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Abstra
t. The fundamental inequality of Guivar
'h relates the entropy and the drift of

random walks on groups. It is stri
t if and only if the random walk does not behave like

the uniform measure on balls. We prove that, in any nonelementary hyperboli
 group

whi
h is not virtually free, endowed with a word distan
e, the fundamental inequality is

stri
t for symmetri
 measures with �nite support, uniformly for measures with a given

support. This answers a 
onje
ture of S. Lalley. For admissible measures, this is proved

using previous results of An
ona and Bla
hère-Haïssinsky-Mathieu. For non-admissible

measures, this follows from a 
ounting result, interesting in its own right: we show that, in

any in�nite index subgroup, the proportion of non-distorted points is exponentially small.

The uniformity is obtained by studying the behavior of measures that degenerate towards

a measure supported on an elementary subgroup.

1. Main results

Let Γ be a �nitely generated in�nite group. Although the following dis
ussion makes

sense in a mu
h broader 
ontext, we will assume that Γ is hyperboli
 sin
e all results of

this arti
le are devoted to this setting. There are two natural ways to 
onstru
t random

elements in Γ:

• Let d be a proper left-invariant distan
e on Γ (for instan
e a word distan
e). For

large n, one 
an pi
k an element at random with respe
t to the uniform measure ρn
on the ball Bn = B(e, n) (where e denotes the identity of Γ).

• Let µ be a probability measure on Γ. For large n, one 
an pi
k an element at

random with respe
t to the measure µ∗n
(the n-th 
onvolution of the measure µ).

Equivalently, let g1, g2, . . . be a sequen
e of random elements of Γ that are distributed

independently a

ording to µ. Form the random walk Xn = g1 · · · gn. Then the

distribution of Xn is µ∗n
.

From a theoreti
al point of view, these methods share a lot of properties. From a 
ompu-

tational point of view, the se
ond method is mu
h easier to implement in general groups

sin
e it does not require the 
omputation of the ball Bn (note however that, in hyperboli


groups, simulating the uniform measure is very easy thanks to the automati
 stru
ture of

the group). It is therefore of interest to �nd probability measures µ su
h that these two

methods give equivalent results, in a sense that will be made pre
ise below. This is the

main question of Vershik in [Ver00℄. In free groups (with the word distan
e 
oming from

the usual set of generators), everything 
an be 
omputed: if µ is the uniform measure on

the generators, then µ∗n
and ρn behave essentially in the same way. The situation is the
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same in free produ
ts of �nite groups, again thanks to the underlying tree stru
ture. How-

ever, in more 
ompli
ated groups, expli
it 
omputations are essentially impossible, and it

is expe
ted that the methods always di�er. Our main result 
on�rms this intuition in a

spe
ial 
lass of groups: In hyperboli
 groups whi
h are not virtually free (i.e., there is no

�nite index free subgroup), if d is a word distan
e, the two methods are always di�erent, in

a pre
ise quantitative way.

Remark 1.1. We emphasize that the question really depends on the 
hoi
e of the distan
e

d, sin
e the shape of the balls Bn depends on d. For instan
e, for any symmetri
 probability

measure µ on Γ whose support is �nite and generates Γ, there exists a distan
e d (
alled

the Green distan
e, see [BHM11℄) for whi
h the measures ρn and µ∗n
behave in the same

way. A famous open problem (to whi
h our methods do not apply) is to understand what

happens when Γ a
ts 
o
ompa
tly on the hyperboli
 spa
e H
k
, and the distan
e d is given

by d(e, γ) = dHk(O, γ · O) where O is a base point in H
k
. In this 
ase, it is also expe
ted

that the two methods are always di�erent. Here are the main partial results in this 
ontext:

(1) The two methods are di�erent for some symmetri
 measures with �nite support

([LP07℄, see also Theorem 5.9 below).

(2) If, instead of a 
o
ompa
t latti
e, one 
onsiders a latti
e with 
usps, the two methods

are always di�erent [GLJ93℄.

(3) If, instead of a latti
e, one 
onsiders a ni
e dense subgroup, there exist symmetri


measures with �nite support for whi
h the two methods are equivalent [Bou12℄.

This question also makes sense in 
ontinuous time, for negatively 
urved manifolds. A


onje
ture of Sullivan asserts that, in this setting, the two methods 
oin
ide if and only if

the manifold is lo
ally symmetri
, see [Led95℄.

One 
an give several meanings to the question �are the two methods equivalent?� Let us

�rst dis
uss an interpretation in terms of behavior at in�nity. The measures µ∗n

onverge in

the geometri
 
ompa
ti�
ation Γ∪ ∂Γ to a measure µ∞, supported on the boundary, 
alled

the exit measure of the random walk, or its stationary measure. Geometri
ally, the random

walk (Xn)n>1 
onverges almost surely to a random point on the boundary ∂Γ, the measure

µ∞ is its distribution. On the other hand, let ρ∞ be the Patterson-Sullivan measure on ∂Γ
asso
iated to the distan
e d, 
onstru
ted in [Coo93℄ in this 
ontext. One should think of

it as the uniform measure on the boundary (it is equivalent to the Hausdor� measure of

maximal dimension on the boundary, for any visual distan
e 
oming from d). The measures

ρn do not always 
onverge to ρ∞, but all their limit points are equivalent to ρ∞, with a

density bounded from above and from below (this follows from the arguments of [Coo93℄,

see Lemma 2.13 below). A version of the question is then to ask if the measures µ∞ and

ρ∞ are mutually singular: in this 
ase, the random walk mainly visits parts of the groups

that are not important from the point of view of the uniform measure.

Another version of the same question is quantitative: Does the random walk visit parts of

the groups that are exponentially negligible from the point of view of the uniform measure?

This is made pre
ise through the notions of drift and entropy. De�ne

(1.1) L(µ) =
∑

g∈Γ

µ(g)|g|, H(µ) =
∑

g∈Γ

µ(g)(− log µ(g)),
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where |g| = d(e, g). The quantity L(µ) is the average distan
e of an element to the identity.

The quantity H(µ), 
alled the time one entropy of µ, is the average logarithmi
 weight of

the points. They 
an both be �nite or in�nite. The fun
tions L and H both behave in a

subadditive way with respe
t to 
onvolution: L(µ1 ∗ µ2) 6 L(µ1) +L(µ2) and H(µ1 ∗ µ2) 6
H(µ1) +H(µ2). It follows that the sequen
es L(µ∗n) and H(µ∗n) are subadditive. Hen
e,

the following quantities are well de�ned:

(1.2) ℓ(µ) = limL(µ∗n)/n, h(µ) = limH(µ∗n)/n.

They are 
alled respe
tively the drift and the asymptoti
 entropy of the random walk.

They also admit 
hara
terizations along typi
al traje
tories. If L(µ) is �nite, then almost

surely ℓ(µ) = lim|Xn|/n. In the same way, if H(µ) is �nite, then almost surely h(µ) =
lim(− log µ∗n(Xn))/n. The most intuitive 
hara
terization of the entropy is probably the

following one: at time n, the random walk is essentially supported by eh(µ)n points (see

Lemma 2.4 for a pre
ise statement). Let us also de�ne the exponential growth rate of the

group with respe
t to d, i.e.,

(1.3) v = lim inf
n→∞

log|Bn|
n

,

where Bn is the ball of radius n around e. In hyperboli
 groups, it satis�es the apparently

stronger inequality C−1env 6 |Bn| 6 Cenv, by [Coo93℄. For large n, most points for

µ∗n
are 
ontained in a ball B(1+ε)ℓn, whi
h has 
ardinality at most e(1+2ε)ℓnv

. Sin
e the

random walk at time n essentially visits ehn points, we dedu
e the fundamental inequality

of Guivar
'h [Gui80℄

h 6 ℓv.

If this inequality is an equality, this means that the walk visits most parts of the group.

Otherwise, it is 
on
entrated in an exponentially small subset. Another version of our main

question is therefore: Is the inequality h 6 ℓv stri
t?

In hyperboli
 groups, it turns out that the two versions of the question are equivalent,

at least for �nitely supported measures, and that they also have a geometri
 interpretation

in terms of Hausdor� dimension. If µ is a probability measure on a group, we write Γ+
µ

for the semigroup generated by the support of µ, and Γµ for the group it generates. When

µ is symmetri
, they 
oin
ide. We say that µ is admissible if Γ+
µ = Γ. The following

result is Corollary 1.4 and Theorem 1.5 in [BHM11℄ (see also [Haï13℄) when the measure is

symmetri
, and is proved in [Tan14℄ when µ is not ne
essarily symmetri
 and d is a word

distan
e.

Theorem 1.2. Let Γ be a non-elementary hyperboli
 group, endowed with a left-invariant

distan
e d whi
h is hyperboli
 and quasi-isometri
 to a word distan
e. Let v be the expo-

nential growth rate of (Γ, d). Let d∂Γ be a visual distan
e on ∂Γ asso
iated to d. Consider

an admissible probability measure µ on Γ, with �nite support. Assume additionally either

that the measure µ is symmetri
, or that the distan
e d is a word distan
e. The following


onditions are equivalent:

(1) The equality h = ℓv holds.

(2) The Hausdor� dimension of the exit measure µ∞ on (∂Γ, d∂Γ) is equal to the Haus-

dor� dimension of this spa
e.
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(3) The measure µ∞ is equivalent to the Patterson-Sullivan measure ρ∞.

(4) The measure µ∞ is equivalent to the Patterson-Sullivan measure ρ∞, with density

bounded from above and from below.

(5) There exists C > 0 su
h that, for any g ∈ Γ,

|vd(e, g) − dµ(e, g)| 6 C,

where dµ is the �Green distan
e� asso
iated to µ, i.e., dµ(e, g) = − log P(∃n,Xn =
g) where Xn is the random walk given by µ starting from the identity (it is an

asymmetri
 distan
e in general, and a genuine distan
e if µ is symmetri
).

The di�erent statements in this theorem go from the weakest to the strongest: sin
e

entropy is an asymptoti
 quantity, an assumption on h seems to allow subexponential �u
-

tuations, so the assumption (1) is rather weak. On the other hand, (3) says that two

measures are equivalent, so most points are 
ontrolled. Finally, in (5), all points are uni-

formly 
ontrolled. The equivalen
e between these statements is a strong rigidity theorem.

The equivalen
e between (1) and (2) follows from a formula for the respe
tive dimensions.

The de�nition of a visual distan
e at in�nity d∂Γ involves a small parameter ε. In terms of

this parameter, one has HD(µ∞) = h/(εℓ) and HD(ρ∞) = HD(∂Γ) = v/ε, so that these

dimensions 
oin
ide if and only if h = ℓv.
In this theorem, the �nite support assumption 
an be weakened to an assumption of

superexponential moment (i.e., for all M > 0,
∑

g∈Γ µ(g)e
M |g| < ∞), thanks to [Gou13℄.

The assumption that µ is symmetri
 or that d is a word distan
e is probably not ne
essary.

However, the most important assumption in Theorem 1.2 is admissibility: it ensures that

the random walk 
an see the geometry of the whole group (whi
h is hyperboli
). For a

random walk living in a stri
t (maybe distorted) subgroup, one would not be expe
ting the

same ni
e behavior.

Our main theorem follows. It states that, in hyperboli
 groups whi
h are not virtually

free, endowed with a word distan
e, the di�erent equivalent 
onditions of Theorem 1.2 are

never satis�ed, uniformly on measures with a �xed support.

Theorem 1.3. Let Γ be a hyperboli
 group whi
h is not virtually free, endowed with a word

distan
e d. Let Σ be a �nite subset of Γ. There exists c < 1 su
h that, for any symmetri


probability measure µ supported in Σ,

h(µ) 6 cℓ(µ)v,

where v is the exponential growth rate of balls in (Γ, d).

This theorem gives a positive answer to a 
onje
ture of S. Lalley [Lal14, slide 16℄. In the

language of Vershik [Ver00℄, this theorem says that no �nite subset of Γ is extremal. On

the other hand, if one lets Σ grow, h/ℓ 
an 
onverge to v:

Theorem 1.4. Let Γ be a hyperboli
 group, endowed with a left invariant distan
e d whi
h

is hyperboli
 and quasi-isometri
 to a word distan
e. Let ρi be the uniform measure on the

ball of radius i. Then h(ρi)/ℓ(ρi) → v, where v is the exponential growth rate of balls in

(Γ, d).

More pre
isely, we prove that ℓ(ρi) ∼ i and h(ρi) ∼ iv. The only di�
ulty is to prove the

lower bound on h(ρi): sin
e h is de�ned in (1.2) using a subadditive sequen
e, upper bounds
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are automati
, but to get lower bounds one should show that additional 
an
ellations do

not happen later on. This di�
ulty already appears in [EK13℄, where the authors prove

that the entropy depends 
ontinuously on the measure. Our proof of Theorem 1.4, given

in Paragraph 2.5, also applies to this situation and gives a new proof of their result, under

slightly weaker assumptions. There is nothing spe
ial about the uniform measure on balls,

our proof also gives the same 
on
lusion for the uniform measure on spheres, or for the

measures

∑

e−s|g|δg/
∑

e−s|g|
when s ց v.

Our main result is Theorem 1.3. It is a 
onsequen
e of the three following results. Sin
e

their main aim is Theorem 1.3, they are designed to handle �nitely supported symmetri


measures. However, these theorems are all valid under weaker assumptions, whi
h we spe
ify

in the statements as they 
arry along impli
it information on the te
hniques used in the

proofs.

The �rst result deals with admissible (or virtually admissible) measures.

Theorem 1.5. Let Γ be a hyperboli
 group whi
h is not virtually free, endowed with a word

distan
e. Let µ be a probability measure with a superexponential moment, su
h that Γ+
µ is a

�nite index subgroup of Γ. Then h(µ) < ℓ(µ)v.

The se
ond result deals with non-admissible measures.

Theorem 1.6. Let Γ be a hyperboli
 group endowed with a word distan
e. Let µ be a

probability measure with a moment of order 1 (i.e., L(µ) < ∞). Assume that ℓ(µ) > 0 and

that Γµ has in�nite index in Γ. Then h(µ) < ℓ(µ)v.

Finally, the third result is a kind of 
ontinuity statement, to get the uniformity.

Theorem 1.7. Let Γ be a hyperboli
 group, endowed with a left-invariant distan
e whi
h is

hyperboli
 and quasi-isometri
 to a word distan
e. Let Σ be a subset of Γ whi
h does not

generate an elementary subgroup. There exists a probability measure µΣ with �nite support

su
h that ℓ(µΣ) > 0 and

sup{h(µ)/ℓ(µ) : µ probability,Supp(µ) ⊂ Σ, ℓ(µ) > 0} = h(µΣ)/ℓ(µΣ).

The same statement holds if the maximum is taken over symmetri
 probability measures,

the resulting maximizing measure being symmetri
.

Theorem 1.3 is a 
onsequen
e of these three statements.

Proof of Theorem 1.3 using the three auxiliary theorems. As in the statement of the theo-

rem, 
onsider a �nite subset Σ of Γ. If Σ generates an elementary subgroup of Γ, all
measures supported on Σ have zero entropy. Hen
e, one 
an take c = 0 in the statement

of the theorem. Otherwise, by Theorem 1.7, there exists a symmetri
 measure µΣ with

�nite support that maximizes the quantity h(µ)/ℓ(µ) over µ symmetri
 supported by Σ. If
ΓµΣ

= Γ+
µΣ

has �nite index, h(µΣ)/ℓ(µΣ) < v by Theorem 1.5. If it has in�nite index, the

same 
on
lusion follows from Theorem 1.6. �

The three auxiliary theorems are non-trivial. Their proofs are independent, and use


ompletely di�erent tools. Here are some 
omments about them.
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• At �rst sight, Theorem 1.5 seems to be the most deli
ate (this is the only one with

the assumption that Γ is not virtually free). However, this is also the setting that

has been mostly studied in the literature. Hen
e, we may use several known results,

in
luding most notably results of An
ona [An
87℄, of Bla
hère, Haïssinsky and Math-

ieu [BHM11℄ and Tanaka [Tan14℄ (Theorem 1.2 above) and of Izumi, Neshveyev and

Okayasu [INO08℄ on rigidity results for 
o
y
les. The proof relies mainly on the

fa
t that the word distan
e is integer valued, 
ontrary to the Green distan
e (more

pre
isely, we use the fa
t that the stable translation length of hyperboli
 elements

is rational with bounded denominator).

• In Theorem 1.6, the di�
ulty 
omes from the la
k of information on the subgroup Γµ.

If it has good geometri
 properties (for instan
e if it is quasi-
onvex), one may use

the same kind of te
hniques as for Theorem 1.5. Otherwise, the random walk does

not really see the hyperboli
ity of the ambient group. The fundamental inequality

always gives h 6 ℓvΓµ , where vΓµ is the growth rate of the subgroup Γµ (for the

initial word distan
e on Γ). If vΓµ < v, the result follows. Unfortunately, there

exist non-quasi-
onvex subgroups of some hyperboli
 groups with the same growth

as the ambient group. However, a random walk does not typi
ally visit all points

of Γµ, it 
on
entrates on those points that are not distorted (i.e., their distan
es to

the identity in Γ and Γµ are 
omparable). To prove Theorem 1.6, we will show that

in any in�nite index subgroup of a hyperboli
 group, the number of non-distorted

points is exponentially smaller than env.
• Theorem 1.7 is less simple than it may seem at �rst sight: it does not 
laim that µΣ is

supported by Σ, and indeed this is not the 
ase in general (see Example 5.4). Hen
e,

the proof is not a simple 
ontinuity argument: We need to understand pre
isely the

behavior of sequen
es of measures that degenerate towards a measure supported on

an elementary subgroup. The proof will show that µΣ is supported byK ·(Σ∪{e})·K,

where K is a �nite subgroup generated by some elements in Σ.

A natural question is whether Theorem 1.3 holds for non-symmetri
 measures. For ad-

missible measures, (i.e., Γ+
µ = Γ), Theorem 1.5 holds. For non-symmetri
 measures su
h

that Γµ has in�nite index, Theorem 1.6 applies dire
tly. However, sin
e Γµ 6= Γ+
µ for general

non-symmetri
 measures, there is another 
ase to 
onsider: the 
ase of measures µ su
h that

Γµ = Γ (or Γµ has �nite index in Γ), but Γ+
µ is mu
h smaller than Γ. In this 
ase, it seems

that our arguments do not su�
e. We give in Se
tion 6 two examples illustrating the new

di�
ulties:

(1) One 
an not rely on growth arguments, as for Theorem 1.6. Indeed, there are

subsemigroups Λ+
with bad asymptoti
 behavior, for instan
e su
h that lim inf|Bn∩

Λ+|/|Bn| = 0 and lim sup|Bn ∩ Λ+|/|Bn| > 0.
(2) The arguments of Theorem 1.5 work for �nitely supported measures, or for measures

with a superexponential moment, but also more generally for measures with a ni
e

geometri
 behavior (they should satisfy so-
alled An
ona inequalities). In the non-

symmetri
 situation, we give in Proposition 6.2 expli
it examples of (non-admissible)

measures with an exponential moment and a very ni
e geometri
 behavior, and su
h

that nevertheless h = ℓv. So, arguments similar to those of Theorem 1.5 
an not
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su�
e, one needs a new argument that distinguishes in a �ner way between measures

with �nite support and measures with in�nite support.

This arti
le is organized as follows. In Se
tion 2, we give more details on the notions of

hyperboli
 group, drift and entropy. We also prove Theorem 1.4 on the asymptoti
 entropy

and drift of the uniform measure on large balls. The following three se
tions are then

devoted to the proofs of the three auxiliary theorems. Finally, we des
ribe in Se
tion 6

what 
an happen in the non-symmetri
 setting. In parti
ular, we show that in any torsion-

free group with in�nitely many ends, there exist (non-admissible, non-symmetri
) measures

with an exponential moment satisfying h = ℓv.

2. General properties of entropy and drift in hyperboli
 groups

2.1. Hyperboli
 spa
es. In this paragraph, we re
all 
lassi
al properties of hyperboli


spa
es. See for instan
e [GdlH90℄ or [BH99℄.

Consider a metri
 spa
e (X, d). The Gromov produ
t of two points y, y′ ∈ X, based at

x0 ∈ X, is by de�nition

(2.1) (y|y′)x0
= (1/2)[d(x0, y) + d(x0, y

′)− d(y, y′)].

The spa
e (X, d) is hyperboli
 if there exists δ > 0 su
h that, for any x0, y1, y2, y3, the
following inequality holds:

(y1|y3)x0
> min((y1|y2)x0

, (y2|y3)x0
)− δ.

The main intuition to have is that, in hyperboli
 spa
es, 
on�gurations of �nitely many

points look like 
on�gurations in trees: for any k, for any subset F of X with 
ardinality at

most k, there exists a map Φ from F to a tree su
h that, for all x, y ∈ F ,

d(x, y) − 2kδ 6 d(Φ(x),Φ(y)) 6 d(x, y).

Hen
e, a lot of distan
e 
omputations 
an be redu
ed to equivalent 
omputations in trees

(whi
h are essentially 
ombinatorial), up to a bounded error. Up to δ, the Gromov produ
t

(y|y′)x0
is, in the approximating tree, the length of the part that is 
ommon to the geodesi
s

from x0 to y and from x0 to y′.
A spa
e (X, d) is geodesi
 if there exists a geodesi
 between any pair of points. For su
h

spa
es, there is a 
onvenient 
hara
terization of hyperboli
ity. A geodesi
 spa
e (X, d) is

hyperboli
 if and only if there exists δ > 0 su
h that its geodesi
 triangles are δ-thin, i.e.,
ea
h side is in
luded in the δ-neighborhood of the union of the two other sides.

Assume that (X, dX ) and (Y, dY ) are two geodesi
 metri
 spa
es, and that they are quasi-

isometri
. If (X, dX ) is hyperboli
, then so is (Y, dY ). Note however that this equivalen
e

only holds for geodesi
 spa
es.

Let (X, d) be a geodesi
 hyperboli
 metri
 spa
e. A subset Y of X is quasi-
onvex if

there exists a 
onstant C su
h that, for any y, y′ ∈ Y , the geodesi
s from y to y′ stay in the

C-neighborhood of Y .

We will sometimes en
ounter hyperboli
 spa
es whi
h are not geodesi
, but only quasi-

geodesi
: there exist 
onstants C > 0 and λ su
h that any two points 
an be joined by a

(λ,C)-quasi-geodesi
, i.e., a map f from a real interval to X su
h that λ−1|t′ − t| − C 6

d(f(t), f(t′)) 6 λ|t′ − t|+C. When the spa
e is geodesi
, a quasi-geodesi
 stays a bounded

distan
e away from a true geodesi
. Most properties that hold or 
an be de�ned using
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geodesi
s (for instan
e the notion of quasi-
onvexity) 
an be extended to this setting, simply

repla
ing geodesi
s with quasi-geodesi
s in the statements.

Let (X, d) be a proper geodesi
 hyperboli
 spa
e. Its boundary at in�nity ∂X is by

de�nition the set of geodesi
s originating from a base point x0, where two su
h geodesi
s

are identi�ed if they remain a bounded distan
e away. It is a 
ompa
t spa
e, whi
h does

not depend on x0. The spa
e X ∪ ∂X is also 
ompa
t. If X is only quasi-geodesi
, all these

de�nitions extend using quasi-geodesi
s instead of geodesi
s.

Any isometry (or, more generally, quasi-isometry) of a hyperboli
 spa
e extends 
ontinu-

ously to its boundary, giving a homeomorphism of ∂X.

The Gromov produ
t may be extended to X ∪∂X: we de�ne (ξ|η)x0
as the in�mum limit

of (xn|yn)x0
for xn and yn 
onverging respe
tively to ξ and η. The 
hoi
e to take the in�mum

is arbitrary, one 
ould also take the supremum or any a

umulation point, those quantities

di�er by at most a 
onstant only depending on δ. Hen
e, one should think of the Gromov

produ
t at in�nity to be 
anoni
ally de�ned only up to an additive 
onstant. Heuristi
ally,

(ξ|η)x0
is the time after whi
h two geodesi
s from x0 to ξ and to η start diverging.

Let (X, d) be a proper geodesi
 (or quasi-geodesi
) hyperboli
 spa
e. For any small

enough ε > 0, one may de�ne a visual distan
e d∂X,ε on ∂X su
h that d∂X,ε(ξ, η) ≍ e−ε(ξ|η)x0

(meaning that the ratio between these quantities is uniformly bounded from above and from

below).

Let (X, d) be a proper hyperboli
 metri
 spa
e. One 
an de�ne another boundary of

X, the Busemann boundary (or horoboundary), as follows. Let x0 be a �xed basepoint

in X. To x ∈ X, one asso
iates its horofun
tion hx(y) = d(y, x) − d(x0, x), normalized

so that hx(x0) = 0. The map Φ : x 7→ hx is an embedding of X into the spa
e of 1-
Lips
hitz fun
tions on X, with the topology of uniform 
onvergen
e on 
ompa
t sets. The

horoboundary is obtained by taking the 
losure of Φ(X). In other words, a sequen
e xn ∈ X

onverges to a boundary point if hxn(y) 
onverges, uniformly on 
ompa
t sets. Its limit is

the horofun
tion hξ asso
iated to the 
orresponding boundary point ξ (it is also 
alled the

Busemann fun
tion asso
iated to ξ). We denote by ∂BX the Busemann boundary of X.

There is a 
ontinuous proje
tion πB : ∂BX → ∂X, whi
h is onto but not inje
tive in general.

The boundary ∂BX is rather sensitive to �ne s
ale details of the distan
e d, while ∂X only

depends on its quasi-isometry 
lass.

Any isometry ϕ of X a
ts on horofun
tions, by the formula hϕ(x)(y) = hx(ϕ
−1y) −

hx(ϕ
−1x0). This implies that ϕ extends to a homeomorphism on ∂BX, given by the same

formula hϕ(ξ)(y) = hξ(ϕ
−1y)−hξ(ϕ

−1x0). Note that, 
ontrary to the a
tion on the geometri


boundary, this only works for isometries of X, not quasi-isometries.

2.2. Hyperboli
 groups. Let Γ be a �nitely generated group, with a �nite symmetri


generating set S. Denote by d = dS the 
orresponding word distan
e. The group Γ is

hyperboli
 if the metri
 spa
e (Γ, dS) is hyperboli
. Sin
e hyperboli
ity is invariant under

quasi-isometry for geodesi
 spa
es, this notion does not depend on the 
hoi
e of the generat-

ing set S. However, if one 
onsiders another left-invariant distan
e on Γ whi
h is equivalent

to dS but not geodesi
, its hyperboli
ity is not automati
. Hen
e, one should postulate its

hyperboli
ity if it is needed, as in the statement of Theorem 1.2. We say that the pair (Γ, d)
is a metri
 hyperboli
 group if the group Γ is hyperboli
 for one (or, equivalently, for any)
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word distan
e, and if the distan
e d is left-invariant, hyperboli
, and quasi-isometri
 to one

(or equivalently, any) word distan
e. Su
h a distan
e d does not have to be geodesi
, but it

is quasi-geodesi
 sin
e geodesi
s for a given word distan
e form a system of quasi-geodesi
s

for d, going from any point to any point.

Let (Γ, d) be a metri
 hyperboli
 group. The left-multipli
ation by elements of Γ is

isometri
. Hen
e, Γ a
ts by homeomorphisms on its 
ompa
ti�
ations Γ ∪ ∂Γ and Γ ∪ ∂BΓ.
Moreover, any in�nite order element g ∈ Γ a
ts hyperboli
ally on Γ ∪ ∂Γ: it has two �xed

points at in�nity g− and g+, the points in Γ ∪ ∂Γ \ {g−} are attra
ted to g+ by forward

iteration of g, and the points in Γ ∪ ∂Γ \ {g+} are attra
ted to g− by ba
kward iteration of

g.

De�nition 2.1. Consider an a
tion of a group Γ on a spa
e Z. A fun
tion c : Γ× Z → R

is a 
o
y
le if, for any g, h ∈ Γ and any ξ ∈ Z,

(2.2) c(gh, ξ) = c(g, hξ) + c(h, ξ).

The 
o
y
le is Hölder-
ontinuous if Z is a metri
 spa
e and ea
h fun
tion ξ 7→ c(g, ξ) is

Hölder-
ontinuous.

There is a 
hoi
e to be made in the de�nition of 
o
y
les, sin
e one may 
ompose with g or
g−1

. Our de�nition is the most 
ustomary. With this de�nition, the map cB : Γ×∂BΓ → R

given by cB(g, ξ) = hξ(g
−1) is a 
o
y
le, 
alled the Busemann 
o
y
le.

A subgroup H of Γ is nonelementary if its a
tion on ∂Γ does not �x a �nite set. Equiva-

lently, H is not virtually the trivial group or Z. We say that a probability measure µ on Γ
is nonelementary if the subgroup Γµ generated by its support is itself nonelementary.

Let µ be a probability measure on Γ. Sin
e Γ a
ts by homeomorphisms on the 
ompa
t

spa
e ∂Γ, it admits a stationary measure: there exists a probability measure ν on ∂Γ su
h

that µ ∗ ν = ν, i.e.,
∑

g∈Γ µ(g)g∗ν = ν. If µ is nonelementary, this measure is unique,

and has no atom (see [Kai00℄). It is also the exit measure of the 
orresponding random

walk Xn = g1 · · · gn: almost every traje
tory Xn(ω) 
onverges to a point X∞(ω) ∈ ∂Γ, and
moreover the distribution of X∞ is pre
isely ν.

In the same way, sin
e Γ a
ts on ∂BΓ, it admits a stationary measure νB there. This

measure is not unique in general, even if µ is nonelementary. However, all su
h measures

proje
t under πB to the unique stationary measure on ∂Γ.

2.3. The drift. Let (Γ, d) be a metri
 hyperboli
 group. Consider a probability measure

µ on Γ, with �nite �rst moment L(µ) (de�ned in (1.1)). The drift of the random walk has

been de�ned in (1.2) as ℓ(µ) = limL(µ∗n)/n. Let Xn = g1 · · · gn be the position at time n
of the random walk generated by µ (where the gi are independent and distributed a

ording

to µ). Then, almost surely, ℓ(µ) = lim|Xn|/n.
The drift also admits a des
ription in terms of the Busemann boundary. The following

result is well-known (
ompare with [KL11, Theorem 18℄).

Proposition 2.2. Let (Γ, d) be a metri
 hyperboli
 group. Let µ be a nonelementary prob-

ability measure on Γ with �nite �rst moment. Let νB be a µ-stationary measure on ∂BΓ.
Then

(2.3) ℓ(µ) =

∫

Γ×∂BΓ
cB(g, ξ) dµ(g) dνB(ξ).
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Proof. Let Xn be the position of the random walk at time n. Using the 
o
y
le property of

the Busemann 
o
y
le, we have

∫

cB(Xn(ω), ξ) dP(ω) dνB(ξ) =

∫

cB(g1 · · · gn, ξ) dµ(g1) · · · dµ(gn) dνB(ξ)

=

n
∑

k=1

∫

cB(gk, gk+1 · · · gnξ) dµ(gk) · · · dµ(gn) dνB(ξ).

Sin
e the measure νB is stationary, the point gk+1 · · · gnξ is distributed a

ording to νB .
Hen
e, the terms in the above sum do not depend on k. We get

(2.4)

∫

Γ×∂BΓ
cB(g, ξ) dµ(g) dνB(ξ) =

1

n

∫

cB(Xn(ω), ξ) dP(ω) dνB(ξ).

We have |cB(Xn, ξ)|/n 6 |Xn|/n, whi
h 
onverges in L1
and almost surely to ℓ. Hen
e,

the sequen
e of fun
tions cB(Xn(ω), ξ)/n is uniformly integrable on Ω × ∂BΓ. Moreover,

Xn 
onverges almost surely to a point on the boundary ∂Γ, distributed a

ording to the

exit measure, whi
h has no atom. It follows that, for all ξ, the traje
tory Xn(ω) 
onverges
almost surely to a point di�erent from πB(ξ). This implies that, almost surely, one has

cB(Xn, ξ) = |Xn|+O(1), giving in parti
ular cB(Xn, ξ)/n → ℓ. The result follows by taking

the limit in n in the equality (2.4). �

This formula easily implies that the drift depends 
ontinuously on the measure, as ex-

plained in [EK13℄.

Proposition 2.3. Let (Γ, d) be a metri
 hyperboli
 group. Consider a sequen
e of probabil-

ity measures µi with �nite �rst moment, 
onverging simply to a nonelementary probability

measure µ (i.e., µi(g) → µ(g) for all g ∈ Γ). Assume moreover that L(µi) → L(µ). Then

ℓ(µi) → ℓ(µ).

Proof. Let νi be stationary measures for µi on ∂BΓ. Taking a subsequen
e if ne
essary, we

may assume that νi 
onverges to a limiting measure ν. By 
ontinuity of the a
tion on the

boundary, it is stationary for µ.
For ea
h g ∈ Γ, the quantity

∫

∂BΓ cB(g, ξ) dνi(ξ) 
onverges to

∫

∂BΓ cB(g, ξ) dν(ξ) sin
e

ξ 7→ cB(g, ξ) is 
ontinuous. Averaging over g (and using the assumption L(µi) → L(µ) to
get a uniform domination), we dedu
e that

∑

g∈Γ

µi(g)

∫

∂BΓ
cB(g, ξ) dνi(ξ) →

∑

g∈Γ

µ(g)

∫

∂BΓ
cB(g, ξ) dν(ξ).

Together with the formula (2.3) for the drift, this 
ompletes the proof. �

In this proposition, it is important that µ is nonelementary: the result is wrong otherwise.

For instan
e, in the in�nite dihedral group Z ⋊ Z/2, the measures µi = (1 − 2−i)δ(1,0) +

2−iδ(0,1) have zero drift sin
e the Z/2 element symmetrizes everything in Z, while the limiting

measure µ = δ(1,0) has drift 1. The reason is the non-uniqueness of the stationary measure

for µ on the boundary.
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2.4. The entropy. Let Γ be a 
ountable group. Consider a probability measure µ on Γ,
with �nite time one entropy H(µ) (de�ned in (1.1)). The entropy of the random walk has

been de�ned in (1.2) as h(µ) = limH(µ∗n)/n. Let Xn = g1 · · · gn be the position at time n
of the random walk generated by µ (where the gi are independent and distributed a

ording

to µ). Then, almost surely, h(µ) = lim(− log µ∗n(Xn))/n. The fundamental inequality (1.3)

shows that if h > 0 then ℓ > 0.
The entropy has several equivalent 
hara
terizations. The �rst one is in terms of the size

of the typi
al support of the random walk: This support has size roughly ehn. The following
lemma follows from [Haï13, Proposition 1.13℄.

Lemma 2.4. Consider a probability measure µ with H(µ) < ∞ on a 
ountable group. Let

h = h(µ) be its asymptoti
 entropy. Let η > 0 and ε > 0.

(1) For large enough n, there exists a subset Kn of Γ with µ∗n(Kn) > 1− η and |Kn| 6
e(h+ε)n

.

(2) For large enough n, there exists no subset Kn of Γ with µ∗n(Kn) > η and |Kn| 6
e(h−ε)n

.

Another des
ription is in terms of the Poisson boundary of the walk. To avoid general def-

initions, let us only state this des
ription for measures on hyperboli
 groups. The following

proposition is a 
onsequen
e of [Kai00℄.

Proposition 2.5. Let Γ be a hyperboli
 group. Let µ be a nonelementary probability measure

on Γ with H(µ) < ∞. Let ν be its unique stationary measure on ∂Γ. De�ne the Martin


o
y
le on Γ× ∂Γ by cM (g, ξ) = − log(dg−1
∗ ν/dν)(ξ). Then

(2.5) h(µ) >

∫

Γ×∂Γ
cM (g, ξ) dµ(g) dν(ξ),

with equality if µ has a logarithmi
 moment.

When µ has a logarithmi
 moment, this proposition has a very similar �avor to Proposi-

tion 2.2 expressing the drift of a random walk. Indeed, for symmetri
 measures, [BHM11℄

interprets Proposition 2.5 as a spe
ial 
ase of Proposition 2.2, for a distan
e d = dµ related

to the random walk, the Green distan
e, whi
h we de�ned in Theorem 1.2. This distan
e

is hyperboli
 if µ is admissible and has a superexponential moment, by [An
87, Gou13℄. It

is not geodesi
 in general, but this is not an issue sin
e we were 
areful enough to state

Proposition 2.2 without this assumption. The Busemann 
o
y
le for the Green distan
e is

pre
isely the Martin 
o
y
le.

An important di�eren
e between the formulas (2.3) for the drift and (2.5) for the entropy

is that, in the latter situation, the 
o
y
le cM depends on the measure ν (and, therefore, on

µ). This makes it more 
ompli
ated to prove 
ontinuity statements su
h as Proposition 2.3

for the entropy. Nevertheless, Ers
hler and Kaimanovi
h proved in [EK13℄ that, in hyper-

boli
 groups, the entropy also depends 
ontinuously on the measure. As h(µ) = infH(µ∗n)/n
by subadditivity, it is easy to prove that when µi → µ one has lim suph(µi) 6 h(µ). The

main di�
ulty to prove the 
ontinuity is to get lower bounds. We will need a slightly

stronger (and more pedestrian) version of the results of [EK13℄ to prove Theorem 1.4. Al-

though our argument may seem very di�erent at �rst sight from the arguments in [EK13℄,

the te
hniques are in fa
t 
losely related (an illustration is that we 
an re
over with our
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te
hniques the result of Kaimanovi
h that, for measures with �nite logarithmi
 moment,

equality holds in (2.5), i.e., the Poisson boundary 
oin
ides with the geometri
 boundary,

see Remark 2.11). Our main 
riterion to get lower bounds on the entropy is the following.

We write S
k = {g ∈ Γ : |g| ∈ (k− 1, k]} for the thi
kened sphere, so that the union of these

spheres 
overs the whole group.

Theorem 2.6. Let (Γ, d) be a metri
 hyperboli
 group. Let µi be a sequen
e of nonelemen-

tary probability measures on Γ with H(µi) < ∞. Let νi be the unique stationary measure

for µi on ∂Γ. Assume that:

(1) The limit points of νi have no atom.

(2) The sequen
e

(2.6) hi =
∑

k

∑

g∈Sk

µi(g)(− log(µi(g)/µi(S
k)))

tends to in�nity.

Then lim inf h(µi)/hi > 1.

The quantity hi 
an be written

hi =
∑

g∈Γ

µi(g)(− log µi(g)) −
∑

k

µi(S
k)(− log µi(S

k)).

The �rst term is the time one entropy H(µi) of the measure µi. In most reasonable 
ases,

the se
ond term is negligible. The theorem then states that the asymptoti
 entropy h(µi) is

omparable to the time one entropy H(µi). In other words, if the measure is supported 
lose

to in�nity, and su�
iently spread out in the group (this is the meaning of the assumption

that the limit points of νi have no atom), then there are few 
oin
iden
es and the entropy

does not de
rease signi�
antly with time.

To prove this theorem, we will use the following te
hni
al lemma.

Lemma 2.7. On a probability spa
e (X,µ), 
onsider a nonnegative fun
tion f with average

1. For any subset A of X,

∫

X
(− log f) > µ(A)

(

− log

∫

A
f

)

− 2e−1.

Proof. As the fun
tion x 7→ − log x is 
onvex, Jensen's inequality gives

∫

(− log f) >

− log(
∫

f). The last quantity vanishes when

∫

f = 1.
Let B ⊂ X. Write a =

∫

B f dµ/µ(B). The measure dµ/µ(B) is a probability measure

on B, and the fun
tion f/a has integral 1 for this measure. The previous inequality gives

∫

B(− log(f/a)) dµ/µ(B) > 0, that is,
∫

B
(− log f) dµ > −µ(B) log a = −µ(B) log

(
∫

B
f

)

+ µ(B) log µ(B).

The quantity µ(B) log µ(B) is bounded from below by inf [0,1] x log x = −e−1
. Therefore,

∫

B
(− log f) dµ > −µ(B) log

(
∫

B
f

)

− e−1.
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We apply this inequality to the 
omplement Ac
of A. As − log

(∫

Ac f
)

> 0, we get a lower

bound −e−1
. Let us also apply this inequality to A, and add the results. We obtain

∫

X
(− log f) dµ > −µ(A) log

(
∫

A
f

)

− 2e−1. �

We will use the notion of shadow, due to Sullivan and 
onsidered in this 
ontext by

Coornaert [Coo93℄. Let C > 0 be large enough. The shadow O(g,C) of g ∈ Γ is {ξ ∈ ∂Γ :
(g|ξ)e > |g|−C}. In geometri
 terms (and assuming the spa
e is geodesi
), this is essentially

the tra
e at in�nity of geodesi
s originating from e and going through the ball B(g,C). We

will use the following properties of shadows [Coo93℄:

(1) Their 
overing number is �nite. More pre
isely, there exists D > 0 (depending on

C) su
h that, for any integer k, for any ξ ∈ ∂Γ,

|{g ∈ S
k : ξ ∈ O(g,C)}| 6 D.

(2) The preimages of shadows are large. More pre
isely, for any η > 0, there exists

C > 0 su
h that, for all g ∈ Γ, the 
omplement of g−1O(g,C) has diameter at most

η (for a �xed visual distan
e on the boundary).

Proof of Theorem 2.6. Fix ε > 0. As the limit points of νi have no atom, there exists η > 0
su
h that any ball of radius η in ∂Γ has measure at most ε for νi, for i large enough. We 
an

then 
hoose a shadow size C so that g−1O(g,C) has for all g a 
omplement with diameter

at most η. This yields νi(g
−1O(g,C)) > 1− ε.

By (2.5), the entropy of µi satis�es

h(µi) >
∑

g∈Γ

µi(g)

∫

∂Γ

(

− log
dg−1

∗ νi
dνi

(ξ)

)

dνi(ξ).

The fun
tion fi,g = dg−1
∗ νi
dνi

(ξ) is nonnegative and has integral 1. For any A ⊂ ∂Γ,
Lemma 2.7 gives

∫

∂Γ

(

− log
dg−1

∗ νi
dνi

(ξ)

)

dνi(ξ) > −νi(A) log

(
∫

A

dg−1
∗ νi
dνi

(ξ) dνi(ξ)

)

− 2e−1

= −νi(A) log(g
−1
∗ νi(A)) − 2e−1

= −νi(A) log(νi(gA)) − 2e−1.

Let us take A = g−1O(g,C), so that νi(A) > 1− ε. Summing over g, we get

(2.7) h(µi) > (1− ε)
∑

g∈Γ

µi(g)(− log νi(O(g,C))) − 2e−1.
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We split the sum a

ording to the spheres S
k
. Let Σk =

∑

g∈Sk νi(O(g,C)), it is at most

D sin
e the shadows have a 
overing number bounded by D. We have

∑

g∈Sk

µi(g)(− log νi(O(g,C)))

= −µi(S
k)

∑

g∈Sk

µi(g)

µi(Sk)

[

log

(

νi(O(g,C))

Σkµi(g)/µi(Sk)

)

+ log Σk + log(µi(g)/µi(S
k))

]

.

The point of this de
omposition is that the fun
tion on S
k
given by ϕ : g 7→ νi(O(g,C))

Σkµi(g)/µi(Sk)

has integral 1 for the probability measure µi(g)/µi(S
k). By Jensen's inequality, the integral

of − logϕ is nonnegative. This yields

∑

g∈Sk

µi(g)(− log νi(O(g,C))) > −µi(S
k) logD +

∑

g∈Sk

µi(g)(− log(µi(g)/µi(S
k)).

Summing over k, we dedu
e from (2.7) the inequality

h(µi) > (1− ε)hi − 2e−1 − logD.

As hi tends to in�nity, this gives h(µi) > (1 − 2ε)hi for large enough i, 
ompleting the

proof. �

To apply the previous theorem, we need to estimate hi. In this respe
t, the following

lemma is often useful.

Lemma 2.8. Let Ri > 1. The quantity hi de�ned in (2.6) satis�es

hi >
∑

|g|6Ri

µi(g)(− log µi(g)) − log(2 +Ri).

Proof. In the de�nition of hi, all the terms are nonnegative. Restri
ting the sum to those g
with |g| 6 Ri, we get

hi >
∑

k6Ri

∑

g∈Sk

µi(g)(− log(µi(g)/µi(S
k)))

=
∑

|g|6Ri

µi(g)(− log µi(g)) −
∑

k6Ri

µi(S
k)(− log µi(S

k)).

A probability measure supported on a set with N elements has entropy at most logN . The

number µi(S
k) for 0 6 k 6 Ri are not a probability measure in general, let us add a last

atom with mass m = µi(
⋃

k>Ri
S
k). We are 
onsidering a spa
e of 
ardinality Rn+2, hen
e

m(− logm) +
∑

k6Ri

µi(S
k)(− log µi(S

k)) 6 log(2 +Ri),


ompleting the proof. �

Let us see how Theorem 2.6 implies a slightly stronger version of the 
ontinuity result for

the entropy of Ers
hler and Kaimanovi
h [EK13℄.
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Theorem 2.9. Let Γ be a hyperboli
 group. Consider a probability measure µ with �nite

time one entropy and �nite logarithmi
 moment. Let µi be a sequen
e of probability measures


onverging simply to µ with H(µi) → H(µ). Then h(µi) → h(µ).

The assumption H(µi) → H(µ) ensures that there is no additional entropy in µi 
oming

from neighborhoods of in�nity that would disappear in the limit. It is automati
 if the

support of µi is uniformly bounded or if µi satis�es a uniform L1
domination, but it is mu
h

weaker. For instan
e, it is allowed that the µi have no �nite logarithmi
 moment.

The main lemma for the proof is a lower bound on the entropy, following from Theo-

rem 2.6.

Lemma 2.10. Let Γ be a hyperboli
 group. Consider a probability measure µ with �nite time

one entropy and �nite logarithmi
 moment. Let µi be a sequen
e of measures 
onverging

simply to µ. Then lim inf h(µi) > h(µ).

Proof. Sin
e the result is trivial if h(µ) = 0, we 
an assume that h(µ) > 0.

Let ε > 0. For large n, most atoms for µ∗n
have a probability at most e−(1−ε)nh(µ)

.

Moreover, sin
e µ has a �nite logarithmi
 moment, log|Xn|/n tends almost surely to 0
by [Aar97, Proposition 2.3.1℄. Therefore, the set

Kn = {g : µ∗n(g) 6 e−(1−ε)nh(µ), |g| 6 eεn}
has measure tending to 1. In parti
ular µ∗n(Kn) > 1− ε for large n. We get

∑

|g|6eεn

µ∗n(g)(− log µ∗n(g)) >
∑

g∈Kn

µ∗n(g)(− log µ∗n(g)) >
∑

g∈Kn

µ∗n(g)(1 − ε)nh(µ)

= µ∗n(Kn)(1− ε)nh(µ) > (1− ε)2nh(µ).

For ea
h �xed n, the measures µ∗n
i 
onverge to µ∗n

when i tends to in�nity. Hen
e, we get

for large enough i the inequality
∑

|g|6eεn

µ∗n
i (g)(− log µ∗n

i (g)) > (1− ε)3nh(µ).

Letting ε tend to 0 (and, therefore, n to in�nity), we dedu
e the existen
e of sequen
es

ni → ∞ and εi → 0 su
h that, for any i,
∑

|g|6eεini

µ∗ni

i (g)(− log µ∗ni

i (g)) > (1− εi)
3nih(µ).

Let µ̃i = µ∗ni

i . Its stationary measure νi is also the stationary measure of µi, by uniqueness.

Any limit point of νi is stationary for µ, and is therefore atomless sin
e µ is nonelementary

as h(µ) > 0. The assumptions of Theorem 2.6 are satis�ed by the sequen
e µ̃i. Moreover,

Lemma 2.8 yields

hi > (1− εi)
3nih(µ)− 2εini > (1− Cεi)nih(µ).

Theorem 2.6 ensures that lim inf h(µ̃i)/hi > 1. As h(µ̃i) = nih(µi), this gives lim inf h(µi) >
h(µ) as desired. �
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Proof of Theorem 2.9. For �xed n, the sequen
e µ∗n
i 
onverges simply to µ∗n

. Moreover,

H(µ∗n
i ) → H(µ∗n) sin
e there is no loss of entropy at in�nity by assumption. Choose n

su
h that H(µ∗n) 6 n(1 + ε)h(µ). We get H(µ∗n
i )/n 6 (1 + 2ε)h(µ) for large enough i. As

h(µi) 6 H(µ∗n
i )/n, this shows that lim suph(µi) 6 h(µ) (this is the 
lassi
al semi-
ontinuity

property of entropy, valid in any group).

For the reverse inequality lim inf h(µi) > h(µ), we apply Lemma 2.10. �

Remark 2.11. Let h(µ, ∂Γ) =
∫

Γ×∂Γ(− log dg−1
∗ ν/dν)(ξ) dµ(g) dν(ξ) where ν is the sta-

tionary measure for µ on ∂Γ. In general, h(µ) > h(µ, ∂Γ) with equality if and only if (∂Γ, ν)
is the Poisson boundary of (Γ, µ). A theorem of Kaimanovi
h [Kai00℄ asserts that, when

µ has �nite entropy and �nite logarithmi
 moment, h(µ, ∂Γ) = h(µ). We 
an re
over this

theorem using the previous arguments. Indeed, what the proof of Theorem 2.6 really shows

is that lim inf h(µi, ∂Γ)/hi > 1. Hen
e, Lemma 2.10 proves that lim inf h(µi, ∂Γ) > h(µ) if
µi 
onverges simply to a measure µ with a logarithmi
 moment. Taking µi = µ for all i, we
obtain in parti
ular h(µ, ∂Γ) > h(µ), as desired.

2.5. A 
riterion to bound the entropy from below. In order to prove Theorem 1.4

on the entropy of the uniform measure on balls, we want to apply Theorem 2.6. Thus, we

need a 
riterion to 
he
k that limit points of stationary measures have no atom.

Lemma 2.12. Let Γ be a hyperboli
 group. Let µi be a sequen
e of probability measures

on Γ. Assume that, on the spa
e Γ ∪ ∂Γ, the sequen
e µi 
onverges to a limit ν whi
h is

supported on ∂Γ. Assume moreover that the limit points of µ̌i (de�ned by µ̌i(g) = µi(g
−1))

have no atom. Then the stationary measures νi asso
iated to µi also 
onverge to ν.

Proof. We �x a word distan
e d on Γ. Let f be a 
ontinuous fun
tion on Γ ∪ ∂Γ. Let us

show that, uniformly in ξ ∈ ∂Γ, the integral

∫

f(gξ) dµi(g) is 
lose to

∫

f(g) dµi(g). We

estimate the di�eren
e as

∣

∣

∣

∣

∫

(f(gξ)− f(g)) dµi(g)

∣

∣

∣

∣

6

∫

|f(gξ)− f(g)|1((gξ|g)e > C) dµi(g)

+ 2‖f‖∞
∫

1((gξ|g)e 6 C) dµi(g),

where C is a �xed 
onstant. If C is large enough, |f(x) − f(y)| 6 ε when (x|y)e > C, by
uniform 
ontinuity of f . Hen
e, the �rst integral is bounded by ε. For the se
ond integral,

we use the formula (gx|g)e = |g| − (x|g−1)e, valid for any x ∈ Γ (it follows readily from the

de�nition (2.1) of the Gromov produ
t). This equality does not extend to the boundary sin
e

the Gromov produ
t there is only well de�ned up to an additive 
onstant D. Nevertheless,

we get (gξ|g)e > |g| − (ξ|g−1)e −D. Hen
e, the se
ond integral is bounded by

(2.8) µi{g : |g| − C −D 6 (ξ|g−1)e}.
If |g| is large, the points g with (ξ|g−1)e > |g| −C −D are su
h that g−1

belongs to a small

neighborhood of ξ in Γ ∪ ∂Γ. As the limit points of µ̌i are supported on ∂Γ and have no

atom, it follows that (2.8) 
onverges to 0 when i tends to in�nity, uniformly in ξ.
We have proved that

sup
ξ∈∂Γ

∣

∣

∣

∣

∫

f(gξ) dµi(g) −
∫

f(g) dµi(g)

∣

∣

∣

∣

→ 0.
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By stationarity,

∫

ξ∈∂Γ
f(ξ) dνi(ξ) =

∫

ξ∈∂Γ

(
∫

f(gξ) dµi(g)

)

dνi(ξ).

Combining these equations, we get

∫

f(ξ) dνi(ξ) −
∫

f(g) dµi(g) → 0. This shows that the
limit points of νi and µi are the same. �

Let us now 
onsider the uniform measure µi on the ball of radius i, as in Theorem 1.4.

The next lemma follows from the te
hniques of [Coo93℄.

Lemma 2.13. Let (Γ, d) be a metri
 hyperboli
 group. Let ρi be the uniform measure on

the ball of radius i. Let ρ∞ be the Patterson-Sullivan of (Γ, d) 
onstru
ted in [Coo93℄ (it

is supported on ∂Γ and atomless). Then the limit points of ρi are equivalent to ρ∞, with a

density bounded from above and from below.

Proof. Let C be large enough. We will use the shadows O(g,C) as de�ned before the proof

of Theorem 2.6. The main property of ρ∞ is that it satis�es

(2.9) K−1
0 e−v|g|

6 ρ∞(O(g,C)) 6 K0e
−v|g|,

where K0 is a 
onstant only depending on C and v is the growth of (Γ, d) (Proposition 6.1

in [Coo93℄).

Let µi be the uniform measure on thi
kened spheres Si = {g : i 6 |g| 6 i + L}, where
L is large enough so that the 
ardinality of Si grows like eiv, see the proof of Theorem

7.2 in [Coo93℄. Let us push µi to a measure µ̃i on ∂Γ, by 
hoosing for ea
h g ∈ Si a


orresponding point in its shadow. It is 
lear that µi and µ̃i have the same limit points,

sin
e the diameter of the shadows tends uniformly to 0 when i → ∞. We will prove that

the limit points of µ̃i are equivalent to ρ∞. The same result follows for µi and then ρi.
The shadows of g ∈ Si have a 
overing number whi
h is bounded from above by a 
onstant

D, and from below by 1 if C is large enough. Hen
e, the measures µ̃i satisfy

K−1
1 e−iv 6 µ̃i(O(g,C)) 6 K1e

−iv,

for any g ∈ Si. This is 
omparable to ρ∞(O(g,C)) by (2.9), up to a multipli
ative 
onstant

K2. Consider a limit µ̃ of a sequen
e µ̃in , let us prove that it is uniformly equivalent to ρ∞.

We will only prove that µ̃ 6 DK2ρ∞, the other inequality is proved in the same way. By

regularity of the measures, it su�
es to 
he
k this inequality on 
ompa
t sets.

Let A be a 
ompa
t subset of ∂Γ, and ε > 0. By regularity of the measure ρ∞, there is an

open neighborhood U of A with ρ∞(U) 6 ρ∞(A) + ε. Consider B a 
ompa
t neighborhood

of A, in
luded in U , with µ̃(∂B) = 0 (su
h a set exists, sin
e among the sets Br = {ξ :
d(ξ,A) 6 r}, at most 
ountably of them many have a boundary with nonzero measure).

For large enough i, the shadows O(g,C) with g ∈ Si whi
h interse
t B are 
ontained in U .
Therefore,

µ̃i(B) 6
∑

g∈Si,O(g,C)∩B 6=∅

µ̃i(O(g,C)) 6 K2

∑

g∈Si,O(g,C)∩B 6=∅

ρ∞(O(g,C)) 6 DK2ρ∞(U).

As µ̃(∂B) = 0, the sequen
e µ̃in(B) tends to µ̃(B). We obtain µ̃(B) 6 DK2ρ∞(U). As

A is in
luded in B, we get µ̃(A) 6 DK2(ρ∞(A) + ε). Letting ε tend to 0, this gives

µ̃(A) 6 DK2ρ∞(A), as desired. �
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Proof of Theorem 1.4. Let ρi be the uniform measure on the ball of radius i (whi
h has


ardinality in [C−1eiv, Ceiv]). We wish to apply Theorem 2.6 to this sequen
e of measures.

First, by Lemmas 2.12 and 2.13, the limit points of the stationary measures νi are equivalent
to the Patterson-Sullivan measure. Therefore, they have no atom. Se
ond, Lemma 2.8 shows

that the quantity hi in (2.6) satis�es hi > iv − logC − log(2 + i). This tends to in�nity.

Hen
e, Theorem 2.6 applies, and gives h(ρi) > (1− ε)iv for large i.
Using the fundamental inequality h 6 ℓv and the trivial bound ℓ(ρi) 6 L(ρi) 6 i, we get

(1− ε)iv 6 h(ρi) 6 ℓ(ρi)v 6 iv.

It follows that h(ρi) ∼ iv and ℓ(ρi) ∼ i. �

Remark 2.14. Our te
hnique also applies to estimate the entropy of other measures, for

instan
e the measure µs =
∑

e−s|g|δg/
∑

e−s|g|

lassi
ally used in the 
onstru
tion of the

Patterson-Sullivan measure. Indeed, µs 
onverges when s ց v to ρ∞, whi
h has no atom.

Moreover, writing Zs =
∑

e−s|g|
, we have H(µs) = sL(µs) + logZs. One 
he
ks that logZs

is negligible with respe
t to H(µs), and that the quantity hs from (2.6) is also equivalent

to H(µs). Hen
e, Theorem 2.6 gives

H(µs)(1 + o(1)) 6 hs(1 + o(1)) 6 h(µs) 6 ℓ(µs)v 6 L(µs)v 6 H(µs)(1 + o(1)).

These inequalities show that h(µs)/ℓ(µs) → v.

Remark 2.15. One 
ould imagine another strategy to �nd �nitely supported measures µi

for whi
h h(µi)/ℓ(µi) → v. First, �nd a ni
e measure µ for whi
h the stationary measure

ν at in�nity is pre
isely the Patterson-Sullivan measure (whi
h implies that h(µ) = ℓ(µ)v
sin
e the Martin 
o
y
le and the Busemann 
o
y
le 
oin
ide). Let µi be a trun
ation of

µ. Sin
e it 
onverges to µ, the 
ontinuity results for the drift and the entropy imply that

h(µi)/ℓ(µi) → h(µ)/ℓ(µ) = v.
We were not able to implement su

essfully this strategy. Given a measure ν, there is

a general te
hnique due to Connell and Mu
hnik [CM07℄ to get a measure µ on Γ with

µ ∗ ν = ν. This te
hnique requires a 
ontinuity assumption on ξ 7→ (dg∗ν/dν)(ξ), whi
h is

not satis�ed in our setting for ν = ρ∞. However, in ni
e groups su
h as surfa
e groups, this

fun
tion is, for every g, 
ontinuous at all but �nitely many points. The te
hnique of [CM07℄


an be adapted to su
h a situation (in the proof of their Theorem 6.2, one should just take

sets Yn that avoid the dis
ontinuities of the spikes we have already used). Unfortunately,

the resulting measure µ (whi
h satis�es µ ∗ ν = ν) has in�nite moment and in�nite entropy,

and is therefore useless for our purposes.

3. Rigidity for admissible measures

In this se
tion, we prove Theorem 1.5. Assume that (Γ, d) is a hyperboli
 group endowed

with a word distan
e, whi
h is not virtually free. Let µ be a probability measure on Γ, with
a superexponential moment, su
h that Γ+

µ is a �nite index subgroup of Γ. We want to prove

that h(µ) < ℓ(µ)v. We argue by 
ontradi
tion, assuming that h(µ) = ℓ(µ)v. Assume �rst

that Γ+
µ = Γ.

Sin
e we are assuming the equality h(µ) = ℓ(µ)v, Theorem 1.2 implies that

|dµ(e, g) − vd(e, g)| 6 C.
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As a warm-up, let us �rst deal with the baby 
ase C = 0. Then the distan
es dµ and d are
proportional, hen
e they de�ne the same Busemann boundary. The Busemann boundary

∂BΓ 
orresponding to d is totally dis
ontinuous sin
e the distan
e d takes integer values

(it is a word distan
e). On the other hand, the Busemann boundary asso
iated to the

Green metri
 dµ is known as the Martin boundary of the random walk (Γ, µ). By [An
87℄

and [Gou13℄, it is homeomorphi
 to the boundary ∂Γ of Γ. Sin
e the group Γ is not

virtually free, its boundary ∂Γ is not totally dis
ontinuous (see [KB02, Theorem 8.1℄), hen
e

a 
ontradi
tion.

Let us now go ba
k to the general situation, when C is nonzero (but still assuming

Γ+
µ = Γ). The argument is more 
ompli
ated, but it still relies on the same fa
ts: the

boundary is not totally dis
onne
ted, while the word distan
e is integer valued (we will

not use dire
tly this fa
t, rather the fa
t that stable translation lengths are rational, see

Lemma 3.4). These two opposite features will give rise to a 
ontradi
tion.

In order to get rid of the 
onstant C, we will need an homogenized version of the inequality

|dµ(e, g) − vd(e, g)| 6 C. This is Lemma 3.1 below. The homogenized quantity asso
iated

to the distan
e d is 
alled the stable translation length. For an element g of Γ, it is de�ned
by l(g) = lim|gn|/n (it exists by subadditivity).

Re
all that we write cM (g, ξ) for the Martin 
o
y
le asso
iated to the random walk,

de�ned in Proposition 2.5. It satis�es the 
o
y
le relation of De�nition 2.1. We will not

use its probabilisti
 de�nition, but rather the fa
t that the Martin 
o
y
le is the Busemann


o
y
le asso
iated to the Green distan
e dµ of Theorem 1.2. In other words, cM (g, ξ) =
limx→ξ dµ(g

−1, x)− dµ(e, x) (and this limit exists).

Lemma 3.1. For g ∈ Γ with in�nite order, cM (g, g+) = vl(g).

Proof. Re
all that we are assuming that the equality h(µ) = ℓ(µ)v holds, therefore we have

|dµ(e, g)− vd(e, g)| 6 C. It follows that the 
o
y
le cM 
orresponding to dµ and the 
o
y
le

cB 
orresponding to the distan
e d satisfy |cM − vcB | 6 2C. Note that cB is not de�ned on

the geometri
 boundary, but on the horoboundary, so the proper way to write this inequality

is |cM (g, πB(ξ)) − vcB(g, ξ)| 6 2C for any g ∈ Γ and any ξ ∈ ∂BΓ.
Let ξ ∈ ∂BΓ with πB(ξ) 6= g−. Then lim cB(g

n, ξ)/n = limhξ(g
−n)/n = l(g). We 
hoose

ξ with πB(ξ) = g+, to get

lim cM (gn, g+)/n = lim vcB(g
n, ξ)/n ± 2C/n = vl(g).

As g+ is g-invariant, the 
o
y
le equation for cM on ∂Γ gives cM (g, g+) = cM (gn, g+)/n.
This 
onverges to vl(g) when n → ∞ by the previous equation. �

The proof of Theorem 1.5 uses the following general result on 
o
y
les.

Proposition 3.2. Let Γ be a hyperboli
 group whi
h is not virtually free. Let c : Γ×∂Γ → R

be a Hölder 
o
y
le, su
h that any hyperboli
 element g satis�es c(g, g+) ∈ Z. Then there

exists a hyperboli
 element g ∈ Γ with c(g, g−) = c(g, g+).

Applied to the Busemann 
o
y
le, this proposition implies that if a 
onvex 
o
ompa
t

negatively 
urved manifold has a fundamental group whi
h is not virtually free, then its

length spe
trum is not arithmeti
, i.e., the lengths of its 
losed geodesi
s generate a dense

subgroup of R. This result is already known, see [Dal99, Page 205℄. It is proved in this arti
le
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using 
rossratios. This argument based on 
rossratios 
an be used to prove Proposition 3.2

in full generality. However, we will give a di�erent, more dire
t, proof.

We will use the following topologi
al lemma.

Lemma 3.3. Let g be a hyperboli
 element in a hyperboli
 group Λ with 
onne
ted boundary.

There exists an ar
 I (i.e., a subset of ∂Λ homeomorphi
 to [0, 1]) joining g− and g+,
invariant under an iterate gi of g.

Proof. We will use nontrivial results on the topology of ∂Λ. When it is 
onne
ted, then

it is also lo
ally 
onne
ted by [Swa96℄. Hen
e, it is also path 
onne
ted and lo
ally path


onne
ted, see [HY61, Theorem 3-16℄. Moreover, for any ξ ∈ ∂Λ, the spa
e ∂Λ \ {ξ} has

�nitely many ends by [Bow98b℄.

Consider g as in the statement of the lemma. Its a
tion permutes the ends of ∂Λ \ {g−}.
Taking an iterate of g, we 
an assume it stabilizes the ends. If ξ is 
lose to g−, it is also the


ase of gξ. As they belong to the same end, one 
an join them by a small ar
 J that avoids

g− (and g+). Then
⋃

n∈Z g
nJ joins g− to g+, and it is invariant under g. However, it is not

ne
essarily an ar
 if giJ interse
ts J in a nontrivial way for i 6= 0. To get a real ar
, we will

shorten J as follows.

As gnJ 
onverges to g± when n tends to ±∞, the ar
 J 
an only interse
t �nitely many

giJ . Let us �x a parametrization u : [0, 1] → J . The quantity

inf{|t− s| : s, t ∈ [0, 1] and ∃i 6= 0, u(t) = giu(s)}
is realized by 
ompa
tness (sin
e i remains bounded), for some parameters s, t, i. Repla
ing
s, t, i with t, s,−i if ne
essary, we may assume i > 0. As g− and g+ are the only �xed

points of gi, we have s 6= t. Let K = u([s, t]), this is an ar
 between η = u(s) and

giη = u(t). Moreover, gjK does not interse
t K, ex
ept maybe at its endpoints for j = ±i:
otherwise, there exists x in the interior of K su
h that gjx also belongs to K, 
ontradi
ting

the minimality of |s− t|.
It follows that

⋃

n∈Z g
niK is an ar
 from g− to g+, invariant under gi. �

Proof of Proposition 3.2. Let us 
onsider the 
o
y
le c̄ = c mod Z. The assumption of the

proposition ensures that c̄(g, g+) = 0 for all hyperboli
 elements g. In geometri
 terms, this

would 
orrespond to an assumption that the 
o
y
le has vanishing average on all 
losed

orbits. Hen
e, we may apply a version of Livsi
's theorem, due in this 
ontext to [INO08℄

(Theorem 5.1). It ensures that the 
o
y
le c̄ is a 
oboundary: there exists a Hölder 
ontin-

uous fun
tion b̄ : ∂Γ → R/Z su
h that, for all ξ ∈ ∂Γ, for all g ∈ Γ,

(3.1) c̄(g, ξ) = b̄(gξ) − b̄(ξ).

Re
all that, sin
e the group Γ is not virtually free, its boundary is not totally dis
on-

tinuous (see [KB02, Theorem 8.1℄). The stabilizer of a nontrivial 
omponent L of ∂Γ is a

subgroup Λ of Γ, quasi-
onvex hen
e hyperboli
, whose boundary is L (see the dis
ussion

on top of Page 55 in [Bow98a℄).

Let us 
onsider an in�nite order element g ∈ Λ. Lemma 3.3 
onstru
ts an ar
 I from g−

to g+ in ∂Λ ⊂ ∂Γ, invariant under an iterate gi of g. Repla
ing g with gi, we may assume

i = 1.
The restri
tion of the fun
tion b̄ to the ar
 I admits a 
ontinuous lift b : I → R, as

I is simply 
onne
ted. The fun
tion F : ξ 7→ c(g, ξ) − b(gξ) + b(ξ) is well de�ned on
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I, 
ontinuous, and it vanishes modulo Z by (3.1). Hen
e, it is 
onstant. In parti
ular,

c(g, g−) = F (g−) = F (g+) = c(g, g+). �

In order to apply Proposition 3.2, we will need the following result on stable translation

lengths in hyperboli
 groups ([BH99, Theorem III.Γ.3.17℄).

Lemma 3.4. Let (Γ, d) be a hyperboli
 group with a word distan
e. Then there exists an

integer N su
h that, for any g ∈ Γ, one has Nl(g) ∈ Z.

The 
ombination of Lemma 3.1 and Lemma 3.4 shows that the 
o
y
le c′ = NcM/v satis-

�es c′(g, g+) ∈ Z for any hyperboli
 element g. Moreover, this 
o
y
le is Hölder-
ontinuous

sin
e the Martin 
o
y
le cM is itself Hölder-
ontinuous. This follows from [INO08℄ if µ has

�nite support, and from [Gou13℄ if it has a superexponential moment. Now, Proposition 3.2

implies the existen
e of a hyperboli
 element g su
h that cM (g, g+) = cM (g, g−). This is a

ontradi
tion sin
e c(g, g+) = vl(g) > 0 and c(g, g−) = −c(g−1, g−) = −vl(g) < 0 again by

Lemma 3.1. This 
on
ludes the proof of Theorem 1.5 when Γ+
µ = Γ.

If Γ+
µ is a �nite index subgroup of Γ, the same proof almost works in Γ+

µ to 
on
lude that

Γ+
µ is virtually free if h = ℓv, implying that Γ is also virtually free. The only di�
ulty is

that the distan
e we are 
onsidering on Γ+
µ is not a word distan
e for a system of generators

of Γ+
µ . However, the only properties of the distan
e we have really used are:

(1) It is hyperboli
 and quasi-isometri
 to a word distan
e (to apply Theorem 1.2).

(2) The stable translation lengths are rational numbers with bounded denominators.

These two properties are 
learly satis�ed for the restri
tion of the distan
e d to Γ+
µ . Hen
e,

the above proof also works in this 
ase. This 
ompletes the proof of Theorem 1.5. �

Remark 3.5. If Λ is a quasi-
onvex subgroup of a hyperboli
 group Γ, then the restri
tion

to Λ of a word distan
e on Γ also satis�es the above two properties. Hen
e, Theorem 1.5

also holds in Λ for su
h a distan
e.

4. Growth of non-distorted points in subgroups

Our goal in this se
tion is to prove Theorem 1.6 on the entropy of a random walk on

an in�nite index subgroup Λ of a hyperboli
 group Γ. Sin
e the geometry of su
h random

walks is 
ompli
ated to des
ribe in general, our argument is indire
t: we will show that, in

any in�nite index subgroup, the number of points that the random walk e�e
tively visits

is exponentially small 
ompared to the growth of Γ. This is trivial if the growth vΛ =

lim infn→∞
log|Bn∩Λ|

n is stri
tly smaller than v = vΓ. When vΛ = v, on the other hand, we

will argue that the random walk does not typi
ally visit all of Λ, but only a subset made

of non-distorted points. To prove Theorem 1.6, the main step is to show that, even when

vΛ = v, the number of su
h non-distorted points is exponentially smaller than env. We

introdu
e the notion of non-distorted points in Paragraph 4.1, prove this main geometri


estimate in Paragraph 4.2, and apply this to random walks in Paragraph 4.4. Paragraph 4.3

is devoted to the 
ase vΛ < v, where unexpe
ted phenomena happen even in distorted

subgroups.
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4.1. Non-distorted points. There are at least two di�erent ways to de�ne a notion of

non-distorted point.

De�nition 4.1. Let Γ be a �nitely generated group endowed with a word distan
e d = dΓ,
and let Λ be a subgroup of Γ.

• For ε > 0 and M > 0, we say that g ∈ Λ is (ε,M)-quasi-
onvex if any geodesi
 γ
from e to g spends at least a proportion ε of its time in the M-neighborhood of Λ,
i.e.,

|{i ∈ [1, |g|] : d(γ(i),Λ) 6 M}| > ε|g|.

We write ΛQC(ε,M) for the set of points in Λ whi
h are (ε,M)-quasi-
onvex.
• Assume additionally that Λ is �nitely generated, and endowed with a word distan
e

dΛ. For D > 0, we say that g ∈ Λ is D-undistorted if dΛ(e, g) 6 DdΓ(e, g). We

write ΛUD(D) for the set of D-undistorted points.

Up to a 
hange in the 
onstants, these notions do not depend on the 
hoi
e of the distan
e

d. The �rst de�nition has the advantage to work for in�nitely generated subgroups, but it

may seem less natural than the se
ond one. If Λ is a quasi-
onvex subgroup of a hyperboli


group Γ, then all its points are (1,M)-quasi-
onvex if M is large enough, and all its points

are also D-undistorted for large enough D. In the general 
ase, a quasi-
onvex point does

not have to be undistorted: it may happen that the times i su
h that d(γ(i),Λ) 6 M are all

in
luded in [1, |g|/2], while between |g|/2 and |g| one needs to make a huge detour to follow

Λ, making dΛ(e, g) mu
h larger than dΓ(e, g). On the other hand, an undistorted point is

automati
ally quasi-
onvex, at least in hyperboli
 groups:

Proposition 4.2. Let Γ be a hyperboli
 group, let Λ be a �nitely generated subgroup of Γ,
and let D > 0. There exist ε > 0 and M > 0 su
h that any D-undistorted point is also

(ε,M)-quasi-
onvex, i.e., ΛUD(D) ⊂ ΛQC(ε,M).

Proof. Consider g ∈ Λ whi
h is not (ε,M)-quasi-
onvex, we have to show that dΛ(e, g) is
mu
h bigger than n = dΓ(e, g). The intuition is that, away from a Γ-geodesi
 from e to g,
the progress towards g is mu
h slower by hyperboli
ity.

Let us 
onsider a geodesi
 from e to g in Λ, with length dΛ(e, g). Repla
ing ea
h generator

of Λ by the produ
t of a uniformly bounded number of generators of Γ, we obtain a path

γΛ in the Cayley graph of Γ, remaining in the C0-neighborhood of Λ (for some C0 > 0) and
with length |γΛ| 6 C0dΛ(e, g).

Let us 
onsider a geodesi
 γΓ from e to g for the distan
e dΓ. For ea
h x ∈ Γ, we 
an


onsider its proje
tion π(x) on γΓ, i.e., the point on γΓ that is 
losest to x (if several points


orrespond, we take the 
losest one to e). This proje
tion is 1-Lips
hitz. In parti
ular, the

proje
tion of γΛ 
overs the whole geodesi
 γΓ. For ea
h xi ∈ γΓ, let us 
onsider the �rst

point yi ∈ γΛ proje
ting to xi.
Let us �x an integer L, large enough with respe
t to the hyperboli
ity 
onstant of Γ.

Along γΓ, let us 
onsider the points at distan
e kL from e, i.e., x0 = e, xL, x2L, . . . , xmL

with m = ⌊n/L⌋. In parti
ular, |γΛ| >
∑

i dΓ(yiL, y(i+1)L). Moreover, a tree approximation

shows that dΓ(yiL, y(i+1)L) > dΓ(yiL, xiL) + L + dΓ(x(i+1)L, y(i+1)L) − C1 (where C1 only
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depends on the hyperboli
ity 
onstant of Γ). Choosing L > C1, we get

|γΛ| >
m
∑

i=0

dΓ(xiL, yiL) >

m
∑

i=0

(dΓ(xiL,Λ)− C0).

Sin
e we assume that g is not (ε,M)-quasi-
onvex, the set of indi
es i with d(xi,Λ) 6 M
has 
ardinality at most εn. Taking M > C0, the previous equation is bounded from below

by

(m+ 1− εn)M − (m+ 1)C0 > (n/L− εn)M − nC0/L.

Finally, we get

dΛ(e, g) > |γΛ|/C0 > n(1/L− ε)M/C0 − n/L.

If ε is small enough and M is large enough so that (1/L − ε)M/C0 − 1/L > D, we obtain

dΛ(e, g) > Dn, i.e., g /∈ ΛUD(D), as desired. �

From this point on, we will mainly work with the notion of quasi-
onvex points, sin
e


ounting results on su
h points imply results on undistorted points by the previous propo-

sition.

4.2. Non-distorted points in subgroups with vΛ = v. In this se
tion, we show that

there are exponentially few quasi-
onvex points in in�nite-index subgroups of hyperboli


groups.

Theorem 4.3. Let Γ be a nonelementary hyperboli
 group endowed with a word distan
e.

Let Λ be an in�nite index subgroup of Γ. Then

(4.1) |Bn ∩ Λ| = o(|Bn|).
Moreover, for all ε > 0 and M > 0, there exists η > 0 su
h that, for all large enough n,

(4.2) |Bn ∩ ΛQC(ε,M)| 6 e−ηn|Bn|.
One may wonder why we put the estimate (4.1) in the statement of the theorem, while

the main emphasis is on 
ounting quasi-
onvex points. It turns out that this estimate

is not trivial, and that its proof uses the same te
hniques as for the proof of (4.2). To

illustrate that it is not trivial, let us remark that this estimate is not true without the

hyperboli
ity assumption. For instan
e, in Γ = F2 × Z (with its 
anoni
al generating

system, and the 
orresponding word distan
e), the in�nite index subgroup Λ = F2 satis�es

|Λ ∩Bn|/|Bn| > c > 0.
Theorem 4.3 is trivial if the growth rate vΛ of Λ is stri
tly smaller than the growth rate

v of Γ, sin
e in this 
ase |Bn ∩ Λ| itself is exponentially smaller than |Bn|. However, this is
not always the 
ase, even for �nitely generated subgroups.

Consider for instan
e a 
ompa
t hyperboli
 3-manifold whi
h �bers over the 
ir
le, ob-

tained as a suspension of a hyperboli
 surfa
e with a pseudo-Anosov. Its fundamental group

Γ surje
ts into Z = π1(S
1). The kernel Λ of this morphism ϕ is the fundamental group of

the �ber. It is �nitely generated, with in�nite index, and |Bn ∩Λ| ∼ c|Bn|/
√
n, see [Sha98℄.

Heuristi
ally, one 
an understand in this 
ase why there are exponentially few quasi-


onvex points in Λ. Let us 
onsider a geodesi
 of length n in Γ. It proje
ts under ϕ to a

path in Z, whi
h behaves roughly like a random walk. In parti
ular, e−nv|Sn ∩ Λ| behaves
like the probability that a random walk on Z 
omes ba
k to the identity at time n. This
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is of order 1/
√
n, in a

ordan
e with the rigorous results of [Sha98℄. Su
h an element is

quasi-
onvex if the random walk in Z spends a big proportion of its time 
lose to the origin.

A large deviation estimate shows that this is exponentially unlikely.

The proof of the theorem 
onsists in making this heuristi
 pre
ise, in the general 
ase

where the subgroup Λ is not normal (so that there is no morphism ϕ at hand). An important

point in the proof is that a hyperboli
 group is automati
, i.e., there exists a �nite state

automaton that re
ognizes a system of geodesi
s parameterizing bije
tively the points in

the group. Counting points in the group then amounts to a random walk on the graph of

this automaton, while 
ounting points in Λ amounts to a �bred random walk, on this graph

times Λ\Γ. As this spa
e is in�nite, the random walk spends most of its time outside of

�nite sets, i.e., far away from Λ.
To formalize this argument, we will redu
e the question to Markov 
hains on graphs,

where we will use the following probabilisti
 lemma.

Lemma 4.4. Consider a Markov 
hain (Xn) on a 
ountable set V , with a stationary mea-

sure m (i.e., m(x) =
∑

y m(y)p(y, x) for all x). Let Ṽ be the set of points x ∈ V su
h that

∑

x→y m(y) = +∞, where we write x → y if there exists a positive probability path from x

to y. Then, for all x ∈ V and x′ ∈ Ṽ ,

(4.3) Px(Xn = x′) → 0 when n → ∞.

Take x ∈ Ṽ and ε > 0. There exists η > 0 su
h that, for all large enough n,

(4.4) Px(Xn = x and Xi visits x at least εn times in between) 6 e−ηn.

Proof. In 
ountable state Markov 
hains, a point x 
an be either transient, or null re
urrent,

or positive re
urrent. Let us �rst show that points in Ṽ are not positive re
urrent, by


ontradi
tion. Otherwise, the points that 
an be rea
hed from x form an irredu
ible 
lass C,
whi
h admits a stationary probability measure p. The restri
tion of m to C is an ex
essive

measure. By uniqueness (see [Rev84, Theorem 3.1.9℄), the measure m is proportional on C
to p. In parti
ular, it has �nite mass there. This 
ontradi
ts the assumption

∑

x→y m(y) =
+∞.

Let us now show that, for all x ∈ V and x′ ∈ Ṽ , the probability Px(Xn = x′) tends to 0.
Otherwise, 
onditioning on the �rst visit to x′, we dedu
e that Px′(Xn = x′) does not tend
to 0. This implies that x′ is positive re
urrent, a 
ontradi
tion.

Let us now prove (4.4). Consider x ∈ Ṽ , it is either transient or null re
urrent. If it is

transient, the probability p to 
ome ba
k to x is < 1. Hen
e, the probability to 
ome ba
k

εn times is bounded by pεn, and is therefore exponentially small as desired.

Assume now that x is null re
urrent: almost surely, the Markov 
hain 
omes ba
k to

x, but the waiting time τ has in�nite expe
tation. Let τ1, τ2, . . . be the length of the

su

essive ex
ursions based at x. They are independent and distributed like τ , by the Markov

property. The probability in (4.4) is bounded by P(
∑εn

i=1 τi 6 n), whi
h is bounded for any

M by P(
∑εn

i=1 τi1τi6M 6 n). The random variables τi1τi6M are bounded, independent and

identi
ally distributed. If M is large enough, they have expe
tation > 1/ε. A standard large

deviation result then shows that P(
∑εn

i=1 τi1τi6M 6 n) is exponentially small, as desired. �

We will also need the following te
hni
al lemma, whi
h was explained to us by B. Bekka.
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Lemma 4.5. Let Λ be a subgroup of a group Γ. Assume that there exists a �nite subset B
of Γ su
h that BΛB = Γ. Then Λ has �nite index in Γ.

Proof. We have by assumption Γ =
⋃

i,j biΛbj =
⋃

i,j Λibibj , where Λi = biΛb
−1
i is a 
onju-

gate of Λ (and has therefore the same index). A theorem of Neumann [Neu54℄ ensures that

a group is never a �nite union of right 
osets of in�nite index subgroups. Hen
e, one of the

Λi has �nite index in Γ, and so has Λ. �

Let Γ be a hyperboli
 group, with a �nite generating set S. Consider a �nite dire
ted

graph A = (V,E, x∗) with vertex set V , edges E, a distinguished vertex x∗, and a labeling

α : E → S. We asso
iate to any path γ in the graph (i.e., a sequen
e of edges σ0, σ1, . . . , σm−1

where the endpoint of σi is the beginning of σi+1) a path in the Cayley graph starting from

the identity and following the edges labeled α(σ0), then α(σ1), and so on. The endpoint of

this path is α∗(γ) := α(σ0) · · ·α(σm−1). We always assume that any point 
an be rea
hed

by a path starting at x∗.
A hyperboli
 group is automati
 (see, for instan
e, [Cal13℄): there exists su
h a graph

with the following properties.

(1) For any path γ in the graph, the 
orresponding path α(γ) is geodesi
 in the Cayley

graph.

(2) The map α∗ indu
es a bije
tion between the set of paths in the graph starting from

x∗ and the group Γ.

In parti
ular, the paths of length n in the graph originating from x∗ parameterize the

sphere S
n
of radius n in the group. The existen
e of su
h a stru
ture makes it for instan
e

possible to prove that the growth series of a hyperboli
 group is rational. We will use su
h

an automaton to 
ount the points in the subgroup Λ, and in parti
ular the quasi-
onvex

points.

We de�ne a transition matrix A, indexed by V . By de�nition, Axy is the number of edges

from x to y. Hen
e, (An)xy is the number of paths of length n from x to y. In parti
ular,

the number of paths of length n starting from x∗ is
∑

y(A
n)x∗y. Write u for the line ve
tor

with 1 at position x∗ and 0 elsewhere, and ũ for the 
olumn ve
tor with 1 everywhere. This

number of paths reads uAnũ. Therefore, |Sn| = uAnũ, proving the rationality of the growth

fun
tion of the group. Let v be the growth rate of balls in Γ. It satis�es |Bn| 6 Cenv,
by [Coo93℄. Hen
e, the spe
tral radius of A is ev , and A has no Jordan blo
k for this

maximal eigenvalue.

To understand the points of the in�nite index subgroup Λ of Γ, we 
onsider an extension

AΛ of A, with �bers Λ\Γ. Its vertex set VΛ is made of the pairs (x,Λg) ∈ V ×Λ\Γ. For any
edge σ in A, going from x to y and with label α(σ), we put for any g ∈ Γ an edge in AΛ

from (x,Λg) to (y,Λgα(σ)). A path γ in A, from x to y, lifts to a path γ̃ in AΛ originating

from (x,Λe). By 
onstru
tion, its endpoint is (y,Λα∗(γ)). This shows that the paths in the

graph AΛ remember the 
urrent right 
oset of Λ.
The next lemma proves that the relevant 
omponents of this �bred graph are in�nite.

Lemma 4.6. Let x̃0 = (x0,Λg0) belong to AΛ. Let C be the 
omponent of x0 in A (i.e., the

set of points that 
an be rea
hed from x0 and from whi
h one 
an go ba
k to x0). Let AC be

the restri
tion of the matrix A to the points in C. Assume that its spe
tral radius ρ(AC) is
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equal to ev. Then, starting from x̃0 in the graph CΛ (the restri
tion of AΛ to C ×Λ\Γ), one

an rea
h in�nitely many di�erent points of CΛ.
Proof. It su�
es to show that one 
an rea
h in�nitely many points whose 
omponent in C
is x0. Assume by 
ontradi
tion that one 
an only rea
h a �nite number of 
lasses (x0,Λgi).

Given w ∈ Γ and C > 0, let Yw,C be the set of points in Γ that have a geodesi
 expression

in whi
h, for any subword w̃ of this expression and for any a, b with length at most C, one
has w 6= aw̃b. In other words, the points in Yw,C are those that never see w (nor even a

thi
kening of w of size C) in their geodesi
 expressions. Theorem 3 in [AL02℄ proves the

existen
e of C0 su
h that, for any w, the quantity |Bn∩Yw,C0
|/|Bn| tends to 0 (the important

point is that C0 does not depend on w).
The number of paths in C originating from x0 grows at least like c|Bn| sin
e the spe
tral

radius of AC is ev . These paths give rise to distin
t points in Γ. Hen
e, there exists su
h a

path γ0 su
h that α∗(γ0) /∈ Yw,C0
. In parti
ular, there exists a subpath γ1 su
h that α∗(γ1)


an be written as a1wb1 with |a1| 6 C0 and |b1| 6 C0. We 
an 
hoose a path from x0 to the

starting point of γ1, with �xed length (sin
e C is �nite), and another path from the endpoint

of γ1 to x0. Con
atenating them, we get a path γ2 from x0 to itself with α∗(γ2) = a2wb2
and |a2|, |b2| 6 C1 = C0 + 2diam(C). By assumption, Λg0α∗(γ2) is one of the �nitely many

Λgi sin
e we are returning to x0. Hen
e, there exists λ ∈ Λ su
h that g0a2wb2 = λgi. This
shows that w ∈ BΛB, where B is the ball of radius C1+maxi d(e, gi). As this holds for any
w, we have proved that BΛB = Γ. By Lemma 4.5, this shows that Λ has �nite index in Γ,
a 
ontradi
tion. �

Lemma 4.7. Let K(n, x̃0, ε0) denote the set of paths in AΛ starting at a point x̃0, of length
n, 
oming ba
k to x̃0 at time n, and spending a proportion at least ε0 of the time at x̃0.
Consider x̃0 ∈ AΛ and ε0 > 0. Then there exist η > 0 and C > 0 su
h that, for all n ∈ N,

|K(n, x̃0, ε0)| 6 Cen(v−η).

Proof. Write x̃0 = (x0,Λg0), let C be the 
omponent of x0 in A. If the spe
tral radius of

the restri
ted transition matrix AC is < ev, we simply bound |K(n, x̃0, ε0)| by the number

of paths in C from x0 to itself. This is at most ‖An
C‖, whi
h is exponentially smaller than

env as desired.

Assume now that ρ(AC) = ev. We will understand the number of paths in C (and in its lift

CΛ) in terms of a Markov 
hain. The matrix AC has a unique eigenve
tor q 
orresponding

to the eigenvalue ev, it is positive by Perron-Frobenius's theorem. By de�nition, p(x, y) =
e−vAxyq(y)/q(x) satis�es, for any x ∈ C,

∑

y∈C

p(x, y) =
e−v

q(x)

∑

Axyq(y) = 1.

This means that p(x, y) is a transition kernel on C. Denote by (Xn)n∈N the 
orresponding

Markov 
hain. By 
onstru
tion,

Px(Xn = y) = e−nv(An)xyq(y)/q(x).

Moreover, (An)xy is the number of paths of length n in A from x to y. Hen
e, up to a

bounded multipli
ative fa
tor q(y)/q(x), the transition probabilities of the Markov 
hain Xn
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ount the number of paths in the graph C. Let m denote the unique stationary probability

for the Markov 
hain on C.
We lift everything to CΛ, assigning to an edge the transition probability of its proje
tion in

C. The stationary measure m lifts to a stationary measure mΛ, whi
h is simply the produ
t

of m and of the 
ounting measure in the dire
tion Λ\Γ. Denoting by XΛ
n the Markov 
hain

in CΛ, we have
e−nv|K(n, x̃0, ε0)| = Px̃0

(XΛ
n = x̃0 and XΛ

i visits x̃0 at least ε0n times in between).

By Lemma 4.6, the Markov 
hain starting from x̃0 
an rea
h in�nitely many points. Equiva-

lently, sin
e m is bounded from below, it 
an rea
h a set of in�nite mΛ-measure. Therefore,

Lemma 4.4 applies, and shows that the above quantity is exponentially small. �

Proof of Theorem 4.3. Let us �rst prove (4.2). Counting the points in S
n∩ΛQC(ε,M) amounts

to 
ounting the paths of length n in AΛ, starting from (x∗,Λe) and spending a proportion

at least ε of their time in the �nite subset F = V × ΛBM ⊂ VΛ. Su
h a path spends a

proportion at least ε0 = ε/|F | of its time at a given point x̃ ∈ F . Let k and k +m denote

the �rst and last visits to x̃ (with m > ε0n sin
e there are at least ε0n visits). Su
h a path

is the 
on
atenation of a path from (x∗,Λe) to x̃ of length k (their number is bounded by

the 
orresponding number of paths in A, at most ‖Ak‖ 6 Cekv), of a path in K(m, x̃, ε0),
and of a path starting from x̃ of length n − k −m (their number is again bounded by the

number of 
orresponding paths in A, at most Ce(n−k−m)v
). Hen
e, their number is at most

Ce(n−m)v |K(m, x̃, ε0)|. Summing over the points x̃ ∈ F , over the at most n possible values

of k, and the values of m, we get the inequality

|Sn ∩ ΛQC(ε,M)| 6 Cnenv
∑

x̃∈F

n
∑

m=ε0n

e−mv|K(m, x̃, ε0)|.

Lemma 4.7 shows that this is exponentially smaller than env.
Let us now prove (4.1), using similar arguments. A point in S

n ∩ Λ 
orresponds to a

path of length n in AΛ, starting from (x∗,Λe) and ending at a point (x,Λe). We say that a


omponent C in the graph A is maximal if the spe
tral radius of the 
orresponding restri
ted

matrix AC is ev. Sin
e the matrix A has no Jordan blo
k 
orresponding to the eigenvalue ev ,
a path in the graph en
ounters at most one maximal 
omponent. The paths in AΛ whose

proje
tion in A spends a time k in non-maximal 
omponents give an overall 
ontribution

to |Sn ∩ Λ| bounded by Ce(n−k)v+k(v−η) 6 Ce−ηk|Bn|. Given ε > 0, their 
ontribution for

k > k0(ε) is bounded by ε|Bn|. Hen
e, it su�
es to 
ontrol the paths for �xed k. Let us �x
the beginning of su
h a path, from (x∗,Λe) to a point (x0,Λg0) where x0 is in a maximal


omponent C, and its end from (x1,Λg1) with x1 ∈ C to a point (x,Λe). To 
on
lude, one

should show that the number of paths of length n from (x0,Λg0) to (x1,Λg1) is o(e
nv). This

follows from the probabilisti
 interpretation in the proof of Lemma 4.7 and from (4.3). �

4.3. Non-distorted points in subgroups with vΛ < v. Let Λ be a subgroup of a hy-

perboli
 group Γ. Let vΛ and vΓ be their respe
tive growths, for a word distan
e on Γ. If

vΛ = vΓ, Theorem 4.3 proves that there is a di
hotomy:

(1) Either Λ is quasi-
onvex (equivalently, Λ has �nite index in Γ). Then |Bn ∩ Λ| >
cenvΛ , and all points in Λ are quasi-
onvex.
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(2) Or Λ is not quasi-
onvex (equivalently, it has in�nite index in Γ). Then |Bn ∩ Λ| =
o(envΛ), and there are exponentially few quasi-
onvex points in Λ.

Consider now a general subgroup Λ with vΛ < vΓ. If it is quasi-
onvex, then (1) above

is still satis�ed: |Bn ∩ Λ| > cenvΛ by [Coo93℄, and all points in Λ are quasi-
onvex. One

may ask if these properties are equivalent, and if they 
hara
terize quasi-
onvex subgroups.

This question is reminis
ent of a question of Sullivan in hyperboli
 geometry: Are 
onvex


o
ompa
t groups the only ones to have �nite Patterson-Sullivan measure? Peigné showed

in [Pei03℄ that the answer to this question is negative. His 
ounterexamples adapt to our

situation, giving also a negative answer to our question.

Proposition 4.8. There exists a �nitely generated subgroup Λ of a hyperboli
 group Γ
endowed with a word distan
e, whi
h is not quasi-
onvex, but for whi
h C−1envΛ 6 |Bn∩Λ| 6
CenvΛ . Moreover, most points of Λ are quasi-
onvex: there exist ε and η su
h that

(4.5) |Bn ∩ Λ \ ΛQC(ε,0)| 6 Cen(vΛ−η).

Proof. The example is the same as in [Pei03℄, but his geometri
 proofs are repla
ed by


ombinatorial arguments based on generating series.

Let G be a �nitely generated non-quasi-
onvex subgroup of a hyperboli
 group G̃ (take

for instan
e for G̃ the fundamental group of a hyperboli
 3-manifold whi
h �bers over the


ir
le, and for G the fundamental group of the �ber of this �bration). Let H = Fk, with k

large enough so that vH > vG. We take Λ = G ∗H ⊂ Γ = G̃ ∗H. It is not quasi-
onvex,

be
ause of the fa
tor G. Writing vΛ for its growth, we 
laim that, for some c > 0,

(4.6) |Sn ∩ Λ| ∼ cenvΛ .

We 
ompute with generating series. Let FG(z) be the growth series for G, given by FG(z) =
∑

n>0|Sn ∩ G|zn. Likewise, we de�ne FH and FΛ. Sin
e any word in Λ has a 
anoni
al

de
omposition in terms of words in G and H, a 
lassi
al 
omputation (see [dlH00, Prop.

VI.A.4℄) gives

(4.7) FΛ =
FGFH

1− (FG − 1)(FH − 1)
.

Let zG = e−vG > zH = e−vH
be the 
onvergen
e radii of FG and FH . At zH , we have

FH(zH) = +∞, sin
e the 
ardinality of spheres in the free group is exa
tly of the order of

envH . When z in
reases to zH , the fun
tion (FG(z) − 1)(FH (z)− 1) takes the value 1, at a
number z = zΛ. Sin
e this is the �rst singularity of FΛ, we have zΛ = e−vΛ

. Moreover, the

fun
tion FΛ is meromorphi
 at zΛ, with a pole of order 1 (sin
e the fun
tion (FG−1)(FH−1)
has positive derivative, being a power series with nonnegative 
oe�
ients). It follows from

a simple tauberian theorem (see, for instan
e, [FS09, Theorem IV.10℄) that the 
oe�
ients

of FΛ behave like cz−n
Λ , proving (4.6).

Let us estimate the number of non-quasi-
onvex points in Λ. Consider a word w ∈ Λ of

length n, for instan
e starting with a fa
tor in G and ending with a fa
tor in H. It 
an be

written as g1h1g2h2 · · · hs. Along a geodesi
 from e to w, all the words g1h (with h pre�x

of h1) belong to Λ. So do all the words g1h1g2h with h pre�x of h2, and so on. Therefore,

the proportion of time that the geodesi
 spends outside of Λ is at most

∑|gi|/n. Su
h a

point in Λ \ ΛQC(ε,0) satis�es
∑|gi| > (1 − ε)n and

∑|hi| 6 εn. Assuming ε 6 1/2, this
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gives

∑|hi| 6 (ε/2)
∑|gi|. In parti
ular, for any α > 0, we have eα(

∑
|gi|−2ε−1

∑
|hi|) > 1. Let

un = |Sn ∩Λ \ΛQC(ε,0)|, its generating series satis�es the following equation (where we only

write in details the words starting with G and ending in H, the other ones being 
ompletely

analogous):

∑

unz
n 6

∑

ℓ>1

∑

a1+b1+a2+···+bℓ=n

eα(
∑

ai−2ε−1
∑

bi)|Sa1 ∩G||Sb1 ∩H| · · · |Sbℓ ∩H|zn + . . .

=
∑

ℓ>1

[

(FG(e
αz)− 1)(FH (e−2αε−1

z)− 1)
]ℓ

+ . . .

=
FG(e

αz)FH(e−2αε−1

z)

1− (FG(eαz)− 1)(FH (e−2αε−1z)− 1)
.

This is the same formula as in (4.7), but the fa
tor z has been shifted in FG and FH . Choose

α > 0 su
h that eαzΛ < zG, and then ε small enough so that (FG(e
αzΛ)−1)(FH (e−2αε−1

zΛ)−
1) < 1. We dedu
e that the series

∑

unz
n

onverges for z = zΛ, and even slightly to its

right. It follows that un is exponentially small 
ompared to z−n
Λ . This proves (4.5). �

4.4. Appli
ation to random walks in in�nite index subgroups. In this paragraph,

we use Theorem 4.3 to prove Theorem 1.6 on random walks given by a measure µ on a

hyperboli
 group Γ, assuming that Γµ has in�nite index in Γ.
Before proving Theorem 1.6, we give another easier result, pertaining to the 
ase where

µ has a �nite moment for a word distan
e on Γµ (whi
h should be �nitely generated): In

this 
ase, the random walk typi
ally visits undistorted points. This easy statement is not

used later on, but it gives a heuristi
 explanation to Theorem 1.6.

Lemma 4.9. Let Λ be a �nitely generated subgroup of a �nitely generated group Γ. Let dΛ
and dΓ be the two 
orresponding word distan
es. Consider a probability measure µ on Λ,
with a moment of order 1 for dΛ (and therefore for dΓ), with nonzero drift for dΓ. Let Xn

denote the 
orresponding random walk. There exists D > 0 su
h that P(Xn ∈ ΛUD(D)) → 1.

Proof. Almost surely, dΓ(e,Xn) ∼ ℓΓn, for some nonzero drift ℓΓ. In the same way,

dΛ(e,Xn) ∼ ℓΛn. For any D > ℓΛ/ℓΓ, we get almost surely dΛ(e,Xn) 6 DdΓ(e,Xn) for

large enough n, i.e., Xn ∈ ΛUD(D). �

This lemma readily implies Theorem 1.6 under the additional assumption that Λ is �nitely

generated and that µ has a moment of order 1 for dΛ. Indeed, for large n, with probability

at least 1/2, the point Xn belongs to B(ℓ+ε)n ∩ ΛUD(D), whose 
ardinality is bounded by

Ce(ℓ+ε)n(v−η)
a

ording to Theorem 4.3. Lemma 2.4 yields h 6 (ℓ + ε)(v − η), hen
e

h 6 ℓ(v − η) < ℓv, 
ompleting the proof.

However, the assumptions of Theorem 1.6 are mu
h weaker: even when Λ is �nitely

generated, it is mu
h more restri
tive to require a moment of order 1 on Λ than on Γ,
pre
isely be
ause the Γ-distan
e is smaller than the Λ-distan
e on distorted points, whi
h

make up most of Λ. The general proof will not use undistorted points (whi
h are not even

de�ned when Λ is not �nitely generated), but rather quasi-
onvex points: we will show

that, typi
ally, the random walk 
on
entrates on quasi-
onvex points. With the previous

argument, Theorem 1.6 readily follows from the next lemma.
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Lemma 4.10. Let Λ be a subgroup of a hyperboli
 group Γ endowed with a word distan
e

d = dΓ. Let us 
onsider a probability measure µ on Λ, with a moment of order 1 for dΓ.
There exist ε > 0 and M > 0 su
h that P(Xn ∈ ΛQC(ε,M)) > 1/2 for large enough n.

Proof. The lemma is trivial if µ is elementary, sin
e all the elements of Γµ ⊂ Λ are then

quasi-
onvex. We may therefore assume that µ is non-elementary.

The random walk at time n is given by Xn = g1 · · · gn, where gi are independent and

distributed like µ. We will show that most produ
ts g1 · · · gi (whi
h belong to Λ) are within
distan
e M of a geodesi
 from e to Xn (this amounts to the 
lassi
al fa
t that traje
tories

of the random walk follow geodesi
s in the group), and moreover that they approximate a

proportion at least ε of the points on this geodesi
. This will give Xn ∈ ΛQC(ε,M) as desired.

The se
ond point is more deli
ate: we should for instan
e ex
lude the situation where, given

a geodesi
 γ, one has Xn = γ(a(n)) where a(n) is the smallest square larger than n. In this


ase, Xn follows the geodesi
 γ at linear speed, but nevertheless the proportion of γ it visits

tends to 0. This behavior will be ex
luded thanks to the fa
t that, with high probability,

the jumps of the random walk are bounded.

The argument is probabilisti
 and formulated in terms of the bilateral version of the

random walk. On Ω = ΓZ
with the produ
t measure P = µ⊗Z

, let gn be the n-th 
oordinate.

The gn are independent, identi
ally distributed, and 
orrespond to the in
rements of a

random walk (Xn)n∈Z with X0 = e and X−1
n Xn+1 = gn+1. Almost surely, Xn 
onverges

when n → ±∞ towards two random variables ξ± ∈ ∂Γ, with ξ+ 6= ξ− almost surely sin
e

these random variables are independent and atomless. Following Kaimanovi
h [Kai00℄,

denote by S(ξ−, ξ+) the union of all the geodesi
s from ξ− to ξ+. Let π be the proje
tion

on S(ξ−, ξ+), i.e., π(g) is the 
losest point to g on S(ξ−, ξ+). It is not uniquely de�ned, but

two possible 
hoi
es are within distan
e C0, for some C0 only depending on Γ.
Let us 
hoose L > 0 large enough (how large will only depend on the hyperboli
ity


onstant of the spa
e). Any measurable fun
tion is bounded on sets with arbitrarily large

measure. Hen
e, there exists K > 0 su
h that, with probability at least 9/10,

(1) For every |k| > K, the proje
tions π(Xk) are distant from π(X0) by at least L (and

they are 
loser to ξ+ if k > 0, and to ξ− if k < 0).
(2) We have d(e, S(ξ−, ξ+)) 6 K.

As everything is equivariant, we dedu
e that, for all i ∈ Z, the point Xi satis�es the same

properties with probability at least 9/10, i.e.,

(4.8) d(Xi, S(ξ
−, ξ+)) 6 K and, for all |k| > K, d(π(Xi), π(Xi+k)) > L.

Let n be a large integer. Write m = ⌊n/K⌋. Among the integers K, 2K, . . . ,mK 6 n, we

onsider the set In(ω) of those i su
h that Xi satis�es (4.8). We have E(|In|) > m · 9/10.
As |In| 6 m, we get

9m

10
6 E(|In|) 6

m

10
P(|In| < m/10) +mP(|In| > m/10) =

m

10
+

9m

10
P(|In| > m/10).

This gives P(|In| > m/10) > 8/9. Let η = 1/(20K). Let Ωn be the set of ω su
h that

|In(ω)| > ηn + 1, and X0 and Xn satisfy (4.8), and d(Xn, e) 6 2ℓn (where ℓ is the drift of

µ). It satis�es P(Ωn) > 1/2 if n is large enough. This is the set of good traje
tories for

whi
h we 
an 
ontrol the position of many of the Xi.
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ξ−
π(X0) π(Xi) π(Xn)

ξ+

X0 Xn

Xi

Yi γ

Figure 1. The proje
tions on γ and S

Let ω ∈ Ωn. We write Yi for a proje
tion of Xi on a geodesi
 γ from e to Xn. Let

Ĩn = In \ {mK}, so that the elements of Ĩn are at distan
e at least K of 0 and n. As X0

and Xn satisfy (4.8), the proje
tions π(Xi) for i ∈ Ĩn are lo
ated between π(X0) and π(Xn),
and are at a distan
e at least L of these points (see Figure 1). If L is large enough, we

obtain d(π(Xi), Yi) 6 C1 by hyperboli
ity, where C1 only depends on Γ. This gives

d(Yi,Λ) 6 d(Yi, π(Xi)) + d(π(Xi),Xi) 6 C1 +K,

thanks to (4.8) for Xi. When i 6= j belong to Ĩn, we have d(π(Xi), π(Xj)) > L again thanks

to (4.8), hen
e d(Yi, Yj) > L − 2C1. If L was 
hosen larger than 2C1 + 1, this shows that
Yi 6= Yj . We have found along γ at least |In| − 1 distin
t points, within distan
e C1 +K of

Λ. Moreover, for large enough n,

|In| − 1 > ηn > 2ℓn · (η/2ℓ) > d(e,Xn) · (η/2ℓ).
Let ε = η/2ℓ and M = C1 +K. We have shown that, for ω ∈ Ωn (whose probability is at

least 1/2), the point Xn(ω) belongs to ΛQC(ε,M). �

5. Constru
tion of maximizing measures

In this se
tion, we prove Theorem 1.7: Given any �nite subset Σ in a hyperboli
 group Γ,
there exists a measure µΣ maximizing the quantity h(µ)/ℓ(µ) over all measures µ supported

on Σ with ℓ(µ) > 0. To prove this result, we start with a sequen
e of measures µi supported

on Σ su
h that h(µi)/ℓ(µi) 
onverges to the maximumM of these quantities. We are looking

for µΣ with h(µΣ)/ℓ(µΣ) = M . Repla
ing µi with (µi + δe)/2 (this multiplies entropy and

drift by 1/2, and does not 
hange their ratio) and adding e to Σ, we 
an always assume

µi(e) > 1/2, to avoid periodi
ity problems.

Extra
ting a subsequen
e, we 
an ensure that µi 
onverges to a limit probability measure

µ. We treat separately the two following 
ases:

(1) Γµ is non-elementary.

(2) Γµ is elementary.

Let us handle �rst the easy 
ase, where Γµ is non-elementary. In this 
ase, the entropy

and the drift are 
ontinuous at µ, by Proposition 2.3 and Theorem 2.9, both due to Ers
hler



ENTROPY AND DRIFT IN WORD HYPERBOLIC GROUPS 32

and Kaimanovi
h in [EK13℄. Therefore, h(µi)/ℓ(µi) tend to h(µ)/ℓ(µ), sin
e in this 
ase

ℓ(µ) > 0. One 
an thus take µΣ = µ.

The 
ase where Γµ is elementary is mu
h more interesting. Let us des
ribe heuristi
ally

what should happen, in a simple 
ase. We assume that µi = (1 − ε)µ + εν where ν is a

�xed measure, and ε tends to 0. The random walk for µi 
an be des
ribed as follows. At

ea
h jump, one pi
ks µ (with probability 1 − ε) or ν (with probability ε), then one jumps

a

ording to the 
hosen measure. After time N , the measure ν is 
hosen roughly εN times,

with intervals of length 1/ε in between, where µ is 
hosen. Thus, µ∗N
i behaves roughly like

(µ∗1/ε ∗ ν)εN .
When Γµ is �nite, the measure µ∗1/ε

is 
lose, when ε is small, to the uniform measure π on

Γµ. Therefore, µ
∗N
i is 
lose to (π ∗ ν)εN . We dedu
e h(µi) ∼ εh(π ∗ ν) and ℓ(µi) ∼ εℓ(π ∗ ν).

In parti
ular, h(µi)/ℓ(µi) → h(π ∗ ν)/ℓ(π ∗ ν). One 
an take µΣ = π ∗ ν.
When Γµ is in�nite, it is virtually 
y
li
. Assuming that µ is 
entered for simpli
ity,

the walk given by µ∗1/ε
arrives essentially at distan
e 1/

√
ε of the origin, by the 
entral

limit theorem. Then, one jumps a

ording to ν, in a dire
tion transverse to Γµ, preventing

further 
an
ellations. Hen
e, the walk given by (µ∗1/ε ∗ ν)εN is at distan
e roughly εN/
√
ε

from the origin, yielding ℓ(µi) ∼ √
ε. On the other hand, ea
h step µ∗1/ε

only visits 1/ε

points, hen
e the measure (µ∗1/ε ∗ ν)εN is supported by roughly (1/ε)εN points, yielding

h(µi) ∼ ε|log ε|. In parti
ular, h(µi) = o(ℓ(µi)). This implies that h(µi)/ℓ(µi), whi
h tends

to 0, 
an not tend to the maximum M . Therefore, this 
ase 
an not happen.

The rigorous argument is 
onsiderably more deli
ate. One di�
ulty is that µi does not

de
ompose in general as (1−ε)µ+εν: there 
an be in µi points with a very small probability

(whi
h are not seen by µ), but mu
h larger than ε, the probability to visit a nonelementary

subset of Γ. These points will play an important role on the relevant time s
ale, i.e., 1/ε.
Hen
e, we have to des
ribe the di�erent time s
ales that happen in µi.

For ea
h a ∈ Σ, we have a weight µi(a), whi
h tends to 0 if a is not in the support of µ.
Reordering the ak and extra
ting a subsequen
e, we 
an assume that Σ = {a1, . . . , ap} with

µi(a1) > · · · > µi(ap) (and a1 = e). Extra
ting a further subsequen
e, we may also assume

that µi(ak)/µi(ak−1) 
onverges for all k, towards a limit in [0, 1].
Let Γk be the subgroup generated by a1, . . . , ak. We 
onsider the smallest r su
h that

Γr is non-elementary. Then, we 
onsider the biggest s < r su
h that µi(r) = o(µi(s)).
Roughly speaking, the random walk has enough time to spread on the elementary subgroup

Γs, before seeing ar. It turns out that the asymptoti
 behavior will depend on the nature

of Γs (�nite or virtually 
y
li
 in�nite).

We will de
ompose the measure µi as the sum of two 
omponents (1− εi)αi+ εiβi, where
εi tends to 0, the measure αi mainly lives on Γs, and the measure βi 
orresponds to the

remaining part of µi, on {as+1, . . . , ap}. The pre
ise 
onstru
tion depends on the nature of

Γs:

• If Γs is �nite. Let β
(0)
i be the normalized restri
tion of µi to {as+1, . . . , ap}. To

avoid periodi
ity problems, we rather 
onsider βi = (δe + β
(0)
i )/2. We de
ompose

µi = (1 − εi)αi + εiβi, where αi is supported on a1, . . . , as. By 
onstru
tion, the

probability of any element in the support of αi is mu
h bigger than εi.
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• If Γs is virtually 
y
li
 in�nite. The group Γs 
ontains a hyperboli
 element g0, with
repelling and attra
ting points at in�nity denoted by g−0 and g+0 . The elements of

Γs all �x the set {g−0 , g+0 }. We take for αi the normalized restri
tion of µi to those

elements in Σ that �x {g−0 , g+0 }, and for βi the normalized restri
tion of µi to the

other elements. On
e again, we 
an write µi = (1− εi)αi + εiβi.

In both 
ases, εi is 
omparable to the probability µi(ar), and is therefore negligible with

respe
t to µi(as). We will write µi = µε (and, in the same way, we will repla
e all indi
es i
with ε, sin
e the main parameter is ε = εi). The measure µε 
onverges to µ when ε tends to
0, while βε tends to a probability measure β, supported on e, as+1, . . . , ap. If the measures

µε are symmetri
 to begin with, the measures αε and βε are also symmetri
 by 
onstru
tion.

To generate the random walk given by µε, one 
an �rst independently 
hoose random

measures ρn: one takes ρn = αε with probability 1 − ε, and ρn = βε with probability ε.
Then, one 
hooses elements gn randomly a

ording to ρn, and one multiplies them: the

produ
t g1 · · · gn is distributed like the random walk given by µε at time n.

We will group together su

essive gk, into blo
ks where the equidistribution on Γs 
an

be seen. More pre
isely, denote by t1, t2, . . . the su

essive times where ρn = βε (and

t0 = 0). They are stopping times, the su

essive di�eren
es are independent and identi
ally

distributed, with a geometri
 distribution of parameter ε (i.e., P(t1 = n) = (1 − ε)n−1ε),
with mean 1/ε. Write LN = gtN−1+1 · · · gtN . By 
onstru
tion, the Li are independent,

identi
ally distributed, and the random walk they de�ne, i.e., L1 · · ·LN , is a subsequen
e

of the original random walk g1 · · · gn. Let λε be the distribution of Li on Γ, i.e.,

λε =

∞
∑

n=0

(1− ε)nεα∗n
ε ∗ βε.

Lemma 5.1. The measure λε has �nite �rst moment and �nite time one entropy. Moreover,

ℓ(µε) = εℓ(λε) and h(µε) = εh(λε).

Proof. As the mean of t1 is 1/ε, the random walk generated by λε is essentially the random

walk generated by µε, but on a time s
ale 1/ε. This justi�es heuristi
ally the statement.

For the rigorous proof, let us �rst 
he
k that λε has �nite �rst moment (and hen
e �nite

time one entropy). Sin
e all the measures have �nite support, we have |L1| 6 Ct1. Sin
e a
geometri
 distribution has moments of all order, the same is true for |L1|.

The strong law of large numbers ensures that, almost surely, tN ∼ N/ε. Therefore, almost

surely,

ℓ(λε) = lim
|L1 · · ·LN |

N
= lim

|g1 · · · gtN |
N

= lim
|g1 · · · gtN |

tN
· tN
N

= ℓ(µε) · 1/ε.

This proves the statement of the lemma for the drift.

For the entropy, we use the 
hara
terization of Lemma 2.4. We will show that h(µε) 6

εh(λε) and h(µε) > εh(λε). Let Kn be a set of 
ardinality at most e(h(µε)+η)n
whi
h 
ontains

g1 · · · gn with probability at least 1/2. Let N = εn. With large probability, tN is 
lose to

n, up to η′n (where η′ is arbitrarily small). Hen
e, with probability at least 1/3, the point

L1 · · ·LN belongs to the Cη′n-neighborhood of Kn, whose 
ardinality is at most

|Kn| · eC
′η′n

6 e(h(µε)+η+C′η′)n = e(h(µε)+η+C′η′)N/ε.
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As η and η′ are arbitrary, this shows that h(λε) 6 h(µε)/ε. The 
onverse inequality is

proved in the same way. �

The previous lemma shows that we should understand λε. We de�ne an auxiliary proba-

bility measure α̃ε so that λε = α̃ε ∗ βε, by

(5.1) α̃ε =

∞
∑

n=0

(1− ε)nεα∗n
ε .

In this formula, most weight is 
on
entrated around those n of the order of 1/ε. Hen
e, we
have to understand the iterates of αε in time 1/ε. When Γs is �nite, we will see that it

has enough time to equidistribute on Γs (even though αε may give a very small weight to

some elements, this weight is by 
onstru
tion mu
h larger than ε, so that 1/ε iterates are

enough to equidistribute). When Γs is virtually 
y
li
, we will see that the random walk

has enough time to drift away signi�
antly from the identity.

In both 
ases, we will need quantitative results on basi
 groups, but in weakly ellipti
 
ases

(i.e., the transition probabilities are not bounded from below). There are te
hniques to get

quantitative estimates in su
h settings, espe
ially 
omparison te
hniques (due for instan
e

to Varopoulos, Dia
onis, Salo�-Coste): one 
an 
ompare weakly ellipti
 walks to ellipti


ones (whi
h we understand well) thanks to Diri
hlet forms arguments: these arguments

make it possible to transfer results from the latter to the former (modulo some loss in the


onstants, due to the la
k of ellipti
ity). We will rely on su
h results when Γs is in�nite.

When it is �nite, su
h te
hniques 
an also be used, but we will rather give a more elementary

argument.

We start with the 
ase where Γs is �nite. We need to quantify the speed of 
onvergen
e

to the stationary measure in �nite groups, with the following lemma.

Lemma 5.2. Let Λ be a �nite group. Let ΣΛ ⊂ Λ be a generating subset (it does not have

to be symmetri
). Let πΛ be the uniform measure on Λ, and let d(µ, πΛ) be the eu
lidean

distan
e between a measure µ and πΛ (i.e.,

(
∑

(µ(g) − πΛ(g))
2
)1/2

). For any δ > 0, there
exists K > 0 with the following property. Let η > 0. Consider a probability measure µ on Λ
with µ(σ) > η for any σ ∈ ΣΛ ∪ {e}. Then, for all n > K/η,

d(µ∗n, πΛ) 6 δ.

In other words, the time to see the equidistribution towards the stationary measure is

bounded by 1/η, where η is the minimum of the transition probabilities on ΣΛ.

Proof. Endow the spa
e M(Λ) of signed measures on Λ with the s
alar produ
t 
orrespond-

ing to the quadrati
 form |ν|2 = ∑

ν(g)2. Denote by H = {ν :
∑

ν(g) = 0} the hyperplane
π⊥
Λ of zero mass measures. For any probability ρ, denote by Mρ the left-
onvolution operator

on M(Λ), that isMρ(ν) = ρ∗ν. Sin
e 
onvolution preserves mass, H isMρ-invariant. Let us

prove that the operator norm of Mρ is bounded by 1. Indeed, put uρ(g) =
∑

h∈Λ ρ(h)ρ(hg),
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this is a probability on Λ. We have

|Mρν|2 =
∑

g∈Λ

(Mρν(g))
2 =

∑

(g,h1,h2)∈Λ3

ρ(gh−1
1 )ρ(gh−1

2 )ν(h1)ν(h2)

=
∑

(h1,h2)∈Λ2

ν(h1)ν(h2)uρ(h1h
−1
2 ) =

∑

(g,h)∈Λ2

ν(h)ν(g−1h)uρ(g)

6
∑

g∈Λ

|ν|2uρ(g) = |ν|2.

This proves that ‖Mρ‖ 6 1. Now �x ρo to be the uniform probability on the set ΣΛ ∪ {e}.
Noti
e that uρo(g) > 0 for any g ∈ ΣΛ ∪ {e}, sin
e ρo(e) > 0. We 
laim that Mρo restri
ted

to H has an operator norm c < 1. Would it be not the 
ase, there would exist ν ∈ H − {0}
su
h that the previous inequalities would be equalities. Thanks to the equality 
ase in the

Cau
hy-S
hwarz inequality, this implies that, for any g ∈ ΣΛ, the two measures h 7→ ν(h)
and h 7→ ν(g−1h) are positively proportional. Sin
e their norm are equal, they must be

equal. Sin
e ΣΛ generates Λ, ν is Λ-invariant and belongs to H, so it must be zero.

By assumption, the probability µ 
an be de
omposed as

µ = ηρo + (1− η)ν,

where ν is some probability. This implies that Mµ restri
ted to H has operator norm at

most ηc+ (1− η). Therefore,

d(µ∗n, πΛ) = |µ∗n − πΛ| = |Mn
µ (δe − πΛ)| 6 2(1− (1− c)η)n.

This inequality implies the result. �

We 
an now des
ribe the asymptoti
 behavior of µε when the group Γs is �nite.

Lemma 5.3. Assume that Γs is �nite. De�ne a new probability measure λ = πΓs ∗ β (it

generates a non-elementary subgroup). When ε tends to 0, we have h(µε) ∼ εh(λ) and

ℓ(µε) ∼ εℓ(λ).

Proof. The random variable t1, being geometri
 of parameter ε, is of the order of 1/ε with

high probability (i.e., for any δ > 0, there exists u > 0 su
h that P(t1 > u/ε) > 1 − δ).
Writing Σs = {a1, . . . , as} for the support of αε, we have minσ∈Σs αε(σ) = (1 − ε)−1µε(as),
whi
h is mu
h bigger than ε by de�nition of s. Lemma 5.2 shows that the measures α∗n

ε

are 
lose to πΓs for n > u/ε. This implies that α̃ε (de�ned in (5.1)) 
onverges to πΓs when

ε → 0. As βε 
onverges to β, this shows that λε 
onverges to λ.
The support of the measure λ 
ontains Γs and as+1, . . . , ar (as the support of β 
ontains

{e, as+1, . . . , ar} by 
onstru
tion). Hen
e, Γλ 
ontains the non-elementary subgroup Γr. It

follows that the entropy and the drift are 
ontinuous at λ, by Proposition 2.3 and Theo-

rem 2.9. We get h(λε) → h(λ) and ℓ(λε) → ℓ(λ). With Lemma 5.1, this 
ompletes the

proof. �

We dedu
e from the lemma that h(µε)/ℓ(µε) tends to h(λ)/ℓ(λ). Hen
e, the measure

µΣ = λ satis�es the 
on
lusion of the theorem, at least in the non-symmetri
 
ase. In the

symmetri
 
ase, where we are looking for a symmetri
 measure µΣ, the measure λ = πΓs ∗β
is not an answer to the problem. However, λ′ = πΓs ∗ β ∗ πΓs is symmetri
, and it 
learly
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has the same entropy and drift as λ (sin
e πΓs ∗ πΓs = πΓs). Hen
e, we 
an take µΣ = λ′
.

This 
ompletes the proof of Theorem 1.7 when the group Γs is �nite.

Example 5.4. Let Γ = Z/2 ∗ Z/4, with Σ = {a, b, b−1} (where a is the generator of Z/2
and b the generator of Z/4), with the word distan
e 
oming from Σ. [MM07, Se
tion 5.1℄

shows that the supremum over measures supported on Σ of h(µ)/ℓ(µ) is the growth v of the

group (note that Γ is virtually free), and that it is not realized by a measure supported on

Σ. This shows that, in Theorem 1.7, the fa
t that µΣ may need a support larger than Σ is

not an artefa
t of the proof.

In this example, any symmetri
 measure on Σ is of the form µε = (1−ε)δa+εβ where β is

uniform on {b, b−1}. The above proof shows that, when ε tends to 0, h(µε)/ℓ(µε) 
onverges
to h(λ)/ℓ(λ) where λ = πΓs ∗ β = 1

2 (δe + δa) ∗ 1
2(δb + δb−1) is the uniform measure on

{b, b−1, ab, ab−1}.

It remains to treat the 
ase where Γs is virtually 
y
li
 in�nite. Su
h a group surje
ts

onto Z or Z⋊Z/2 (the in�nite dihedral group), with �nite kernel. From the point of view of

the random walk, most things happen in the quotient. Hen
e, it would su�
e to understand

these two groups (separating in the 
ase of Z the 
entered and non-
entered 
ases). We will

rather give dire
t arguments whi
h do not use this redu
tion and whi
h avoid separating


ases. Let t 6 s be the smallest index su
h that {a1, · · · , at} generates an in�nite group.

Let η = η(ε) = µε(at), this parameter governs the equidistribution speed on Γs (or, at least,

on Γt, whi
h has �nite index in Γs sin
e these two groups are virtually 
y
li
 in�nite). We

will �nd the asymptoti
s of the entropy and the drift in terms of η/ε (whi
h tends to in�nity

by de�nition of s). We start with the entropy (for whi
h an upper bound su�
es). Note

that the random walk dire
ted by αε does not live on Γs, but on a possibly bigger group

sin
e we have put in αε all the points that �x the set {g−0 , g+0 } (this will be important in

the 
ontrol of the drift below). Let Γ̃s be the group they generate, it is still virtually 
y
li


(see, for instan
e, [GdlH90, Théorème 37 page 157℄), and it 
ontains Γs as a �nite index

subgroup.

Lemma 5.5. There exists a 
onstant C su
h that h(λε) 6 C log(η/ε).

Proof. Let K be the group generated by {a1, . . . , at−1}. It is �nite by de�nition of t. Let Σ′

be the set of points among at, . . . , ap whi
h stabilize {g−0 , g+0 }. The group Γ̃s is generated

by K and Σ′
. Let us 
onsider the asso
iated word pseudo-distan
e d′, where we de
ide that

elements in K have 0 length. This pseudo-distan
e is quasi-isometri
 to the usual distan
e,

and it satis�es d′(e, xk) = d′(e, x) for all x ∈ Γ̃s and all k ∈ K.

Let us �rst estimate the average distan
e to the origin for an element given by α̃ε. We

de
ompose αε as the average of a measure supported on {a1, . . . , at−1} ⊂ K, and of a

measure supported on Σ′
(the 
ontribution of the latter has a mass m(ε) bounded by (p−

t+ 1)η 6 Cη). The measure α∗n
ε 
an be obtained by pi
king at ea
h step one of these two

measures (a

ording to their respe
tive weight), and then jumping a

ording to a random

element for this measure. When we use the �rst measure, the d′-distan
e to the origin does

not 
hange by de�nition. Hen
e, the distan
e to the origin is bounded by the number of
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hoi
es of the se
ond measure. We obtain

Eα̃ε(d
′(e, g)) 6

∞
∑

n=0

(1− ε)nε

n
∑

i=0

(

n

i

)

m(ε)i(1−m(ε))n−i · Ci

= Cm(ε)
∞
∑

n=0

(1− ε)nε
n
∑

i=1

n

(

n− 1

i− 1

)

m(ε)i−1(1−m(ε))n−i

= Cm(ε)
∞
∑

n=0

(1− ε)nεn = Cm(ε)(1− ε)/ε 6 Cη/ε.

A measure supported on the integers with �rst moment A has entropy bounded by

C logA+C (see, for instan
e, [EK10, Lemma 2℄). The proof also applies to virtually 
y
li


situations (the �nite thi
kening does not 
hange anything). Therefore, we get H(α̃ε) 6

C log(η/ε) + C.
Finally,

H(λε) = H(α̃ε ∗ βε) 6 H(α̃ε) +H(βε) 6 C log(η/ε) + C,

sin
e the support of βε is uniformly bounded. As η/ε → ∞, this gives H(λε) 6 C log(η/ε).
Finally, we estimate h(λε) = infn>0H(λ∗n

ε )/n 6 H(λε) to get the 
on
lusion of the lemma.

�

For the drift, we need to be more pre
ise sin
e we need a lower bound to 
on
lude. We

will use a lemma giving lower bounds on the equidistribution speed in virtually 
y
li
 in�nite

groups, using 
omparison te
hniques.

Lemma 5.6. Let Λ be a virtually 
y
li
 in�nite group. Let ΣΛ ⊂ Λ be a �nite subset

generating an in�nite subgroup of Λ. There exists a 
onstant C with the following property.

Let η > 0. Let µ be a probability measure on Λ with µ(e) > 1/2 and µ(σ) > η for any

σ ∈ ΣΛ. Then, for all n > 1,

sup
g∈Λ

µ∗n(g) 6 C(ηn)−1/2.

The interest of the lemma is that C does not depend on the measure µ, and that we obtain

an expli
it 
ontrol on µ∗n
just in terms of a lower bound on the transition probabilities of

µ.

Proof. We use the 
omparison method. Let ρ be the uniform measure on e, ΣΛ and Σ−1
Λ .

The random walk it generates does not have to be transitive (sin
e ΣΛ does not ne
essarily

generate the whole group Λ), but Λ is partitioned into �nitely many 
lasses where it is

transitive (and isomorphi
 to the random walk on the group generated by ΣΛ). Moreover,

it is symmetri
, and therefore reversible for the 
ounting measure m on Λ. The Diri
hlet

form asso
iated to ρ is by de�nition

Eρ(f, f) =
1

2

∑

x,y

|f(x)− f(y)|2ρ(x−1y),

for any f : Λ → C. As Λ has linear growth, the following Nash inequality holds (see, for

instan
e, [Woe00, Proposition 14.1℄).

‖f‖6L2 6 C‖f‖4L1Eρ(f, f),
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where all norms are de�ned with respe
t to the measure m on Λ. Let Pµ be the Markov

operator asso
iated to µ. It satis�es

‖f‖2L2 − ‖Pµf‖2L2 = 〈f, f〉 − 〈Pµf, Pµf〉 = 〈(I − P ∗
µPµ)f, f〉.

The operator P ∗
µPµ is the Markov operator asso
iated to the symmetri
 probability measure

ν = µ̌ ∗ µ, whi
h satis�es ν(σ) > η/2 for σ ∈ ΣΛ ∪ Σ−1
Λ and ν(e) > 1/4 (sin
e µ(e) > 1/2).

Therefore, ρ(g) 6 Cη−1ν(g) for all g. We dedu
e

‖f‖2L2 − ‖Pµf‖2L2 =
∑

f(x)(f(x)− f(y))ν(x−1y) =
1

2

∑

|f(x)− f(y)|2ν(x−1y)

>
η

2C

∑

|f(x)− f(y)|2ρ(x−1y) =
η

C
Eρ(f, f).

Combining this inequality with Nash inequality, we obtain

‖f‖6L2 6 Cη−1‖f‖4L1(‖f‖2L2 − ‖Pµf‖2L2).

The operator P ∗
µ satis�es the same inequality, for the same reason. Composing these in-

equalities, we obtain an estimate for the norm of Pn
µ from L1

to L∞
(this is [VSCC92,

Lemma VII.2.6℄), of the form

‖Pn
µ ‖L1→L∞ 6 (C ′η−1/n)1/2.

Applying this inequality to the fun
tion δe, we get the desired result. �

The previous lemma implies that, if C ′
is large enough, a neighborhood of size (ηn)1/2/C ′

of the identity has probability for µ∗n
at most 1/2. Hen
e, the average distan
e to the origin

is at least of the order of (ηn)1/2.
Now, we study the stationary measure for βε ∗ α̃ε on ∂Γ. We re
all that g0 is a hyperboli


element in Γs, �xed on
e and for all.

Lemma 5.7. There exists a neighborhood U of {g−0 , g+0 } in ∂Γ su
h that the stationary

measure νε of βε ∗ α̃ε satis�es νε(U) → 0.

Proof. Let us �rst show that, for any neighborhood U of {g−0 , g+0 }, then (α̃ε ∗ δz)(U c) tends
to 0, uniformly in z ∈ ∂Γ. This is not surprising sin
e a typi
al element for α̃ε is large in the

virtually 
y
li
 group Γ̃s, and sends most points into U . To make this argument rigorous, we

will use Lemma 5.6. The de�nition (5.1) shows that it su�
es to prove that (α∗n
ε ∗ δz)(U c)

is small for n > u/ε.

The subgroup generated by g0 has �nite index in Γ̃s. Hen
e, any element in Γ̃s 
an be

written as gk0γi, for γi in a �nite set. Thus, the measure α∗n
ε 
an be written as

∑

cn(k, i)δgk
0
γi
,

for some 
oe�
ients cn(k, i). Lemma 5.6 (applied to Λ = Γ̃s with ΣΛ = {a1, . . . , at}) ensures
that supk,i cn(k, i) 6 C/(ηn)1/2. When n > u/ε, this quantity tends to 0 sin
e ε = o(η). We

have

(α∗n
ε ∗ δz)(U c) =

∑

k,i

cn(k, i)1(g
k
0γiz /∈ U).

As the element g0 is hyperboli
, there exists C su
h that, for any w ∈ ∂Γ,

|{k ∈ Z : gk0w /∈ U}| 6 C.
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The uniformity in w follows from the 
ompa
tness of (∂Γ \ {g−0 , g+0 })/〈g0〉. We obtain

(α∗n
ε ∗ δz)(U c) 6

(

sup
k,i

cn(k, i)
)

∑

i

|{k ∈ Z : gk0γiz /∈ U}| 6 C sup
k,i

cn(k, i) 6 C/(ηn)1/2.

This shows that (α∗n
ε ∗ δz)(U c) is small, as desired.

As α̃ε ∗ δz(U
c) tends to 0 uniformly in z, we dedu
e that (α̃ε ∗ νε)(U c) also tends to 0,

and therefore that (α̃ε ∗ νε)(U) tends to 1.
Let A = {g−0 , g+0 }. We 
laim that, for all g su
h that gA∩A 6= ∅, then gA = A. Indeed, if

g(g−0 ) ∈ A for instan
e, then g−1g0g is a hyperboli
 element stabilizing g−0 . It also stabilizes
g+0 , by [GdlH90, Théorème 30 page 154℄, i.e., g0g(g

+
0 ) = g(g+0 ). Hen
e, g(g

+
0 ) is a �xed point

of g0, i.e., g(g
+
0 ) ∈ A.

By de�nition of βε, the �nitely many elements of its support do not �x A. They even

satisfy gA∩A = ∅ for all g in this support, by the previous argument. If U is small enough,

we get gU ∩ U = ∅, i.e., g(U) ⊂ U c
.

Finally,

νε(U
c) = (βε ∗ α̃ε ∗ νε)(U c) > (α̃ε ∗ νε)(U),

whi
h tends to 1 when ε tends to 0. �

Lemma 5.8. The drift ℓ(λε) satis�es ℓ(λε) > c · (η/ε)1/2.
Proof. Let ρε be a stationary measure for λε, on the Busemann boundary ∂BΓ. By Propo-

sition 2.2,

ℓ(λε) =

∫

cB(g, ξ) dρε(ξ) dλε(g),

where cB(g, ξ) = hξ(g
−1) is the Busemann 
o
y
le. As λε = α̃ε ∗ βε, this gives

ℓ(λε) =

∫

cB(Lb, ξ) dρε(ξ) dα̃ε(L) dβε(b).

With the 
o
y
le relation (2.2), this be
omes

ℓ(λε) =

∫

cB(L, bξ) dρε(ξ) dα̃ε(L) dβε(b) +

∫

cB(b, ξ) dρε(ξ) dα̃ε(L) dβε(b).

The se
ond integral is bounded independently of ε sin
e the support of βε is �nite. In the

�rst integral, ξ′ = bξ is distributed a

ording to the measure ρ̃ε := βε∗ρε, whi
h is stationary

for βε∗α̃ε. Lemma 5.7 implies that its proje
tion (πB)∗ρ̃ε on the geometri
 boundary, whi
h

is again stationary for βε ∗ α̃ε, gives a small measure to a neighborhood U of {g−0 , g+0 }.
As the limit set of Γ̃s is {g−0 , g+0 }, there exists a 
onstant C su
h that, for all ξ /∈ π−1

B U

and g ∈ Γ̃s, we have |hξ(g−1)− d(e, g)| 6 C. For ξ ∈ π−1
B U , we only use the trivial bound

hξ(g
−1) > −d(e, g), sin
e horofun
tions are 1-Lips
hitz and vanish at the origin. We get

ℓ(λε) >

∫

(L,ξ)∈Γ×π−1

B
Uc

d(e, L) dα̃ε(L) dρ̃ε(ξ)−
∫

(L,ξ)∈Γ×π−1

B
U
d(e, L) dα̃ε(L) dρ̃ε(ξ)−C

=

(
∫

d(e, L) dα̃ε(L)

)

(ρ̃ε(π
−1
B U c)− ρ̃ε(π

−1
B U))− C.
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For small enough ε, we have ρ̃ε(π
−1
B U) 6 1/4 (and therefore ρ̃ε(π

−1
B U c) > 3/4). Moreover,

Lemma 5.6 ensures that the average distan
e to the origin for the measure α̃ε is at least

c · (η/ε)1/2. Hen
e, the previous formula 
ompletes the proof. �

Combining Lemmas 5.5 and 5.8, we get

h(λε)/ℓ(λε) 6 C log(η/ε)/(η/ε)1/2 .

This tends to 0 sin
e η/ε tends to in�nity. We dedu
e from Lemma 5.1 that h(µε)/ℓ(µε)
tends to 0. This is a 
ontradi
tion sin
e we were assuming that it 
onverges to the maximum

M , whi
h is positive.

This 
on
ludes the proof of Theorem 1.7. �

The study of the 
ase where Γs is virtually 
y
li
 in�nite gives in parti
ular the following

result.

Theorem 5.9. Let (Γ, d) be a metri
 hyperboli
 group. Let Σ be a �nite subset of Γ whi
h

generates a non-elementary group. Let µi be a sequen
e of measures on Σ, with h(µi) >
0, 
onverging to a probability measure µ su
h that Γµ is in�nite virtually 
y
li
. Then

h(µi)/ℓ(µi) → 0.

Note that the pre
ise value of ℓ(µi) depends on the 
hoi
e of the distan
e, but if two

distan
es are equivalent then the asso
iated drifts vary within the same 
onstants. Hen
e,

the 
onvergen
e h(µi)/ℓ(µi) → 0 does not depend on the distan
e.

We re
over results of Le Prin
e [LP07℄: In any metri
 hyperboli
 group, there exist

admissible probability measures with h/ℓ < v. The 
onstru
tion of Le Prin
e is rather

similar to the examples given by Theorem 5.9.

Example 5.10. We 
an use the above proof to also �nd an example where h(µε)/ℓ(µε) → 0
although µε tends to a measure µ for whi
h Γµ is �nite and nontrivial. Consider Γ =
Z/2× F2 = {0, 1} × 〈a, b〉, endowed with the probability measure µε given by

µε(0, e) = µε(1, e) = 1/2− ε− ε2, µε(0, a) = µε(0, a
−1) = ε, µε(0, b) = µε(0, b

−1) = ε2.

The measure µε 
onverges to µ = (δ(0,e)+δ(1,e))/2. With the above notations, Γµ = Z/2×{e}
but Γs = Z/2× 〈a〉 is virtually 
y
li
 in�nite (so that h(µε)/ℓ(µε) → 0) and Γr = Γ.

6. Examples for non-symmetri
 measures

In this se
tion, we des
ribe the additional di�
ulties that arise if one tries to prove

Theorem 1.3 for non-symmetri
 measures. The main problem is that the random walk lives

on the subsemigroup Γ+
µ , whi
h is not a subgroup any more. While many 
ases 
an be

handled with the tools we have des
ribed in this arti
le, one 
ase 
an not be treated in this

way: when the subsemigroup Γ+
µ has no ni
e geometri
 properties (it is not quasi-
onvex, it

is not a subgroup), but Γµ = Γ.
Let us �rst show that the growth properties of su
h a subsemigroup 
an be more 
om-

pli
ated than what happens for subgroups. If Λ is a subgroup of Γ, either |Bn ∩ Λ| ≍ env,
or |Bn ∩ Λ| = o(env) (the �rst 
ase happens if and only if Λ has �nite index in Γ, see the

dis
ussion at the beginning of Paragraph 4.3). Unfortunately, the behavior of semigroups


an be more 
ompli
ated.
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Proposition 6.1. In F2, there exists a subsemigroup Λ+
su
h that lim inf|Bn∩Λ+|/|Bn| = 0

and lim sup|Bn ∩ Λ+|/|Bn| > 0.

Proof. Let S
n
a,a denote the geodesi
 words in F2 = 〈a, b〉 of length n whi
h start and end

with a. Let nj be a sequen
e tending very qui
kly to in�nity. Let Λ+
be the subsemigroup

generated by

⋃

S
nj
a,a. Then |Bnj

∩ Λ+| > c|Bnj
|. We 
laim that

|Bnj−1 ∩ Λ+|/|Bnj−1| → 0.

Indeed, the subsemigroup Λ+
j−1 generated by

⋃

k<j S
nk
a,a has a growth rate whi
h is < env,

sin
e some subwords su
h as bnj−1
are forbidden in this subsemigroup. Hen
e, if nj is large

enough with respe
t to nj−1, we have |Snj−1 ∩ Λ+| = |Snj−1 ∩ Λ+
j−1| = o(e(nj−1)v). �

In this example, most points in S
nj ∩Λ+

are introdu
ed by S
nj
a,a. This shows that Λ+

is far

from being quasi-
onvex. In parti
ular, te
hniques based only on non-quasi-
onvexity and

sub- or super-multipli
ativity will never show that |Bn ∩ Λ+| = o(|Bn|) for subsemigroups.

Now, we give an example of a well-behaved measure (apart from the fa
t that it is not

symmetri
, not admissible and not �nitely supported) for whi
h h = ℓv. The 
onstru
tion

is done in free produ
ts. The idea is to forbid simpli�
ations, so that we have an expli
it


ontrol on the random walk at time n. To enfor
e this behavior, we will work in a free

produ
t Γ1 ∗Γ2, and 
onsider a probability measure supported on elements of the form g1g2
with gi ∈ Γi \{e}. The next statement applies to some non virtually free hyperboli
 groups,

for instan
e the free produ
t of two surfa
e groups. It also applies to some non-hyperboli


groups, more pre
isely to all �nitely generated groups without torsion and with in�nitely

many ends, by Stallings' theorem. It would be of interest to extend it to all groups with

in�nitely many ends. For this, we would need to also handle amalgamated free produ
ts

and HNN extensions.

Proposition 6.2. Let Γ1 and Γ2 be two nontrivial groups, generated respe
tively by �nite

symmetri
 sets S1 and S2. Let Γ = Γ1 ∗ Γ2 with the generating set S = S1 ∪ S2 and the


orresponding word distan
e. There exists on Γ a (nonsymmetri
, nonadmissible) probability

measure µ, with an exponential moment and nonzero entropy, satisfying h(µ) = ℓ(µ)v.

Proof. For i = 1, 2, let Γ∗
i = Γi \ {e}. We 
laim that

(6.1)

∑

g1∈Γ∗

1
,g2∈Γ∗

2

e−v|g1g2| = 1,

where v is the growth rate of Γ.
Let Fi(z) be the growth series of Γi, i.e., Fi(z) =

∑

g∈Γi
z|g|. The spheres Sni ∈ Γi satisfy

S
n+m
i ⊂ S

n
i · Smi . Hen
e, the sequen
e log|Sni | is subadditive. This implies that log|Sni |/n


onverges to its in�mum vi, and moreover that |Sni | > envi . We dedu
e that the radius of


onvergen
e of Fi is e
−vi

, and moreover Fi(e
−vi) = +∞.

Let F (z) be the growth series of Γ. As in the proof of Proposition 4.8, it is given by

F (z) =
F1(z)F2(z)

1− (F1(z)− 1)(F2(z)− 1)
.
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Assume for instan
e v1 > v2. As F1(e
−v1) = +∞, the fun
tion (F1(z)− 1)(F2(z)− 1) takes

the value 1 when z in
reases to e−v1
, at a point whi
h is pre
isely the radius of 
onvergen
e

e−v
of F . This shows that (F1(e

−v)−1)(F2(e
−v)−1) = 1 . This is pre
isely the equality (6.1).

We de�ne a probability measure µ on Γ as follows: for (g1, g2) ∈ Γ∗
1 × Γ∗

2, let

µ(g1g2) = e−v|g1g2|.

Sin
e there is only one way to generate the word g11g
1
2 · · · gn1 gn2 using µ, we have

µ∗n(g11g
1
2 · · · gn1 gn2 ) = e−v

∑
i|g

i
1
gi
2
|.

Denoting by Xn the position of the random walk at time n, it follows that − log µ∗n(Xn) =
v|Xn|. Dividing by n and letting n tend to in�nity, this gives h(µ) = ℓ(µ)v. �

If one is interested in measures with �nite support, one 
an only get the following approx-

imation result. It has the same �avor as Theorem 1.4, but it is both stronger sin
e it also

applies to some non-hyperboli
 groups, and weaker sin
e the measures it produ
es are not

admissible nor symmetri
.

Proposition 6.3. Let Γ1 and Γ2 be two nontrivial groups, generated respe
tively by �nite

symmetri
 sets S1 and S2. Let Γ = Γ1 ∗ Γ2 with the generating set S = S1 ∪ S2 and the


orresponding word distan
e. Then

sup
{

h(µ)/ℓ(µ) : µ �nitely supported probability measure in Γ, ℓ(µ) > 0
}

= v.

Proof. Any element in Γ 
an be 
anoni
ally de
omposed as a word in elements of Γ1 and

Γ2. Let S
p
i,j be the set of elements of length p that start with an element in Γi and end with

an element in Γj . We have the de
omposition

S
p = S

p
1,1 ∪ S

p
1,2 ∪ S

p
2,1 ∪ S

p
2,2.

One term in this de
omposition has 
ardinality at least |Sp|/4. Hen
e, there exist i, j su
h

that lim sup log|Spi,j|/p = v. Multiplying by �xed elements at the beginning and at the end

to go from Γ1 to Γi, and from Γj to Γ2, we get

(6.2) lim sup log|Sp1,2|/p = v.

Let µp be the uniform probability measure on S
p
1,2. By 
onstru
tion, there are no simpli-

�
ations when one iterates µp. Hen
e, µ∗n
p is the uniform probability measure on (Sp1,2)

∗n
,

whose 
ardinality is |Sp1,2|n. We get H(µ∗n
p ) = n log|Sp1,2| and L(µ∗n

p ) = np. Therefore,

h(µp) = log|Sp1,2| and ℓ(µp) = p, giving

h(µp)/ℓ(µp) = log|Sp1,2|/p.
Together with (6.2), this proves the proposition. �
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