×R2 7→ fε(t, r, v) Two-Scale converges as ε→ 0 to
a function F : (t, τ, r, v) ∈ [0, T )× R× R2 7→ F (t, τ, r, v) 2π-periodic in τ , if:∫ T

0

∫
R2

fε(t, r, v) [φ]ε(t, r, v) dr dv dt→
∫ T

0

∫ 2π

0

∫
R2

F (t, τ, r, v)φ(t, τ, r, v) dr dv dτ dt, (2.1)

as ε→ 0, for all φ ∈ C0 where Ci := Cic

(
[0, T );Ci#(R;Cic(R2))

)
for i = 0, 1.

Remark 2.1 (Notations). In the above definition and in the following of the paper, we introduce
the following general notations:
(i) Subscript # in space definition stands for 2π-periodicity in τ .
(ii) Bracket [·]ε stands for [φ]ε(t, r, v) := φ(t, t/ε, r, v) for any function φ depending of the four

variables (t, τ, r, v) ∈ [0, T )× R× R2.

Moreover, in the whole section we will use the 2D-rotation of angle τ of a two-dimensional vector.

Definition 2.2. For all τ ∈ [0, 2π] and all (r, v) ∈ R2, we define the 2D-rotation Rτ of angle τ by:

Rτ (r, v) =

(
cos τ − sin τ
sin τ cos τ

)(
r
v

)
=

(
r cos τ − v sin τ
r sin τ + v cos τ

)
. (2.2)

Its inverse in then given by R−τ whose first component is denoted by R−τr .
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Remark 2.2. Thanks to the above definition, we have that :

Rτ (r, v)·
(
q
u

)
=

(
r
v

)
· R−τ (q, u). (2.3)

Theorem 2.1. Let (fε)ε be a sequence of solutions to Vlasov problem (1.1) with the electric field
Eε given by (1.2). Therefore there exist two functions F : (t, τ, r, v) ∈ [0, T )×R×R2 7→ F (t, τ, r, v)
and F1 : (t, τ, r, v) ∈ [0, T )× R× R2 7→ F (t, τ, r, v) 2π-periodic with respect to τ ∈ R such that

fε(t, r, v) ≈ F
(
t,
t

ε
, r, v

)
+ ε F1

(
t,
t

ε
, r, v

)
, (2.4)

Moreover, regarding the zero order term, there exists a function G : (t, q, u) ∈ [0, T ) × R2 7→
G(t, q, u) such that

F (t, τ, r, v) = G(t,Rτ (r, v)), (2.5)
where Rτ is the rotation defined in Definition 2.2 and G is solution to the problem

∂G

∂t
(t, q, u) +

1

2π

∫ 2π

0

Rτ
(
0, E0

(
t, τ,R−τr (q, u)

))
dτ · ∇q,uG(t, q, u) = 0,

G(t = 0, q, u) =
1

2π
f0(q, u).

(2.6)

Regarding the first order term, there exist two functions G1 : (t, q, u) ∈ [0, T )×R2 7→ G1(t, q, u) and
W : (t, τ, q, u) ∈ [0, T )× R× R2 7→W (t, τ, q, u) such that

F1(t, τ, r, v) = G1(t,Rτ (r, v)) +W (t, τ,Rτ (r, v)), (2.7)

where on the one hand, W is given by

W (t, τ, q, u) =

[
τ

2π

∫ 2π

0

Rσ
(
0, E0

(
t, σ,R−σr (q, u)

))
dσ

−
∫ τ

0

Rσ
(
0, E0

(
t, σ,R−σr (q, u)

))
dσ

]
· ∇q,uG(t, q, u),

(2.8)

and on the other hand, G1 is solution to the problem

∂G1

∂t
(t, q, u) +

1

2π

∫ 2π

0

Rτ
(
0, E0

(
t, τ,R−τr (q, u)

))
dτ · ∇q,uG1(t, q, u) =

1

2π

∫ 2π

0

[ ∫ τ

0

Rσ
(

0,
∂E0

∂t

(
t, σ,R−σr (q, u)

))
dσ

− τ

2π

∫ 2π

0

Rσ
(

0,
∂E0

∂t

(
t, σ,R−σr (q, u)

))
dσ

]
dτ · ∇q,uG(t, q, u)

+

[
1

4π

∫ 2π

0

∇q,uRσ
(
0, E0

(
t, σ,R−σr (q, u)

))
dσ

∫ 2π

0

Rσ
(
0, E0

(
t, σ,R−σr (q, u)

))
dσ

− 1

2π

∫ 2π

0

(
∇q,uRτ

(
0, E0

(
t, τ,R−τr (q, u)

))∫ τ

0

Rσ
(
0, E0

(
t, σ,R−σr (q, u)

))
dσ
)
dτ

]
·∇q,uG(t, q, u) dτ,

G1(t = 0, q, u) = 0.

(2.9)
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Remark 2.3. Note that the expression of W in (2.8) as well as problems (2.6) and (2.9) do not de-
pend on 1/ε-frequency oscillations any more. The proof of Theorem 2.1 is given in the two following
sections.

2.1. Zero order approximation

Here, we briefly recall arguments developped in [?]. Let us consider the Vlasov equation for fε
in problem (1.1). First, we multiply by fε and integrate over r ∈ R+ and v ∈ R to obtain:

1

2

d
(
‖fε(t, ·, ·)‖2L2(R2)

)
dt

= 0, (2.10)

which leads to the following estimate:

‖fε‖L∞([0,T );L2(R2)) ≤ C. (2.11)

Then it is known that, up to a subsequence, (fε)ε Two-Scale converges to some F : (t, τ, r, v) 7→
F (t, τ, r, v) with F ∈ L∞

(
[0, T );L∞# (R, L2(R2))

)
. Now, we multiply Vlasov equation in (1.1) by

[φ]ε with φ ∈ C1, integrate over t ∈ [0, T ) and (r, v) ∈ R2 and then integrate by parts. Thus we show
that F satisfies in a weak sense the following equation

∂F

∂τ
+

(
v
−r

)
· ∇r,vF = 0, (2.12)

where we note that ε is not involved anymore. From (2.12), we deduce that F is constant along the
characteristics associated to this advection equation, and deduce from Theorem 4.2 in [?] that there
exists a function G : (t, q, u) ∈ [0, T )×R2 7→ G(t, q, u) such that (2.5) is satisfied with G is solution
to problem (2.6) of Theorem 2.1.

Remark 2.4. Let G : (t, q, u) ∈ [0, T ) × R2 7→ G(t, q, u) be a given function and define the family(
F ε
)
ε>0

by

[F ]ε(t, r, v) = G
(
t,Rt/ε(r, v)

)
. (2.13)

Then

(i) ∇r,v[F ]ε(t, r, v) = R−t/ε
(
∇q,uG

(
t,Rt/ε(r, v)

))
.

(ii)
∂[F ]ε

∂t
(t, r, v) +

1

ε

(
v
−r

)
· ∇r,v[F ]ε(t, r, v) =

∂G

∂t

(
t,Rt/ε(r, v)

)
.

2.2. First order approximation

We consider the zero order Two-Scale approximation F of fε introduced in section 2.1. Let us
define [F ]ε as in Remark 2.1(ii). Then thanks to Remark 2.4(ii)

∂[F ]ε

∂t
(t, r, v) +

1

ε

(
v
−r

)
· ∇r,v[F ]ε(t, r, v) =

∂G

∂t

(
t,Rt/ε(r, v)

)
. (2.14)

For the sake of simplicity in computations below, we introduce the notation Eε = E0(t, t/ε, r) +
εE1(t, t/ε, r) and omit the dependency of [F ]ε and its partial derivatives in (t, r, v). First, we add
the term Eε ∂[F ]ε/∂v on both sides of equation (2.14) to get (2.15). Then we rewrite the right-
hand-side to show up the term ∇r,v[F ]ε and get (2.16). Using Remark 2.4(i) then Remark 2.2, we
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obtain respectively (2.17) then (2.18).

∂[F ]ε

∂t
+

1

ε

(
v
−r

)
· ∇r,vF ε + Eε

∂[F ]ε

∂v
=

= Eε
∂[F ]ε

∂v
+
∂G

∂t

(
t,Rt/ε(r, v)

)
, (2.15)

=

(
0
Eε

)
· ∇r,v[F ]ε +

∂G

∂t

(
t,Rt/ε(r, v)

)
, (2.16)

=

(
0
Eε

)
· R−t/ε

(
∇q,uG

(
t,Rt/ε(r, v)

))
+
∂G

∂t

(
t,Rt/ε(r, v)

)
, (2.17)

= Rt/ε(0, Eε)· ∇q,uG
(
t,Rt/ε(r, v)

)
+
∂G

∂t

(
t,Rt/ε(r, v)

)
. (2.18)

To handle the right-hand-side of (2.18), we introduce the function Υε such that

Υε
(
t, τ, r, v

)
:= Rτ (0, Eε)· ∇q,uG

(
t,Rτ (r, v)

)
+
∂G

∂t
(t,Rτ (r, v)) . (2.19)

Then defining [Υε]ε as in Remark 2.1(ii), we can subtract (2.18) from (1.1) and multiply the result
by 1/ε to obtain

∂

∂t

(
fε − [F ]ε

ε

)
+

1

ε

(
v
−r

)
· ∇r,v

(
fε − [F ]ε

ε

)
+ Eε

∂

∂v

(
fε − [F ]ε

ε

)
= −1

ε
[Υε]ε. (2.20)

Now, let a function W ε : (t, τ, q, u) ∈ [0, T )× R× R2 7→W ε(t, τ, q, u) be such that

∂W ε

∂τ
(t, τ,Rτ (r, v)) = −Υε(t, τ, r, v). (2.21)

On the one hand, if we substitute Υε by its expression in (2.19) and then consider equation (2.21)
in variables (q, u) = Rτ (r, v), we obtain

∂W ε

∂τ
(t, τ, q, u) = −Rτ

(
0, Eε

(
t, τ,R−τr (q, u)

))
· ∇q,uG(t, q, u)− ∂G

∂t
(t, q, u). (2.22)

We substitute the time derivative of G in the right-hand-side of (2.22) by its expression in (2.6).
Integrating the result with respect to the second variable from 0 to τ gives

W ε(t, τ, q, u) =

[
τ

2π

∫ 2π

0

Rσ
(
0, E0

(
t, σ,R−σr (q, u)

))
dσ

−
∫ τ

0

Rτ
(
0, E0

(
t, τ,R−τr (q, u)

))
dσ

]
· ∇q,uG(t, q, u) (2.23)

− ε
∫ τ

0

Rτ
(
0, E1

(
t, τ,R−τr (q, u)

))
dσ · ∇q,uG(t, q, u).

When ε goes to 0 in (2.23), we obtain the limit W of W ε defined by (2.8) in Theorem 2.1.

On the other hand, let us introduce W̃ ε define by W̃ ε(t, τ, r, v) := W ε(t, τ,Rτ (r, v)). Therefore,
(2.21) is equivalent to

∂W̃ ε

∂τ

(
t, τ, r, v

)
+

(
v
−r

)
· ∇r,vW̃ ε

(
t, τ, r, v

)
= −Υε(t, τ, r, v). (2.24)
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Using Remark 2.1(ii), we note that ∂t[W̃ ε]ε = [∂tW̃
ε]ε + [∂τW̃

ε]ε/ε and ∂r,v[W̃
ε]ε = [∂r,vW̃

ε]ε so
that considering (2.24) in τ = t/ε and multiply the result by 1/ε leads to

∂[W̃ ε]ε

∂t
−

[
∂W̃ ε

∂t

]ε
+

1

ε

(
v
−r

)
· ∇r,v[W̃ ε]ε = −1

ε
[Υε]ε. (2.25)

Now, we subtract (2.25) from (2.20) and subtract from the both sides of the result the term
Eε ∂v[W̃

ε]ε to obtain

∂

∂t

(
fε − [F ]ε

ε
− [W̃ ε]ε

)
+

1

ε

(
v
−r

)
· ∇r,v

(
fε − [F ]ε

ε
− [W̃ ε]ε

)
+ Eε

∂

∂v

(
fε − [F ]ε

ε
− [W̃ ε]ε

)
= −

[
∂W̃ ε

∂t

]ε
− Eε ∂[W̃ ε]ε

∂v
. (2.26)

We want to obtain an a priori estimate in order to prove convergence result. Therefore we multiply

(2.26) by
fε − [F ]ε

ε
− [W̃ ε]ε and integrate by part. This leads to

1

2

d

dt

∥∥∥∥fε − [F ]ε

ε
− [W̃ ε]ε

∥∥∥∥2
L2(R2)

(t)

≤

∥∥∥∥∥
[
∂W̃ ε

∂t

]ε
+

(
0
Eε

)
· ∇r,v[W̃ ε]ε

∥∥∥∥∥
L2(R2)

(t)

∥∥∥∥fε − [F ]ε

ε
− [W̃ ε]ε

∥∥∥∥
L2(R2)

(t).

(2.27)

If the first factor on the right-hand-side of (2.27) is bounded, by Gronwall Lemma, we obtain the
following estimate ∥∥∥∥fε − [F ]ε

ε
− [W̃ ε]ε

∥∥∥∥
L∞([0,T );L2(R2))

≤ C. (2.28)

From this estimate, we deduce the following Two-Scale convergence result

fε − [F ]ε

ε
− [W̃ ε]ε −→ F1 − W̃ , (2.29)

where W̃ = W (t, τ,Rτ (r, v)) and W given by (2.8).
Now, we want to compute F1. Returning to (2.26), we multiply by φ ∈ C1 (see Definition 2.1),

integrate over t ∈ [0, T ) and (r, v) ∈ R2 and then integrate by parts. We obtain

−
∫ T

0

∫
R2

(
fε − [F ]ε

ε
− [W̃ ε]ε

)([
∂φ

∂t

]ε
+ Eε

[
∂φ

∂v

]ε)
dr dv dt

−1

ε

∫ T

0

∫
R2

(
fε − [F ]ε

ε
− [W̃ ε]ε

)([
∂φ

∂τ

]ε
+

(
v
−r

)
· [∇r,vφ]

ε

)
dr dv dt

= −
∫ T

0

∫
R2

([
∂W̃ ε

∂t

]ε
−
(

0
Eε

)
·
[
∇r,vW̃ ε

]ε)
[φ]

ε
dr dv dt.

(2.30)

Multiplying (2.30) by ε and passing to the limit using the Two-Scale convergence (2.29), we obtain

∂

∂τ

(
F1 − W̃

)
+

(
v
−r

)
· ∇r,v

(
F1 − W̃

)
= 0, (2.31)
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in a weak sense. Thus, F1 − W̃ is constant along the characteristics so that there exists a function
G1 : (t, q, u) ∈ [0, T )× R2 7→ G1(t, q, u) such that

F1(t, τ, r, v)− W̃ (t, τ, r, v) = G1(t,Rτ (r, v)), (2.32)

and therefore, thanks to the definition of W̃ , we obtain the decomposition (2.7) of F1 in Theorem
2.1. Now, let γ : (t, q, u) ∈ [0, T )× R2 7→ γ(t, q, u) a function in C1

c

(
[0, T );C1

c (R2)
)
such that

φ(t, τ, r, v) = γ(t,Rτ (r, v)). (2.33)

We consider (2.30) for this function φ. Then, the second term on the left hand side cancels and we
obtain ∫ T

0

∫
R2

(
fε − [F ]ε

ε
− [W̃ ε]ε

)([
∂φ

∂t

]ε
+ Eε

[
∂φ

∂v

]ε)
dr dv dt

= −
∫ T

0

∫
R2

([
∂W̃ ε

∂t

]ε
−
(

0
Eε

)
·
[
∇r,vW̃ ε

]ε)
[φ]

ε
dr dv dt.

(2.34)

Thanks to the Two-Scale convergence, we pass to the limit as ε → 0 and integrate over τ ∈ [0, 2π]
which leads to

∫ T

0

∫ 2π

0

∫
R2

G1 (t,Rτ (r, v))

(
∂φ

∂t
+

(
0
E0

)
· ∇r,vφ

)
dr dv dτ dt

=

∫ T

0

∫ 2π

0

∫
R2

(
∂W̃

∂t
−
(

0
E0

)
· ∇r,vW̃

)
φ dr dv dτ dt.

(2.35)

Then substituting φ by its expression in terms of γ and changing the variables (r, v) in (q, u) =
Rτ (r, v) that is (r, v) = R−τ (q, u) gives

∫ T

0

∫ 2π

0

∫
R2

G1(t, q, u)

(
∂γ

∂t
(t, q, u)

+Rτ
(
0, E0

(
t, τ,R−τr (q, u)

))
· ∇q,uγ(t, q, u)

)
dq du dτ dt (2.36)

=

∫ T

0

∫ 2π

0

∫
R2

(
∂W

∂t
(t, τ, q, u)

+Rτ
(
0, E0

(
t, τ,R−τr (q, u)

))
· ∇q,uW (t, τ, q, u)

)
γ(t, q, u) dq du dτ dt.

We finally deduce that G1 satisfies, in a weak sense, the following problem



∂G1

∂t
(t, q, u) +

1

2π

∫ 2π

0

Rτ
(
0, E0

(
t, τ,R−τr (q, u)

))
dτ · ∇q,uG1(t, q, u) =

− 1

2π

∫ 2π

0

(
∂W

∂t
(t, τ, q, u) +Rτ

(
0, E0

(
t, τ,R−τr (q, u)

))
· ∇q,uW (t, τ, q, u)

)
dτ

G1(t = 0, q, u) = 0.

(2.37)
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To handle the right hand side of (2.37), we need to compute the partial derivatives of W . First from
(2.8), we have that

∂W

∂t
(t, τ, q, u) =

[
τ

2π

∫ 2π

0

Rσ
(

0,
∂E0

∂t

(
t, σ,R−σr (q, u)

))
dσ

−
∫ τ

0

Rσ
(

0,
∂E0

∂t

(
t, σ,R−σr (q, u)

))
dσ

]
· ∇q,uG(t, q, u)

+

[
τ

2π

∫ 2π

0

Rσ
(
0, E0

(
t, σ,R−σr (q, u)

))
dσ

−
∫ τ

0

Rσ
(
0, E0

(
t, σ,R−σr (q, u)

))
dσ

]
· ∇q,u

∂G

∂t
(t, q, u),

(2.38)

so that we can then replace ∂tG by its expression in (2.6) to get

∂W

∂t
(t, τ, q, u) =

[
τ

2π

∫ 2π

0

Rσ
(

0,
∂E0

∂t

(
t, σ,R−σr (q, u)

))
dσ

−
∫ τ

0

Rσ
(

0,
∂E0

∂t

(
t, σ,R−σr (q, u)

))
dσ

]
· ∇q,uG(t, q, u)

+

[
τ

2π

∫ 2π

0

Rσ
(
0, E0

(
t, σ,R−σr (q, u)

))
dσ

−
∫ τ

0

Rσ
(
0, E0

(
t, σ,R−σr (q, u)

))
dσ

]
·

·
[[ 1

2π

∫ 2π

0

∇q,uRσ
(
0, E0

(
t, σ,R−σr (q, u)

))
dσ
]
∇q,uG(t, q, u)

+Hq,uG(t, q, u)
1

2π

∫ 2π

0

Rσ
(
0, E0

(
t, σ,R−σr (q, u)

))
dσ

]
,

(2.39)

where Hq,u is the Hessian matrix with respect to variable q an u. Next, from (2.8), we deduce that

∇q,uW (t, τ, q, u) =

[
τ

2π

∫ 2π

0

∇q,uRσ
(
0, E0

(
t, σ,R−σr (q, u)

))
dσ

−
∫ τ

0

∇q,uRσ
(
0, E0

(
t, σ,R−σr (q, u)

))
dσ

]
· ∇q,uG(t, q, u)

+ Hq,uG(t, q, u)

[
τ

2π

∫ 2π

0

Rσ
(
0, E0

(
t, σ,R−σr (q, u)

))
dσ

−
∫ τ

0

Rσ
(
0, E0

(
t, σ,R−σr (q, u)

))
dσ

]
.

(2.40)

We consider the scalar product of (2.40) by vector Rτ
(
0, E0

(
t, τ,R−τr (q, u)

))
, sum the result with

(2.39) and then integrate over τ ∈ [0, 2π]. Using Fubini’s Theorem for the terms involving the
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Hessian matrix of G which is symmetric yields

∫ 2π

0

(
∂W

∂t
(t, τ, q, u) +Rτ

(
0, E0

(
t, τ,R−τr (q, u)

))
· ∇q,uW (t, τ, q, u)

)
dτ

=

∫ 2π

0

[
τ

2π

∫ 2π

0

Rσ
(

0,
∂E0

∂t

(
t, σ,R−σr (q, u)

))
dσ

−
∫ τ

0

Rσ
(

0,
∂E0

∂t

(
t, σ,R−σr (q, u)

))
dσ

]
· ∇q,uG(t, q, u) dτ

+

∫ 2π

0

[[
τ

2π

∫ 2π

0

∇q,uRσ
(
0, E0

(
t, σ,R−σr (q, u)

))
dσ

−
∫ τ

0

∇q,uRσ
(
0, E0

(
t, σ,R−σr (q, u)

))
dσ

]
Rτ
(
0, E0

(
t, τ,R−τr (q, u)

))
− 1

2π

∫ 2π

0

∇q,uRσ
(
0, E0

(
t, σ,R−σr (q, u)

))
dσ[

τ

2π

∫ 2π

0

Rσ
(
0, E0

(
t, σ,R−σr (q, u)

))
dσ

−
∫ τ

0

Rσ
(
0, E0

(
t, σ,R−σr (q, u)

))
dσ

]]
· ∇q,uG(t, q, u) dτ

−
∫ 2π

0

Hq,uG(t, q, u)

[
τ

2π

∫ 2π

0

Rσ
(
0, E0

(
t, σ,R−σr (q, u)

))
dσ

−
∫ τ

0

Rσ
(
0, E0

(
t, σ,R−σr (q, u)

))
dσ

]
·

·
[

1

2π

∫ 2π

0

Rσ
(
0, E0

(
t, σ,R−σr (q, u)

))
dσ

−Rτ
(
0, E0

(
t, τ,R−τr (q, u)

))]
dτ.

(2.41)

For both last factors on the right hand side of (2.41), we remark that the second one is the exact
derivative of the first one with respect to τ . Since the Hessian matrix is symmetric and does not
depend on τ , we can take it out of the integral. Thus, the remaining integrand is the exact derivative
of a quadratic form with respect to variable τ , so that integrating over a period in τ gives 0. Moreover,
we can perform an integration by parts in the first part of the second term on the right hand side
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of (2.41). We obtain∫ 2π

0

(
∂W

∂t
(t, τ, q, u) +Rτ

(
0, E0

(
t, τ,R−τr (q, u)

))
· ∇q,uW (t, τ, q, u)

)
dτ

=

∫ 2π

0

[
τ

2π

∫ 2π

0

Rσ
(

0,
∂E0

∂t

(
t, σ,R−σr (q, u)

))
dσ

−
∫ τ

0

Rσ
(

0,
∂E0

∂t

(
t, σ,R−σr (q, u)

))
dσ

]
· ∇q,uG(t, q, u) dτ

−
∫ 2π

0

[[
1

2π

∫ 2π

0

∇q,uRσ
(
0, E0

(
t, σ,R−σr (q, u)

))
dσ

−∇q,uRτ
(
0, E0

(
t, τ,R−τr (q, u)

))] ∫ τ

0

Rσ
(
0, E0

(
t, σ,R−σr (q, u)

))
dσ

− 1

2π

∫ 2π

0

∇q,uRσ
(
0, E0

(
t, σ,R−σr (q, u)

))
dσ[

τ

2π

∫ 2π

0

Rσ
(
0, E0

(
t, σ,R−σr (q, u)

))
dσ

−
∫ τ

0

Rσ
(
0, E0

(
t, σ,R−σr (q, u)

))
dσ

]]
· ∇q,uG(t, q, u) dτ.

(2.42)

In the second term on the right hand side of (2.42), we remark that first and last products cancel.
Moreover, τ/2π is the only factor depending of τ in the third product, integration of which over
[0, 2π] gives π. Substituting the right-hand side of equation in problem (2.37) by its expression in
(2.42) finally leds to problem (2.9)

3. Numerical algorithm

To build our numerical algorithm, we use a Particle-in-Cell (PIC) method, that deals with
macroparticles rather than directly with the distribution function.

Theorem 2.1 tells that, provided that problem (2.6) is solved and space derivatives of G can be
computed, then we can compute W from (2.8) and source term in problem (2.9). Then it remains
to solve problem (2.9) to obtain G1. From G, G1 and W , we finally get the Two-Scale first order
approximation of fε thanks to (2.4), (2.5) and (2.7). Thus, the main steps of the algorithm are the
following.

Main steps of the algorithm
(i) Compute a particle approximation of G, that is push the macroparticles with respect to the

advection operator associated to the partial differential equation in problem (2.6) as in [?].
(ii) Compute an approximation of the gradient ∇q,uG from the particle approximation of G which

is compatible with the desired particle approximation of W.
(iii) Compute a particle approximation of W from equation (2.8).
(iv) Compute a particle approximation of the source term of the partial differential equation in

problem (2.9), and then a particle approximation of G1 by solving problem (2.9) with the same
advection operator than in problem (2.6).

To deal with the first step, we introduce the following particle approximation of function G

G(t, q, u) =

Np∑
k=1

ωk δ(q = Qk(t)) δ(u = Uk(t)), (3.1)
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where δ is the Dirac mass, Np is the number of macroparticles and (Qk(t), Uk(t)) is the position in
phase space of macroparticle k which moves along a characteristic curve of the equation in (2.6).
Hence our problem is reduced to compute the location of macroparticles at the next time step from
their positions at the previous time step, as the solution of the following dynamical system

d

dt

(
Qk
Uk

)
=

1

2π

∫ 2π

0

Rτ
(
0, E0

(
t, τ,R−τr (Qk, Uk)

))
dτ. (3.2)

The main difficulty to solve coupled problem (3.2) lies in the fact that we need to approximate the
integral term. A solution to this problem is described in section 5.1 of [?].

Once the macroparticles are pushed along the characteristics, we can compute G at the next
time step. Applying the ad hoc rotation, we then obtain a particle approximation of F from (2.5).
Finally, evaluating this approximation in τ = t/ε gives the zero order approximation of fε.

For the second step of the algorithm, we need to recover an approximation of the space derivatives
of G thanks to the particle approximation of G. Therefore, a regularization of approximation (3.1)
is needed. To this purpose, we introduce a regular function γα with support included in the intervall
[0, α], and such that the function γαk : (q, u) 7→ γα

(√
(q −Qk(t))2 + (u− Uk(t))2

)
has an integral

over q and u with worth 1. Thus a regularization of (3.1) is given by

G(t, q, u) =

Np∑
k=1

ωk γ
α
(√

(q −Qk(t))2 + (u− Uk(t))2
)
, (3.3)

Thus we can compute numerical approximations of the space derivatives of G.

Now we can handle the third step of the algorithm. Indeed, in (2.8), we can compute an approx-
imation of the right hand side which has the following shape

Np∑
k=1

βk(t, τ, q, u) (γα)′
(√

(q −Qk(t))2 + (u− Uk(t))2
)
. (3.4)

In order to get W , we need to distribute the above approximation over the macroparticles. Let the
particle approximation of W be given by

W (t, τ, q, u) =

Np∑
k=1

β̃k(t, τ) δ(q = Qk(t)) δ(u = Uk(t)), (3.5)

which can be regularized by

W (t, τ, q, u) =

Np∑
k=1

β̃k(t, τ) γα
(√

(q −Qk(t))2 + (u− Uk(t))2
)
. (3.6)

Then we want that all the integrals of the sums in (3.4) and (3.6) over each subdomain of the phase
space are almost equals. From the numerical point of view, we want to verify this proximity only
for the support Ci of functions γαi that is

∫
Ci

Np∑
k=1

β̃k(t, τ) γαk (q, u) dq du =

∫
Ci

Np∑
k=1

βk(t, τ, q, u) γαk (q, u) dq du, (3.7)
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which writes again

Np∑
k=1

β̃k(t, τ)

∫
Ci

γαk (q, u) dq du =

∫
Ci

Np∑
k=1

βk(t, τ, q, u) γαk (q, u) dq du. (3.8)

Therefore we can determine the coefficient β̃k of the particle approximation of W up to the solution
the linear system (3.8).

Finally, we consider the last step of the algorithm. We want to build a particle approximation
of G1 from problem (2.9). We first note that in this problem, the advection operator is exactly the
same than in problem (2.6). Therefore the macroparticles to approximate G1 can be chosen as being
localized exactly at the same phase space locations as the ones used to approximate G. Thus G1 is
approximated by

G1(t, q, u) =

Np∑
k=1

ω1
k(t) δ(q = Qk(t)) δ(u = Uk(t)), (3.9)

where the weights ω1
k now depend on time t, which allows to take into account the effect of the

source term on the right-hand side of the equation in (2.9). Once more, we can regularize this
approximation by

G1(t, q, u) =

Np∑
k=1

ω1
k(t) γα

(√
(q −Qk(t))2 + (u− Uk(t))2

)
. (3.10)

Then we handle the right hand side of equation in problem (2.9) exactly as for W . Indeed, approx-
imation of this term has the following shape

Np∑
k=1

ηk(t, τ, q, u) (γα)′
(√

(q −Qk(t))2 + (u− Uk(t))2
)
. (3.11)

Therefore in order to distribute this approximation on the macroparticles, we want to determine η̃k
such that ∫

Ci

Np∑
k=1

η̃k(t, τ) γαk (q, u) dq du =

∫
Ci

Np∑
k=1

ηk(t, τ, q, u) γαk (q, u) dq du, (3.12)

which writes again

Np∑
k=1

η̃k(t, τ)

∫
Ci

γαk (q, u) dq du =

∫
Ci

Np∑
k=1

ηk(t, τ, q, u) γαk (q, u) dq du. (3.13)

Therefore we can determine the coefficient η̃k up to the solution the linear system (3.13). Since G1

is solution to problem (2.9), we finally have that

dω1
k

dt
= η̃k, (3.14)

that needs to be numerically solved to get the full approximation of G1.
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