Feuille 1: SCILAB

Vous avez en main le poly de B.Ycart. Je vous invite à apprendre à manipuler scilab en lisant ce poly. Il est plein d'exemples que vous pouvez tester au fur et à mesure.

Vous allez lire la partie 1 : Vecteurs et matrices. Vous laissez la partie 2 pour la maison, c'est pour faire des graphiques (on en fera aussi, mais aujourd'hui occupons-nous d'algèbre linéaire). Vous passez donc à la partie 3.1, puis à la partie 4 : programmation, où on apprend la syntaxe d'une fonction.

Pour mettre en pratique les choses vues, je vous invite à faire les exercices suivants :

Exercice 1. Construire les matrices suivantes en utilisant le moins d'opérations possibles :

$$A = \begin{pmatrix} 1 & 2 \\ 9 & 7 \end{pmatrix}, B = \begin{pmatrix} 2 & 0 & 1 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}, C = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & 2 \\ 1 & 1 & 1 \end{pmatrix}.$$

Exercice 2. Construire la matrice de taille 100*100 de la forme suivante :

$$\begin{pmatrix} 2 & 1 & 0 & \dots & 0 \\ 0 & 2 & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ \vdots & & \ddots & \ddots & 1 \\ 0 & \dots & \dots & 0 & 2 \end{pmatrix}$$

Exercice 3. Calculer la somme des entiers de 1 jusqu'à 100, calculer 100!. Donner une façon de calculer toutes les valeurs du cosinus sur les entiers de 1 à 100 le plus rapidement possible.

Exercice 4. utilisation des commandes for, while et if

- 1. Créer une matrice M de dimension 8×10 telle que $M_{i,j} = i + j$.
- 2. Créer une matrice M de dimension 3×6 telle que $M_{i,j} = 1$ si $i \neq j$, $M_{i,j} = 0$ si i = j.
- 3. Calculer les valeurs de la suite u_n définie par :

$$\begin{cases} u_{n+1} = 2u_n + 3 \\ u_0 = 1 \end{cases}$$

pour $n = 1, \dots, 10$, et garder ces valeurs dans un vecteur.

- 4. Calculer la 15ème itérée de cette même suite (sans garder les valeurs dans un vecteur).
- 5. Calculer les itérées de cette suite tant que $u_n \leq 100$ et afficher la dernière valeur avant 100.
- 6. Calculer les valeurs de la suite de Fibonacci définie par :

$$\begin{cases} u_{n+2} = u_{n+1} + u_n \\ u_0 = 0 \\ u_1 = 1 \end{cases}$$

pour $n=2,\cdots,20$, et garder ces valeurs dans un vecteur.

7. Calculer la 25ème itérée de la suite de Fibonacci (sans garder les valeurs dans un vecteur).

Exercices 1, 2, 3, 12, 13 du poly de B. Ycart