

Documents autorisés : Non Durée : 1h15

Exercice 1. Calculer l'intégrale suivante : $\int_0^1 t^3 dt$.

Exercice 2. On considère le problème de biologie très simplifié d'un animal situé dans une zone où il dispose de deux types de ressource alimentaire R_1 et R_2 . La zone contient 500 grammes de R_1 et 1000 grammes de R_2 . L'ingestion d'un gramme de R_1 apporte à l'animal une quantité d'énergie égale à 1; et, l'ingestion d'un gramme de R_2 lui apporte une quantité d'énergie égale à 2. Pour ingérer un gramme de R_1 l'animal met 0,2 minutes et pour ingérer un gramme de R_2 l'animal met 0,5 minutes. L'animal dispose de 550 minutes.

Dans la suite, on appelle x_1 la masse de R_1 ingérée par l'animal et x_2 la masse de R_2 ingérée par l'animal.

- 1. Pour une masse x_1 donnée et une masse x_2 donnée ingérées, donner l'énergie acquise par l'animal.
- 2. Traduire les contraintes données ci-dessus en inéquations.
- 3. Représenter le polygone dont l'intérieur représente l'ensemble de (x_1, x_2) satisfaisant les contraintes.
- 4. Donner la masse de R_1 et la masse de R_2 qui maximisent l'énergie que l'animal peut acquérir. Avec ces masses, combien d'énergie obtient-il?

Exercice 3. Etude de la suite (U_n) définie par $U_{n+1} = \sqrt{U_n}$ pour tout $n \ge 1$, et avec $U_0 = 0,1$.

- 1. Tracer la représentation graphique de la fonction $x\mapsto \sqrt{x}$ sur [0,1].
- 2. Tracer graphiquement l'évolution de la suite (U_n) pour n=0,1,2,3.

Exercice 4. Calculer les intégrales suivantes :

1.
$$\int_0^1 x \cos(x^2) dx$$
 2. $\int_0^\pi \cos^4(x) \sin(x) dx$

Exercice 5. Calculer par Intégration Par Parties (IPP) l'intégrale suivante : $\int_0^{2\pi} x e^x dx$.