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Abstrat. The fundamental inequality of Guivar'h relates the entropy and the drift of

random walks on groups. It is strit if and only if the random walk does not behave like

the uniform measure on balls. We prove that, in any nonelementary hyperboli group

whih is not virtually free, endowed with a word distane, the fundamental inequality is

strit for symmetri measures with �nite support, uniformly for measures with a given

support. This answers a onjeture of S. Lalley. For admissible measures, this is proved

using previous results of Anona and Blahère-Haïssinsky-Mathieu. For non-admissible

measures, this follows from a ounting result, interesting in its own right: we show that, in

any in�nite index subgroup, the proportion of non-distorted points is exponentially small.

The uniformity is obtained by studying the behavior of measures that degenerate towards

a measure supported on an elementary subgroup.

1. Main results

Let Γ be a �nitely generated in�nite group. Although the following disussion makes

sense in a muh broader ontext, we will assume that Γ is hyperboli sine all results of

this artile are devoted to this setting. There are two natural ways to onstrut random

elements in Γ:

• Let d be a proper left-invariant distane on Γ (for instane a word distane). For

large n, one an pik an element at random with respet to the uniform measure ρn
on the ball Bn = B(e, n) (where e denotes the identity of Γ).

• Let µ be a probability measure on Γ. For large n, one an pik an element at

random with respet to the measure µ∗n
(the n-th onvolution of the measure µ).

Equivalently, let g1, g2, . . . be a sequene of random elements of Γ that are distributed

independently aording to µ. Form the random walk Xn = g1 · · · gn. Then the

distribution of Xn is µ∗n
.

From a theoretial point of view, these methods share a lot of properties. From a ompu-

tational point of view, the seond method is muh easier to implement in general groups

sine it does not require the omputation of the ball Bn (note however that, in hyperboli

groups, simulating the uniform measure is very easy thanks to the automati struture of

the group). It is therefore of interest to �nd probability measures µ suh that these two

methods give equivalent results, in a sense that will be made preise below. This is the

main question of Vershik in [Ver00℄. In free groups (with the word distane oming from

the usual set of generators), everything an be omputed: if µ is the uniform measure on

the generators, then µ∗n
and ρn behave essentially in the same way. The situation is the
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same in free produts of �nite groups, again thanks to the underlying tree struture. How-

ever, in more ompliated groups, expliit omputations are essentially impossible, and it

is expeted that the methods always di�er. Our main result on�rms this intuition in a

speial lass of groups: In hyperboli groups whih are not virtually free (i.e., there is no

�nite index free subgroup), if d is a word distane, the two methods are always di�erent, in

a preise quantitative way.

Remark 1.1. We emphasize that the question really depends on the hoie of the distane

d, sine the shape of the balls Bn depends on d. For instane, for any symmetri probability

measure µ on Γ whose support is �nite and generates Γ, there exists a distane d (alled

the Green distane, see [BHM11℄) for whih the measures ρn and µ∗n
behave in the same

way. A famous open problem (to whih our methods do not apply) is to understand what

happens when Γ ats oompatly on the hyperboli spae H
k
, and the distane d is given

by d(e, γ) = dHk(O, γ · O) where O is a base point in H
k
. In this ase, it is also expeted

that the two methods are always di�erent. Here are the main partial results in this ontext:

(1) The two methods are di�erent for some symmetri measures with �nite support

([LP07℄, see also Theorem 5.9 below).

(2) If, instead of a oompat lattie, one onsiders a lattie with usps, the two methods

are always di�erent [GLJ93℄.

(3) If, instead of a lattie, one onsiders a nie dense subgroup, there exist symmetri

measures with �nite support for whih the two methods are equivalent [Bou12℄.

This question also makes sense in ontinuous time, for negatively urved manifolds. A

onjeture of Sullivan asserts that, in this setting, the two methods oinide if and only if

the manifold is loally symmetri, see [Led95℄.

One an give several meanings to the question �are the two methods equivalent?� Let us

�rst disuss an interpretation in terms of behavior at in�nity. The measures µ∗n
onverge in

the geometri ompati�ation Γ∪ ∂Γ to a measure µ∞, supported on the boundary, alled

the exit measure of the random walk, or its stationary measure. Geometrially, the random

walk (Xn)n>1 onverges almost surely to a random point on the boundary ∂Γ, the measure

µ∞ is its distribution. On the other hand, let ρ∞ be the Patterson-Sullivan measure on ∂Γ
assoiated to the distane d, onstruted in [Coo93℄ in this ontext. One should think of

it as the uniform measure on the boundary (it is equivalent to the Hausdor� measure of

maximal dimension on the boundary, for any visual distane oming from d). The measures

ρn do not always onverge to ρ∞, but all their limit points are equivalent to ρ∞, with a

density bounded from above and from below (this follows from the arguments of [Coo93℄,

see Lemma 2.13 below). A version of the question is then to ask if the measures µ∞ and

ρ∞ are mutually singular: in this ase, the random walk mainly visits parts of the groups

that are not important from the point of view of the uniform measure.

Another version of the same question is quantitative: Does the random walk visit parts of

the groups that are exponentially negligible from the point of view of the uniform measure?

This is made preise through the notions of drift and entropy. De�ne

(1.1) L(µ) =
∑

g∈Γ

µ(g)|g|, H(µ) =
∑

g∈Γ

µ(g)(− log µ(g)),
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where |g| = d(e, g). The quantity L(µ) is the average distane of an element to the identity.

The quantity H(µ), alled the time one entropy of µ, is the average logarithmi weight of

the points. They an both be �nite or in�nite. The funtions L and H both behave in a

subadditive way with respet to onvolution: L(µ1 ∗ µ2) 6 L(µ1) +L(µ2) and H(µ1 ∗ µ2) 6
H(µ1) +H(µ2). It follows that the sequenes L(µ∗n) and H(µ∗n) are subadditive. Hene,

the following quantities are well de�ned:

(1.2) ℓ(µ) = limL(µ∗n)/n, h(µ) = limH(µ∗n)/n.

They are alled respetively the drift and the asymptoti entropy of the random walk.

They also admit haraterizations along typial trajetories. If L(µ) is �nite, then almost

surely ℓ(µ) = lim|Xn|/n. In the same way, if H(µ) is �nite, then almost surely h(µ) =
lim(− log µ∗n(Xn))/n. The most intuitive haraterization of the entropy is probably the

following one: at time n, the random walk is essentially supported by eh(µ)n points (see

Lemma 2.4 for a preise statement). Let us also de�ne the exponential growth rate of the

group with respet to d, i.e.,

(1.3) v = lim inf
n→∞

log|Bn|
n

,

where Bn is the ball of radius n around e. In hyperboli groups, it satis�es the apparently

stronger inequality C−1env 6 |Bn| 6 Cenv, by [Coo93℄. For large n, most points for

µ∗n
are ontained in a ball B(1+ε)ℓn, whih has ardinality at most e(1+2ε)ℓnv

. Sine the

random walk at time n essentially visits ehn points, we dedue the fundamental inequality

of Guivar'h [Gui80℄

h 6 ℓv.

If this inequality is an equality, this means that the walk visits most parts of the group.

Otherwise, it is onentrated in an exponentially small subset. Another version of our main

question is therefore: Is the inequality h 6 ℓv strit?

In hyperboli groups, it turns out that the two versions of the question are equivalent,

at least for �nitely supported measures, and that they also have a geometri interpretation

in terms of Hausdor� dimension. If µ is a probability measure on a group, we write Γ+
µ

for the semigroup generated by the support of µ, and Γµ for the group it generates. When

µ is symmetri, they oinide. We say that µ is admissible if Γ+
µ = Γ. The following

result is Corollary 1.4 and Theorem 1.5 in [BHM11℄ (see also [Haï13℄) when the measure is

symmetri, and is proved in [Tan14℄ when µ is not neessarily symmetri and d is a word

distane.

Theorem 1.2. Let Γ be a non-elementary hyperboli group, endowed with a left-invariant

distane d whih is hyperboli and quasi-isometri to a word distane. Let v be the expo-

nential growth rate of (Γ, d). Let d∂Γ be a visual distane on ∂Γ assoiated to d. Consider

an admissible probability measure µ on Γ, with �nite support. Assume additionally either

that the measure µ is symmetri, or that the distane d is a word distane. The following

onditions are equivalent:

(1) The equality h = ℓv holds.

(2) The Hausdor� dimension of the exit measure µ∞ on (∂Γ, d∂Γ) is equal to the Haus-

dor� dimension of this spae.
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(3) The measure µ∞ is equivalent to the Patterson-Sullivan measure ρ∞.

(4) The measure µ∞ is equivalent to the Patterson-Sullivan measure ρ∞, with density

bounded from above and from below.

(5) There exists C > 0 suh that, for any g ∈ Γ,

|vd(e, g) − dµ(e, g)| 6 C,

where dµ is the �Green distane� assoiated to µ, i.e., dµ(e, g) = − log P(∃n,Xn =
g) where Xn is the random walk given by µ starting from the identity (it is an

asymmetri distane in general, and a genuine distane if µ is symmetri).

The di�erent statements in this theorem go from the weakest to the strongest: sine

entropy is an asymptoti quantity, an assumption on h seems to allow subexponential �u-

tuations, so the assumption (1) is rather weak. On the other hand, (3) says that two

measures are equivalent, so most points are ontrolled. Finally, in (5), all points are uni-

formly ontrolled. The equivalene between these statements is a strong rigidity theorem.

The equivalene between (1) and (2) follows from a formula for the respetive dimensions.

The de�nition of a visual distane at in�nity d∂Γ involves a small parameter ε. In terms of

this parameter, one has HD(µ∞) = h/(εℓ) and HD(ρ∞) = HD(∂Γ) = v/ε, so that these

dimensions oinide if and only if h = ℓv.
In this theorem, the �nite support assumption an be weakened to an assumption of

superexponential moment (i.e., for all M > 0,
∑

g∈Γ µ(g)e
M |g| < ∞), thanks to [Gou13℄.

The assumption that µ is symmetri or that d is a word distane is probably not neessary.

However, the most important assumption in Theorem 1.2 is admissibility: it ensures that

the random walk an see the geometry of the whole group (whih is hyperboli). For a

random walk living in a strit (maybe distorted) subgroup, one would not be expeting the

same nie behavior.

Our main theorem follows. It states that, in hyperboli groups whih are not virtually

free, endowed with a word distane, the di�erent equivalent onditions of Theorem 1.2 are

never satis�ed, uniformly on measures with a �xed support.

Theorem 1.3. Let Γ be a hyperboli group whih is not virtually free, endowed with a word

distane d. Let Σ be a �nite subset of Γ. There exists c < 1 suh that, for any symmetri

probability measure µ supported in Σ,

h(µ) 6 cℓ(µ)v,

where v is the exponential growth rate of balls in (Γ, d).

This theorem gives a positive answer to a onjeture of S. Lalley [Lal14, slide 16℄. In the

language of Vershik [Ver00℄, this theorem says that no �nite subset of Γ is extremal. On

the other hand, if one lets Σ grow, h/ℓ an onverge to v:

Theorem 1.4. Let Γ be a hyperboli group, endowed with a left invariant distane d whih

is hyperboli and quasi-isometri to a word distane. Let ρi be the uniform measure on the

ball of radius i. Then h(ρi)/ℓ(ρi) → v, where v is the exponential growth rate of balls in

(Γ, d).

More preisely, we prove that ℓ(ρi) ∼ i and h(ρi) ∼ iv. The only di�ulty is to prove the

lower bound on h(ρi): sine h is de�ned in (1.2) using a subadditive sequene, upper bounds
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are automati, but to get lower bounds one should show that additional anellations do

not happen later on. This di�ulty already appears in [EK13℄, where the authors prove

that the entropy depends ontinuously on the measure. Our proof of Theorem 1.4, given

in Paragraph 2.5, also applies to this situation and gives a new proof of their result, under

slightly weaker assumptions. There is nothing speial about the uniform measure on balls,

our proof also gives the same onlusion for the uniform measure on spheres, or for the

measures

∑

e−s|g|δg/
∑

e−s|g|
when s ց v.

Our main result is Theorem 1.3. It is a onsequene of the three following results. Sine

their main aim is Theorem 1.3, they are designed to handle �nitely supported symmetri

measures. However, these theorems are all valid under weaker assumptions, whih we speify

in the statements as they arry along impliit information on the tehniques used in the

proofs.

The �rst result deals with admissible (or virtually admissible) measures.

Theorem 1.5. Let Γ be a hyperboli group whih is not virtually free, endowed with a word

distane. Let µ be a probability measure with a superexponential moment, suh that Γ+
µ is a

�nite index subgroup of Γ. Then h(µ) < ℓ(µ)v.

The seond result deals with non-admissible measures.

Theorem 1.6. Let Γ be a hyperboli group endowed with a word distane. Let µ be a

probability measure with a moment of order 1 (i.e., L(µ) < ∞). Assume that ℓ(µ) > 0 and

that Γµ has in�nite index in Γ. Then h(µ) < ℓ(µ)v.

Finally, the third result is a kind of ontinuity statement, to get the uniformity.

Theorem 1.7. Let Γ be a hyperboli group, endowed with a left-invariant distane whih is

hyperboli and quasi-isometri to a word distane. Let Σ be a subset of Γ whih does not

generate an elementary subgroup. There exists a probability measure µΣ with �nite support

suh that ℓ(µΣ) > 0 and

sup{h(µ)/ℓ(µ) : µ probability,Supp(µ) ⊂ Σ, ℓ(µ) > 0} = h(µΣ)/ℓ(µΣ).

The same statement holds if the maximum is taken over symmetri probability measures,

the resulting maximizing measure being symmetri.

Theorem 1.3 is a onsequene of these three statements.

Proof of Theorem 1.3 using the three auxiliary theorems. As in the statement of the theo-

rem, onsider a �nite subset Σ of Γ. If Σ generates an elementary subgroup of Γ, all
measures supported on Σ have zero entropy. Hene, one an take c = 0 in the statement

of the theorem. Otherwise, by Theorem 1.7, there exists a symmetri measure µΣ with

�nite support that maximizes the quantity h(µ)/ℓ(µ) over µ symmetri supported by Σ. If
ΓµΣ

= Γ+
µΣ

has �nite index, h(µΣ)/ℓ(µΣ) < v by Theorem 1.5. If it has in�nite index, the

same onlusion follows from Theorem 1.6. �

The three auxiliary theorems are non-trivial. Their proofs are independent, and use

ompletely di�erent tools. Here are some omments about them.



ENTROPY AND DRIFT IN WORD HYPERBOLIC GROUPS 6

• At �rst sight, Theorem 1.5 seems to be the most deliate (this is the only one with

the assumption that Γ is not virtually free). However, this is also the setting that

has been mostly studied in the literature. Hene, we may use several known results,

inluding most notably results of Anona [An87℄, of Blahère, Haïssinsky and Math-

ieu [BHM11℄ and Tanaka [Tan14℄ (Theorem 1.2 above) and of Izumi, Neshveyev and

Okayasu [INO08℄ on rigidity results for oyles. The proof relies mainly on the

fat that the word distane is integer valued, ontrary to the Green distane (more

preisely, we use the fat that the stable translation length of hyperboli elements

is rational with bounded denominator).

• In Theorem 1.6, the di�ulty omes from the lak of information on the subgroup Γµ.

If it has good geometri properties (for instane if it is quasi-onvex), one may use

the same kind of tehniques as for Theorem 1.5. Otherwise, the random walk does

not really see the hyperboliity of the ambient group. The fundamental inequality

always gives h 6 ℓvΓµ , where vΓµ is the growth rate of the subgroup Γµ (for the

initial word distane on Γ). If vΓµ < v, the result follows. Unfortunately, there

exist non-quasi-onvex subgroups of some hyperboli groups with the same growth

as the ambient group. However, a random walk does not typially visit all points

of Γµ, it onentrates on those points that are not distorted (i.e., their distanes to

the identity in Γ and Γµ are omparable). To prove Theorem 1.6, we will show that

in any in�nite index subgroup of a hyperboli group, the number of non-distorted

points is exponentially smaller than env.
• Theorem 1.7 is less simple than it may seem at �rst sight: it does not laim that µΣ is

supported by Σ, and indeed this is not the ase in general (see Example 5.4). Hene,

the proof is not a simple ontinuity argument: We need to understand preisely the

behavior of sequenes of measures that degenerate towards a measure supported on

an elementary subgroup. The proof will show that µΣ is supported byK ·(Σ∪{e})·K,

where K is a �nite subgroup generated by some elements in Σ.

A natural question is whether Theorem 1.3 holds for non-symmetri measures. For ad-

missible measures, (i.e., Γ+
µ = Γ), Theorem 1.5 holds. For non-symmetri measures suh

that Γµ has in�nite index, Theorem 1.6 applies diretly. However, sine Γµ 6= Γ+
µ for general

non-symmetri measures, there is another ase to onsider: the ase of measures µ suh that

Γµ = Γ (or Γµ has �nite index in Γ), but Γ+
µ is muh smaller than Γ. In this ase, it seems

that our arguments do not su�e. We give in Setion 6 two examples illustrating the new

di�ulties:

(1) One an not rely on growth arguments, as for Theorem 1.6. Indeed, there are

subsemigroups Λ+
with bad asymptoti behavior, for instane suh that lim inf|Bn∩

Λ+|/|Bn| = 0 and lim sup|Bn ∩ Λ+|/|Bn| > 0.
(2) The arguments of Theorem 1.5 work for �nitely supported measures, or for measures

with a superexponential moment, but also more generally for measures with a nie

geometri behavior (they should satisfy so-alled Anona inequalities). In the non-

symmetri situation, we give in Proposition 6.2 expliit examples of (non-admissible)

measures with an exponential moment and a very nie geometri behavior, and suh

that nevertheless h = ℓv. So, arguments similar to those of Theorem 1.5 an not
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su�e, one needs a new argument that distinguishes in a �ner way between measures

with �nite support and measures with in�nite support.

This artile is organized as follows. In Setion 2, we give more details on the notions of

hyperboli group, drift and entropy. We also prove Theorem 1.4 on the asymptoti entropy

and drift of the uniform measure on large balls. The following three setions are then

devoted to the proofs of the three auxiliary theorems. Finally, we desribe in Setion 6

what an happen in the non-symmetri setting. In partiular, we show that in any torsion-

free group with in�nitely many ends, there exist (non-admissible, non-symmetri) measures

with an exponential moment satisfying h = ℓv.

2. General properties of entropy and drift in hyperboli groups

2.1. Hyperboli spaes. In this paragraph, we reall lassial properties of hyperboli

spaes. See for instane [GdlH90℄ or [BH99℄.

Consider a metri spae (X, d). The Gromov produt of two points y, y′ ∈ X, based at

x0 ∈ X, is by de�nition

(2.1) (y|y′)x0
= (1/2)[d(x0, y) + d(x0, y

′)− d(y, y′)].

The spae (X, d) is hyperboli if there exists δ > 0 suh that, for any x0, y1, y2, y3, the
following inequality holds:

(y1|y3)x0
> min((y1|y2)x0

, (y2|y3)x0
)− δ.

The main intuition to have is that, in hyperboli spaes, on�gurations of �nitely many

points look like on�gurations in trees: for any k, for any subset F of X with ardinality at

most k, there exists a map Φ from F to a tree suh that, for all x, y ∈ F ,

d(x, y) − 2kδ 6 d(Φ(x),Φ(y)) 6 d(x, y).

Hene, a lot of distane omputations an be redued to equivalent omputations in trees

(whih are essentially ombinatorial), up to a bounded error. Up to δ, the Gromov produt

(y|y′)x0
is, in the approximating tree, the length of the part that is ommon to the geodesis

from x0 to y and from x0 to y′.
A spae (X, d) is geodesi if there exists a geodesi between any pair of points. For suh

spaes, there is a onvenient haraterization of hyperboliity. A geodesi spae (X, d) is

hyperboli if and only if there exists δ > 0 suh that its geodesi triangles are δ-thin, i.e.,
eah side is inluded in the δ-neighborhood of the union of the two other sides.

Assume that (X, dX ) and (Y, dY ) are two geodesi metri spaes, and that they are quasi-

isometri. If (X, dX ) is hyperboli, then so is (Y, dY ). Note however that this equivalene

only holds for geodesi spaes.

Let (X, d) be a geodesi hyperboli metri spae. A subset Y of X is quasi-onvex if

there exists a onstant C suh that, for any y, y′ ∈ Y , the geodesis from y to y′ stay in the

C-neighborhood of Y .

We will sometimes enounter hyperboli spaes whih are not geodesi, but only quasi-

geodesi: there exist onstants C > 0 and λ suh that any two points an be joined by a

(λ,C)-quasi-geodesi, i.e., a map f from a real interval to X suh that λ−1|t′ − t| − C 6

d(f(t), f(t′)) 6 λ|t′ − t|+C. When the spae is geodesi, a quasi-geodesi stays a bounded

distane away from a true geodesi. Most properties that hold or an be de�ned using
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geodesis (for instane the notion of quasi-onvexity) an be extended to this setting, simply

replaing geodesis with quasi-geodesis in the statements.

Let (X, d) be a proper geodesi hyperboli spae. Its boundary at in�nity ∂X is by

de�nition the set of geodesis originating from a base point x0, where two suh geodesis

are identi�ed if they remain a bounded distane away. It is a ompat spae, whih does

not depend on x0. The spae X ∪ ∂X is also ompat. If X is only quasi-geodesi, all these

de�nitions extend using quasi-geodesis instead of geodesis.

Any isometry (or, more generally, quasi-isometry) of a hyperboli spae extends ontinu-

ously to its boundary, giving a homeomorphism of ∂X.

The Gromov produt may be extended to X ∪∂X: we de�ne (ξ|η)x0
as the in�mum limit

of (xn|yn)x0
for xn and yn onverging respetively to ξ and η. The hoie to take the in�mum

is arbitrary, one ould also take the supremum or any aumulation point, those quantities

di�er by at most a onstant only depending on δ. Hene, one should think of the Gromov

produt at in�nity to be anonially de�ned only up to an additive onstant. Heuristially,

(ξ|η)x0
is the time after whih two geodesis from x0 to ξ and to η start diverging.

Let (X, d) be a proper geodesi (or quasi-geodesi) hyperboli spae. For any small

enough ε > 0, one may de�ne a visual distane d∂X,ε on ∂X suh that d∂X,ε(ξ, η) ≍ e−ε(ξ|η)x0

(meaning that the ratio between these quantities is uniformly bounded from above and from

below).

Let (X, d) be a proper hyperboli metri spae. One an de�ne another boundary of

X, the Busemann boundary (or horoboundary), as follows. Let x0 be a �xed basepoint

in X. To x ∈ X, one assoiates its horofuntion hx(y) = d(y, x) − d(x0, x), normalized

so that hx(x0) = 0. The map Φ : x 7→ hx is an embedding of X into the spae of 1-
Lipshitz funtions on X, with the topology of uniform onvergene on ompat sets. The

horoboundary is obtained by taking the losure of Φ(X). In other words, a sequene xn ∈ X
onverges to a boundary point if hxn(y) onverges, uniformly on ompat sets. Its limit is

the horofuntion hξ assoiated to the orresponding boundary point ξ (it is also alled the

Busemann funtion assoiated to ξ). We denote by ∂BX the Busemann boundary of X.

There is a ontinuous projetion πB : ∂BX → ∂X, whih is onto but not injetive in general.

The boundary ∂BX is rather sensitive to �ne sale details of the distane d, while ∂X only

depends on its quasi-isometry lass.

Any isometry ϕ of X ats on horofuntions, by the formula hϕ(x)(y) = hx(ϕ
−1y) −

hx(ϕ
−1x0). This implies that ϕ extends to a homeomorphism on ∂BX, given by the same

formula hϕ(ξ)(y) = hξ(ϕ
−1y)−hξ(ϕ

−1x0). Note that, ontrary to the ation on the geometri

boundary, this only works for isometries of X, not quasi-isometries.

2.2. Hyperboli groups. Let Γ be a �nitely generated group, with a �nite symmetri

generating set S. Denote by d = dS the orresponding word distane. The group Γ is

hyperboli if the metri spae (Γ, dS) is hyperboli. Sine hyperboliity is invariant under

quasi-isometry for geodesi spaes, this notion does not depend on the hoie of the generat-

ing set S. However, if one onsiders another left-invariant distane on Γ whih is equivalent

to dS but not geodesi, its hyperboliity is not automati. Hene, one should postulate its

hyperboliity if it is needed, as in the statement of Theorem 1.2. We say that the pair (Γ, d)
is a metri hyperboli group if the group Γ is hyperboli for one (or, equivalently, for any)
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word distane, and if the distane d is left-invariant, hyperboli, and quasi-isometri to one

(or equivalently, any) word distane. Suh a distane d does not have to be geodesi, but it

is quasi-geodesi sine geodesis for a given word distane form a system of quasi-geodesis

for d, going from any point to any point.

Let (Γ, d) be a metri hyperboli group. The left-multipliation by elements of Γ is

isometri. Hene, Γ ats by homeomorphisms on its ompati�ations Γ ∪ ∂Γ and Γ ∪ ∂BΓ.
Moreover, any in�nite order element g ∈ Γ ats hyperbolially on Γ ∪ ∂Γ: it has two �xed

points at in�nity g− and g+, the points in Γ ∪ ∂Γ \ {g−} are attrated to g+ by forward

iteration of g, and the points in Γ ∪ ∂Γ \ {g+} are attrated to g− by bakward iteration of

g.

De�nition 2.1. Consider an ation of a group Γ on a spae Z. A funtion c : Γ× Z → R

is a oyle if, for any g, h ∈ Γ and any ξ ∈ Z,

(2.2) c(gh, ξ) = c(g, hξ) + c(h, ξ).

The oyle is Hölder-ontinuous if Z is a metri spae and eah funtion ξ 7→ c(g, ξ) is

Hölder-ontinuous.

There is a hoie to be made in the de�nition of oyles, sine one may ompose with g or
g−1

. Our de�nition is the most ustomary. With this de�nition, the map cB : Γ×∂BΓ → R

given by cB(g, ξ) = hξ(g
−1) is a oyle, alled the Busemann oyle.

A subgroup H of Γ is nonelementary if its ation on ∂Γ does not �x a �nite set. Equiva-

lently, H is not virtually the trivial group or Z. We say that a probability measure µ on Γ
is nonelementary if the subgroup Γµ generated by its support is itself nonelementary.

Let µ be a probability measure on Γ. Sine Γ ats by homeomorphisms on the ompat

spae ∂Γ, it admits a stationary measure: there exists a probability measure ν on ∂Γ suh

that µ ∗ ν = ν, i.e.,
∑

g∈Γ µ(g)g∗ν = ν. If µ is nonelementary, this measure is unique,

and has no atom (see [Kai00℄). It is also the exit measure of the orresponding random

walk Xn = g1 · · · gn: almost every trajetory Xn(ω) onverges to a point X∞(ω) ∈ ∂Γ, and
moreover the distribution of X∞ is preisely ν.

In the same way, sine Γ ats on ∂BΓ, it admits a stationary measure νB there. This

measure is not unique in general, even if µ is nonelementary. However, all suh measures

projet under πB to the unique stationary measure on ∂Γ.

2.3. The drift. Let (Γ, d) be a metri hyperboli group. Consider a probability measure

µ on Γ, with �nite �rst moment L(µ) (de�ned in (1.1)). The drift of the random walk has

been de�ned in (1.2) as ℓ(µ) = limL(µ∗n)/n. Let Xn = g1 · · · gn be the position at time n
of the random walk generated by µ (where the gi are independent and distributed aording

to µ). Then, almost surely, ℓ(µ) = lim|Xn|/n.
The drift also admits a desription in terms of the Busemann boundary. The following

result is well-known (ompare with [KL11, Theorem 18℄).

Proposition 2.2. Let (Γ, d) be a metri hyperboli group. Let µ be a nonelementary prob-

ability measure on Γ with �nite �rst moment. Let νB be a µ-stationary measure on ∂BΓ.
Then

(2.3) ℓ(µ) =

∫

Γ×∂BΓ
cB(g, ξ) dµ(g) dνB(ξ).



ENTROPY AND DRIFT IN WORD HYPERBOLIC GROUPS 10

Proof. Let Xn be the position of the random walk at time n. Using the oyle property of

the Busemann oyle, we have

∫

cB(Xn(ω), ξ) dP(ω) dνB(ξ) =

∫

cB(g1 · · · gn, ξ) dµ(g1) · · · dµ(gn) dνB(ξ)

=

n
∑

k=1

∫

cB(gk, gk+1 · · · gnξ) dµ(gk) · · · dµ(gn) dνB(ξ).

Sine the measure νB is stationary, the point gk+1 · · · gnξ is distributed aording to νB .
Hene, the terms in the above sum do not depend on k. We get

(2.4)

∫

Γ×∂BΓ
cB(g, ξ) dµ(g) dνB(ξ) =

1

n

∫

cB(Xn(ω), ξ) dP(ω) dνB(ξ).

We have |cB(Xn, ξ)|/n 6 |Xn|/n, whih onverges in L1
and almost surely to ℓ. Hene,

the sequene of funtions cB(Xn(ω), ξ)/n is uniformly integrable on Ω × ∂BΓ. Moreover,

Xn onverges almost surely to a point on the boundary ∂Γ, distributed aording to the

exit measure, whih has no atom. It follows that, for all ξ, the trajetory Xn(ω) onverges
almost surely to a point di�erent from πB(ξ). This implies that, almost surely, one has

cB(Xn, ξ) = |Xn|+O(1), giving in partiular cB(Xn, ξ)/n → ℓ. The result follows by taking

the limit in n in the equality (2.4). �

This formula easily implies that the drift depends ontinuously on the measure, as ex-

plained in [EK13℄.

Proposition 2.3. Let (Γ, d) be a metri hyperboli group. Consider a sequene of probabil-

ity measures µi with �nite �rst moment, onverging simply to a nonelementary probability

measure µ (i.e., µi(g) → µ(g) for all g ∈ Γ). Assume moreover that L(µi) → L(µ). Then

ℓ(µi) → ℓ(µ).

Proof. Let νi be stationary measures for µi on ∂BΓ. Taking a subsequene if neessary, we

may assume that νi onverges to a limiting measure ν. By ontinuity of the ation on the

boundary, it is stationary for µ.
For eah g ∈ Γ, the quantity

∫

∂BΓ cB(g, ξ) dνi(ξ) onverges to

∫

∂BΓ cB(g, ξ) dν(ξ) sine

ξ 7→ cB(g, ξ) is ontinuous. Averaging over g (and using the assumption L(µi) → L(µ) to
get a uniform domination), we dedue that

∑

g∈Γ

µi(g)

∫

∂BΓ
cB(g, ξ) dνi(ξ) →

∑

g∈Γ

µ(g)

∫

∂BΓ
cB(g, ξ) dν(ξ).

Together with the formula (2.3) for the drift, this ompletes the proof. �

In this proposition, it is important that µ is nonelementary: the result is wrong otherwise.

For instane, in the in�nite dihedral group Z ⋊ Z/2, the measures µi = (1 − 2−i)δ(1,0) +

2−iδ(0,1) have zero drift sine the Z/2 element symmetrizes everything in Z, while the limiting

measure µ = δ(1,0) has drift 1. The reason is the non-uniqueness of the stationary measure

for µ on the boundary.
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2.4. The entropy. Let Γ be a ountable group. Consider a probability measure µ on Γ,
with �nite time one entropy H(µ) (de�ned in (1.1)). The entropy of the random walk has

been de�ned in (1.2) as h(µ) = limH(µ∗n)/n. Let Xn = g1 · · · gn be the position at time n
of the random walk generated by µ (where the gi are independent and distributed aording

to µ). Then, almost surely, h(µ) = lim(− log µ∗n(Xn))/n. The fundamental inequality (1.3)

shows that if h > 0 then ℓ > 0.
The entropy has several equivalent haraterizations. The �rst one is in terms of the size

of the typial support of the random walk: This support has size roughly ehn. The following
lemma follows from [Haï13, Proposition 1.13℄.

Lemma 2.4. Consider a probability measure µ with H(µ) < ∞ on a ountable group. Let

h = h(µ) be its asymptoti entropy. Let η > 0 and ε > 0.

(1) For large enough n, there exists a subset Kn of Γ with µ∗n(Kn) > 1− η and |Kn| 6
e(h+ε)n

.

(2) For large enough n, there exists no subset Kn of Γ with µ∗n(Kn) > η and |Kn| 6
e(h−ε)n

.

Another desription is in terms of the Poisson boundary of the walk. To avoid general def-

initions, let us only state this desription for measures on hyperboli groups. The following

proposition is a onsequene of [Kai00℄.

Proposition 2.5. Let Γ be a hyperboli group. Let µ be a nonelementary probability measure

on Γ with H(µ) < ∞. Let ν be its unique stationary measure on ∂Γ. De�ne the Martin

oyle on Γ× ∂Γ by cM (g, ξ) = − log(dg−1
∗ ν/dν)(ξ). Then

(2.5) h(µ) >

∫

Γ×∂Γ
cM (g, ξ) dµ(g) dν(ξ),

with equality if µ has a logarithmi moment.

When µ has a logarithmi moment, this proposition has a very similar �avor to Proposi-

tion 2.2 expressing the drift of a random walk. Indeed, for symmetri measures, [BHM11℄

interprets Proposition 2.5 as a speial ase of Proposition 2.2, for a distane d = dµ related

to the random walk, the Green distane, whih we de�ned in Theorem 1.2. This distane

is hyperboli if µ is admissible and has a superexponential moment, by [An87, Gou13℄. It

is not geodesi in general, but this is not an issue sine we were areful enough to state

Proposition 2.2 without this assumption. The Busemann oyle for the Green distane is

preisely the Martin oyle.

An important di�erene between the formulas (2.3) for the drift and (2.5) for the entropy

is that, in the latter situation, the oyle cM depends on the measure ν (and, therefore, on

µ). This makes it more ompliated to prove ontinuity statements suh as Proposition 2.3

for the entropy. Nevertheless, Ershler and Kaimanovih proved in [EK13℄ that, in hyper-

boli groups, the entropy also depends ontinuously on the measure. As h(µ) = infH(µ∗n)/n
by subadditivity, it is easy to prove that when µi → µ one has lim suph(µi) 6 h(µ). The

main di�ulty to prove the ontinuity is to get lower bounds. We will need a slightly

stronger (and more pedestrian) version of the results of [EK13℄ to prove Theorem 1.4. Al-

though our argument may seem very di�erent at �rst sight from the arguments in [EK13℄,

the tehniques are in fat losely related (an illustration is that we an reover with our
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tehniques the result of Kaimanovih that, for measures with �nite logarithmi moment,

equality holds in (2.5), i.e., the Poisson boundary oinides with the geometri boundary,

see Remark 2.11). Our main riterion to get lower bounds on the entropy is the following.

We write S
k = {g ∈ Γ : |g| ∈ (k− 1, k]} for the thikened sphere, so that the union of these

spheres overs the whole group.

Theorem 2.6. Let (Γ, d) be a metri hyperboli group. Let µi be a sequene of nonelemen-

tary probability measures on Γ with H(µi) < ∞. Let νi be the unique stationary measure

for µi on ∂Γ. Assume that:

(1) The limit points of νi have no atom.

(2) The sequene

(2.6) hi =
∑

k

∑

g∈Sk

µi(g)(− log(µi(g)/µi(S
k)))

tends to in�nity.

Then lim inf h(µi)/hi > 1.

The quantity hi an be written

hi =
∑

g∈Γ

µi(g)(− log µi(g)) −
∑

k

µi(S
k)(− log µi(S

k)).

The �rst term is the time one entropy H(µi) of the measure µi. In most reasonable ases,

the seond term is negligible. The theorem then states that the asymptoti entropy h(µi) is
omparable to the time one entropy H(µi). In other words, if the measure is supported lose

to in�nity, and su�iently spread out in the group (this is the meaning of the assumption

that the limit points of νi have no atom), then there are few oinidenes and the entropy

does not derease signi�antly with time.

To prove this theorem, we will use the following tehnial lemma.

Lemma 2.7. On a probability spae (X,µ), onsider a nonnegative funtion f with average

1. For any subset A of X,

∫

X
(− log f) > µ(A)

(

− log

∫

A
f

)

− 2e−1.

Proof. As the funtion x 7→ − log x is onvex, Jensen's inequality gives

∫

(− log f) >

− log(
∫

f). The last quantity vanishes when

∫

f = 1.
Let B ⊂ X. Write a =

∫

B f dµ/µ(B). The measure dµ/µ(B) is a probability measure

on B, and the funtion f/a has integral 1 for this measure. The previous inequality gives

∫

B(− log(f/a)) dµ/µ(B) > 0, that is,
∫

B
(− log f) dµ > −µ(B) log a = −µ(B) log

(
∫

B
f

)

+ µ(B) log µ(B).

The quantity µ(B) log µ(B) is bounded from below by inf [0,1] x log x = −e−1
. Therefore,

∫

B
(− log f) dµ > −µ(B) log

(
∫

B
f

)

− e−1.
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We apply this inequality to the omplement Ac
of A. As − log

(∫

Ac f
)

> 0, we get a lower

bound −e−1
. Let us also apply this inequality to A, and add the results. We obtain

∫

X
(− log f) dµ > −µ(A) log

(
∫

A
f

)

− 2e−1. �

We will use the notion of shadow, due to Sullivan and onsidered in this ontext by

Coornaert [Coo93℄. Let C > 0 be large enough. The shadow O(g,C) of g ∈ Γ is {ξ ∈ ∂Γ :
(g|ξ)e > |g|−C}. In geometri terms (and assuming the spae is geodesi), this is essentially

the trae at in�nity of geodesis originating from e and going through the ball B(g,C). We

will use the following properties of shadows [Coo93℄:

(1) Their overing number is �nite. More preisely, there exists D > 0 (depending on

C) suh that, for any integer k, for any ξ ∈ ∂Γ,

|{g ∈ S
k : ξ ∈ O(g,C)}| 6 D.

(2) The preimages of shadows are large. More preisely, for any η > 0, there exists

C > 0 suh that, for all g ∈ Γ, the omplement of g−1O(g,C) has diameter at most

η (for a �xed visual distane on the boundary).

Proof of Theorem 2.6. Fix ε > 0. As the limit points of νi have no atom, there exists η > 0
suh that any ball of radius η in ∂Γ has measure at most ε for νi, for i large enough. We an

then hoose a shadow size C so that g−1O(g,C) has for all g a omplement with diameter

at most η. This yields νi(g
−1O(g,C)) > 1− ε.

By (2.5), the entropy of µi satis�es

h(µi) >
∑

g∈Γ

µi(g)

∫

∂Γ

(

− log
dg−1

∗ νi
dνi

(ξ)

)

dνi(ξ).

The funtion fi,g = dg−1
∗ νi
dνi

(ξ) is nonnegative and has integral 1. For any A ⊂ ∂Γ,
Lemma 2.7 gives

∫

∂Γ

(

− log
dg−1

∗ νi
dνi

(ξ)

)

dνi(ξ) > −νi(A) log

(
∫

A

dg−1
∗ νi
dνi

(ξ) dνi(ξ)

)

− 2e−1

= −νi(A) log(g
−1
∗ νi(A)) − 2e−1

= −νi(A) log(νi(gA)) − 2e−1.

Let us take A = g−1O(g,C), so that νi(A) > 1− ε. Summing over g, we get

(2.7) h(µi) > (1− ε)
∑

g∈Γ

µi(g)(− log νi(O(g,C))) − 2e−1.
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We split the sum aording to the spheres S
k
. Let Σk =

∑

g∈Sk νi(O(g,C)), it is at most

D sine the shadows have a overing number bounded by D. We have

∑

g∈Sk

µi(g)(− log νi(O(g,C)))

= −µi(S
k)

∑

g∈Sk

µi(g)

µi(Sk)

[

log

(

νi(O(g,C))

Σkµi(g)/µi(Sk)

)

+ log Σk + log(µi(g)/µi(S
k))

]

.

The point of this deomposition is that the funtion on S
k
given by ϕ : g 7→ νi(O(g,C))

Σkµi(g)/µi(Sk)

has integral 1 for the probability measure µi(g)/µi(S
k). By Jensen's inequality, the integral

of − logϕ is nonnegative. This yields

∑

g∈Sk

µi(g)(− log νi(O(g,C))) > −µi(S
k) logD +

∑

g∈Sk

µi(g)(− log(µi(g)/µi(S
k)).

Summing over k, we dedue from (2.7) the inequality

h(µi) > (1− ε)hi − 2e−1 − logD.

As hi tends to in�nity, this gives h(µi) > (1 − 2ε)hi for large enough i, ompleting the

proof. �

To apply the previous theorem, we need to estimate hi. In this respet, the following

lemma is often useful.

Lemma 2.8. Let Ri > 1. The quantity hi de�ned in (2.6) satis�es

hi >
∑

|g|6Ri

µi(g)(− log µi(g)) − log(2 +Ri).

Proof. In the de�nition of hi, all the terms are nonnegative. Restriting the sum to those g
with |g| 6 Ri, we get

hi >
∑

k6Ri

∑

g∈Sk

µi(g)(− log(µi(g)/µi(S
k)))

=
∑

|g|6Ri

µi(g)(− log µi(g)) −
∑

k6Ri

µi(S
k)(− log µi(S

k)).

A probability measure supported on a set with N elements has entropy at most logN . The

number µi(S
k) for 0 6 k 6 Ri are not a probability measure in general, let us add a last

atom with mass m = µi(
⋃

k>Ri
S
k). We are onsidering a spae of ardinality Rn+2, hene

m(− logm) +
∑

k6Ri

µi(S
k)(− log µi(S

k)) 6 log(2 +Ri),

ompleting the proof. �

Let us see how Theorem 2.6 implies a slightly stronger version of the ontinuity result for

the entropy of Ershler and Kaimanovih [EK13℄.
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Theorem 2.9. Let Γ be a hyperboli group. Consider a probability measure µ with �nite

time one entropy and �nite logarithmi moment. Let µi be a sequene of probability measures

onverging simply to µ with H(µi) → H(µ). Then h(µi) → h(µ).

The assumption H(µi) → H(µ) ensures that there is no additional entropy in µi oming

from neighborhoods of in�nity that would disappear in the limit. It is automati if the

support of µi is uniformly bounded or if µi satis�es a uniform L1
domination, but it is muh

weaker. For instane, it is allowed that the µi have no �nite logarithmi moment.

The main lemma for the proof is a lower bound on the entropy, following from Theo-

rem 2.6.

Lemma 2.10. Let Γ be a hyperboli group. Consider a probability measure µ with �nite time

one entropy and �nite logarithmi moment. Let µi be a sequene of measures onverging

simply to µ. Then lim inf h(µi) > h(µ).

Proof. Sine the result is trivial if h(µ) = 0, we an assume that h(µ) > 0.

Let ε > 0. For large n, most atoms for µ∗n
have a probability at most e−(1−ε)nh(µ)

.

Moreover, sine µ has a �nite logarithmi moment, log|Xn|/n tends almost surely to 0
by [Aar97, Proposition 2.3.1℄. Therefore, the set

Kn = {g : µ∗n(g) 6 e−(1−ε)nh(µ), |g| 6 eεn}
has measure tending to 1. In partiular µ∗n(Kn) > 1− ε for large n. We get

∑

|g|6eεn

µ∗n(g)(− log µ∗n(g)) >
∑

g∈Kn

µ∗n(g)(− log µ∗n(g)) >
∑

g∈Kn

µ∗n(g)(1 − ε)nh(µ)

= µ∗n(Kn)(1− ε)nh(µ) > (1− ε)2nh(µ).

For eah �xed n, the measures µ∗n
i onverge to µ∗n

when i tends to in�nity. Hene, we get

for large enough i the inequality
∑

|g|6eεn

µ∗n
i (g)(− log µ∗n

i (g)) > (1− ε)3nh(µ).

Letting ε tend to 0 (and, therefore, n to in�nity), we dedue the existene of sequenes

ni → ∞ and εi → 0 suh that, for any i,
∑

|g|6eεini

µ∗ni

i (g)(− log µ∗ni

i (g)) > (1− εi)
3nih(µ).

Let µ̃i = µ∗ni

i . Its stationary measure νi is also the stationary measure of µi, by uniqueness.

Any limit point of νi is stationary for µ, and is therefore atomless sine µ is nonelementary

as h(µ) > 0. The assumptions of Theorem 2.6 are satis�ed by the sequene µ̃i. Moreover,

Lemma 2.8 yields

hi > (1− εi)
3nih(µ)− 2εini > (1− Cεi)nih(µ).

Theorem 2.6 ensures that lim inf h(µ̃i)/hi > 1. As h(µ̃i) = nih(µi), this gives lim inf h(µi) >
h(µ) as desired. �
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Proof of Theorem 2.9. For �xed n, the sequene µ∗n
i onverges simply to µ∗n

. Moreover,

H(µ∗n
i ) → H(µ∗n) sine there is no loss of entropy at in�nity by assumption. Choose n

suh that H(µ∗n) 6 n(1 + ε)h(µ). We get H(µ∗n
i )/n 6 (1 + 2ε)h(µ) for large enough i. As

h(µi) 6 H(µ∗n
i )/n, this shows that lim suph(µi) 6 h(µ) (this is the lassial semi-ontinuity

property of entropy, valid in any group).

For the reverse inequality lim inf h(µi) > h(µ), we apply Lemma 2.10. �

Remark 2.11. Let h(µ, ∂Γ) =
∫

Γ×∂Γ(− log dg−1
∗ ν/dν)(ξ) dµ(g) dν(ξ) where ν is the sta-

tionary measure for µ on ∂Γ. In general, h(µ) > h(µ, ∂Γ) with equality if and only if (∂Γ, ν)
is the Poisson boundary of (Γ, µ). A theorem of Kaimanovih [Kai00℄ asserts that, when

µ has �nite entropy and �nite logarithmi moment, h(µ, ∂Γ) = h(µ). We an reover this

theorem using the previous arguments. Indeed, what the proof of Theorem 2.6 really shows

is that lim inf h(µi, ∂Γ)/hi > 1. Hene, Lemma 2.10 proves that lim inf h(µi, ∂Γ) > h(µ) if
µi onverges simply to a measure µ with a logarithmi moment. Taking µi = µ for all i, we
obtain in partiular h(µ, ∂Γ) > h(µ), as desired.

2.5. A riterion to bound the entropy from below. In order to prove Theorem 1.4

on the entropy of the uniform measure on balls, we want to apply Theorem 2.6. Thus, we

need a riterion to hek that limit points of stationary measures have no atom.

Lemma 2.12. Let Γ be a hyperboli group. Let µi be a sequene of probability measures

on Γ. Assume that, on the spae Γ ∪ ∂Γ, the sequene µi onverges to a limit ν whih is

supported on ∂Γ. Assume moreover that the limit points of µ̌i (de�ned by µ̌i(g) = µi(g
−1))

have no atom. Then the stationary measures νi assoiated to µi also onverge to ν.

Proof. We �x a word distane d on Γ. Let f be a ontinuous funtion on Γ ∪ ∂Γ. Let us

show that, uniformly in ξ ∈ ∂Γ, the integral

∫

f(gξ) dµi(g) is lose to

∫

f(g) dµi(g). We

estimate the di�erene as

∣

∣

∣

∣

∫

(f(gξ)− f(g)) dµi(g)

∣

∣

∣

∣

6

∫

|f(gξ)− f(g)|1((gξ|g)e > C) dµi(g)

+ 2‖f‖∞
∫

1((gξ|g)e 6 C) dµi(g),

where C is a �xed onstant. If C is large enough, |f(x) − f(y)| 6 ε when (x|y)e > C, by
uniform ontinuity of f . Hene, the �rst integral is bounded by ε. For the seond integral,

we use the formula (gx|g)e = |g| − (x|g−1)e, valid for any x ∈ Γ (it follows readily from the

de�nition (2.1) of the Gromov produt). This equality does not extend to the boundary sine

the Gromov produt there is only well de�ned up to an additive onstant D. Nevertheless,

we get (gξ|g)e > |g| − (ξ|g−1)e −D. Hene, the seond integral is bounded by

(2.8) µi{g : |g| − C −D 6 (ξ|g−1)e}.
If |g| is large, the points g with (ξ|g−1)e > |g| −C −D are suh that g−1

belongs to a small

neighborhood of ξ in Γ ∪ ∂Γ. As the limit points of µ̌i are supported on ∂Γ and have no

atom, it follows that (2.8) onverges to 0 when i tends to in�nity, uniformly in ξ.
We have proved that

sup
ξ∈∂Γ

∣

∣

∣

∣

∫

f(gξ) dµi(g) −
∫

f(g) dµi(g)

∣

∣

∣

∣

→ 0.
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By stationarity,

∫

ξ∈∂Γ
f(ξ) dνi(ξ) =

∫

ξ∈∂Γ

(
∫

f(gξ) dµi(g)

)

dνi(ξ).

Combining these equations, we get

∫

f(ξ) dνi(ξ) −
∫

f(g) dµi(g) → 0. This shows that the
limit points of νi and µi are the same. �

Let us now onsider the uniform measure µi on the ball of radius i, as in Theorem 1.4.

The next lemma follows from the tehniques of [Coo93℄.

Lemma 2.13. Let (Γ, d) be a metri hyperboli group. Let ρi be the uniform measure on

the ball of radius i. Let ρ∞ be the Patterson-Sullivan of (Γ, d) onstruted in [Coo93℄ (it

is supported on ∂Γ and atomless). Then the limit points of ρi are equivalent to ρ∞, with a

density bounded from above and from below.

Proof. Let C be large enough. We will use the shadows O(g,C) as de�ned before the proof

of Theorem 2.6. The main property of ρ∞ is that it satis�es

(2.9) K−1
0 e−v|g|

6 ρ∞(O(g,C)) 6 K0e
−v|g|,

where K0 is a onstant only depending on C and v is the growth of (Γ, d) (Proposition 6.1

in [Coo93℄).

Let µi be the uniform measure on thikened spheres Si = {g : i 6 |g| 6 i + L}, where
L is large enough so that the ardinality of Si grows like eiv, see the proof of Theorem

7.2 in [Coo93℄. Let us push µi to a measure µ̃i on ∂Γ, by hoosing for eah g ∈ Si a

orresponding point in its shadow. It is lear that µi and µ̃i have the same limit points,

sine the diameter of the shadows tends uniformly to 0 when i → ∞. We will prove that

the limit points of µ̃i are equivalent to ρ∞. The same result follows for µi and then ρi.
The shadows of g ∈ Si have a overing number whih is bounded from above by a onstant

D, and from below by 1 if C is large enough. Hene, the measures µ̃i satisfy

K−1
1 e−iv 6 µ̃i(O(g,C)) 6 K1e

−iv,

for any g ∈ Si. This is omparable to ρ∞(O(g,C)) by (2.9), up to a multipliative onstant

K2. Consider a limit µ̃ of a sequene µ̃in , let us prove that it is uniformly equivalent to ρ∞.

We will only prove that µ̃ 6 DK2ρ∞, the other inequality is proved in the same way. By

regularity of the measures, it su�es to hek this inequality on ompat sets.

Let A be a ompat subset of ∂Γ, and ε > 0. By regularity of the measure ρ∞, there is an

open neighborhood U of A with ρ∞(U) 6 ρ∞(A) + ε. Consider B a ompat neighborhood

of A, inluded in U , with µ̃(∂B) = 0 (suh a set exists, sine among the sets Br = {ξ :
d(ξ,A) 6 r}, at most ountably of them many have a boundary with nonzero measure).

For large enough i, the shadows O(g,C) with g ∈ Si whih interset B are ontained in U .
Therefore,

µ̃i(B) 6
∑

g∈Si,O(g,C)∩B 6=∅

µ̃i(O(g,C)) 6 K2

∑

g∈Si,O(g,C)∩B 6=∅

ρ∞(O(g,C)) 6 DK2ρ∞(U).

As µ̃(∂B) = 0, the sequene µ̃in(B) tends to µ̃(B). We obtain µ̃(B) 6 DK2ρ∞(U). As

A is inluded in B, we get µ̃(A) 6 DK2(ρ∞(A) + ε). Letting ε tend to 0, this gives

µ̃(A) 6 DK2ρ∞(A), as desired. �
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Proof of Theorem 1.4. Let ρi be the uniform measure on the ball of radius i (whih has

ardinality in [C−1eiv, Ceiv]). We wish to apply Theorem 2.6 to this sequene of measures.

First, by Lemmas 2.12 and 2.13, the limit points of the stationary measures νi are equivalent
to the Patterson-Sullivan measure. Therefore, they have no atom. Seond, Lemma 2.8 shows

that the quantity hi in (2.6) satis�es hi > iv − logC − log(2 + i). This tends to in�nity.

Hene, Theorem 2.6 applies, and gives h(ρi) > (1− ε)iv for large i.
Using the fundamental inequality h 6 ℓv and the trivial bound ℓ(ρi) 6 L(ρi) 6 i, we get

(1− ε)iv 6 h(ρi) 6 ℓ(ρi)v 6 iv.

It follows that h(ρi) ∼ iv and ℓ(ρi) ∼ i. �

Remark 2.14. Our tehnique also applies to estimate the entropy of other measures, for

instane the measure µs =
∑

e−s|g|δg/
∑

e−s|g|
lassially used in the onstrution of the

Patterson-Sullivan measure. Indeed, µs onverges when s ց v to ρ∞, whih has no atom.

Moreover, writing Zs =
∑

e−s|g|
, we have H(µs) = sL(µs) + logZs. One heks that logZs

is negligible with respet to H(µs), and that the quantity hs from (2.6) is also equivalent

to H(µs). Hene, Theorem 2.6 gives

H(µs)(1 + o(1)) 6 hs(1 + o(1)) 6 h(µs) 6 ℓ(µs)v 6 L(µs)v 6 H(µs)(1 + o(1)).

These inequalities show that h(µs)/ℓ(µs) → v.

Remark 2.15. One ould imagine another strategy to �nd �nitely supported measures µi

for whih h(µi)/ℓ(µi) → v. First, �nd a nie measure µ for whih the stationary measure

ν at in�nity is preisely the Patterson-Sullivan measure (whih implies that h(µ) = ℓ(µ)v
sine the Martin oyle and the Busemann oyle oinide). Let µi be a trunation of

µ. Sine it onverges to µ, the ontinuity results for the drift and the entropy imply that

h(µi)/ℓ(µi) → h(µ)/ℓ(µ) = v.
We were not able to implement suessfully this strategy. Given a measure ν, there is

a general tehnique due to Connell and Muhnik [CM07℄ to get a measure µ on Γ with

µ ∗ ν = ν. This tehnique requires a ontinuity assumption on ξ 7→ (dg∗ν/dν)(ξ), whih is

not satis�ed in our setting for ν = ρ∞. However, in nie groups suh as surfae groups, this

funtion is, for every g, ontinuous at all but �nitely many points. The tehnique of [CM07℄

an be adapted to suh a situation (in the proof of their Theorem 6.2, one should just take

sets Yn that avoid the disontinuities of the spikes we have already used). Unfortunately,

the resulting measure µ (whih satis�es µ ∗ ν = ν) has in�nite moment and in�nite entropy,

and is therefore useless for our purposes.

3. Rigidity for admissible measures

In this setion, we prove Theorem 1.5. Assume that (Γ, d) is a hyperboli group endowed

with a word distane, whih is not virtually free. Let µ be a probability measure on Γ, with
a superexponential moment, suh that Γ+

µ is a �nite index subgroup of Γ. We want to prove

that h(µ) < ℓ(µ)v. We argue by ontradition, assuming that h(µ) = ℓ(µ)v. Assume �rst

that Γ+
µ = Γ.

Sine we are assuming the equality h(µ) = ℓ(µ)v, Theorem 1.2 implies that

|dµ(e, g) − vd(e, g)| 6 C.
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As a warm-up, let us �rst deal with the baby ase C = 0. Then the distanes dµ and d are
proportional, hene they de�ne the same Busemann boundary. The Busemann boundary

∂BΓ orresponding to d is totally disontinuous sine the distane d takes integer values

(it is a word distane). On the other hand, the Busemann boundary assoiated to the

Green metri dµ is known as the Martin boundary of the random walk (Γ, µ). By [An87℄

and [Gou13℄, it is homeomorphi to the boundary ∂Γ of Γ. Sine the group Γ is not

virtually free, its boundary ∂Γ is not totally disontinuous (see [KB02, Theorem 8.1℄), hene

a ontradition.

Let us now go bak to the general situation, when C is nonzero (but still assuming

Γ+
µ = Γ). The argument is more ompliated, but it still relies on the same fats: the

boundary is not totally disonneted, while the word distane is integer valued (we will

not use diretly this fat, rather the fat that stable translation lengths are rational, see

Lemma 3.4). These two opposite features will give rise to a ontradition.

In order to get rid of the onstant C, we will need an homogenized version of the inequality

|dµ(e, g) − vd(e, g)| 6 C. This is Lemma 3.1 below. The homogenized quantity assoiated

to the distane d is alled the stable translation length. For an element g of Γ, it is de�ned
by l(g) = lim|gn|/n (it exists by subadditivity).

Reall that we write cM (g, ξ) for the Martin oyle assoiated to the random walk,

de�ned in Proposition 2.5. It satis�es the oyle relation of De�nition 2.1. We will not

use its probabilisti de�nition, but rather the fat that the Martin oyle is the Busemann

oyle assoiated to the Green distane dµ of Theorem 1.2. In other words, cM (g, ξ) =
limx→ξ dµ(g

−1, x)− dµ(e, x) (and this limit exists).

Lemma 3.1. For g ∈ Γ with in�nite order, cM (g, g+) = vl(g).

Proof. Reall that we are assuming that the equality h(µ) = ℓ(µ)v holds, therefore we have

|dµ(e, g)− vd(e, g)| 6 C. It follows that the oyle cM orresponding to dµ and the oyle

cB orresponding to the distane d satisfy |cM − vcB | 6 2C. Note that cB is not de�ned on

the geometri boundary, but on the horoboundary, so the proper way to write this inequality

is |cM (g, πB(ξ)) − vcB(g, ξ)| 6 2C for any g ∈ Γ and any ξ ∈ ∂BΓ.
Let ξ ∈ ∂BΓ with πB(ξ) 6= g−. Then lim cB(g

n, ξ)/n = limhξ(g
−n)/n = l(g). We hoose

ξ with πB(ξ) = g+, to get

lim cM (gn, g+)/n = lim vcB(g
n, ξ)/n ± 2C/n = vl(g).

As g+ is g-invariant, the oyle equation for cM on ∂Γ gives cM (g, g+) = cM (gn, g+)/n.
This onverges to vl(g) when n → ∞ by the previous equation. �

The proof of Theorem 1.5 uses the following general result on oyles.

Proposition 3.2. Let Γ be a hyperboli group whih is not virtually free. Let c : Γ×∂Γ → R

be a Hölder oyle, suh that any hyperboli element g satis�es c(g, g+) ∈ Z. Then there

exists a hyperboli element g ∈ Γ with c(g, g−) = c(g, g+).

Applied to the Busemann oyle, this proposition implies that if a onvex oompat

negatively urved manifold has a fundamental group whih is not virtually free, then its

length spetrum is not arithmeti, i.e., the lengths of its losed geodesis generate a dense

subgroup of R. This result is already known, see [Dal99, Page 205℄. It is proved in this artile
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using rossratios. This argument based on rossratios an be used to prove Proposition 3.2

in full generality. However, we will give a di�erent, more diret, proof.

We will use the following topologial lemma.

Lemma 3.3. Let g be a hyperboli element in a hyperboli group Λ with onneted boundary.

There exists an ar I (i.e., a subset of ∂Λ homeomorphi to [0, 1]) joining g− and g+,
invariant under an iterate gi of g.

Proof. We will use nontrivial results on the topology of ∂Λ. When it is onneted, then

it is also loally onneted by [Swa96℄. Hene, it is also path onneted and loally path

onneted, see [HY61, Theorem 3-16℄. Moreover, for any ξ ∈ ∂Λ, the spae ∂Λ \ {ξ} has

�nitely many ends by [Bow98b℄.

Consider g as in the statement of the lemma. Its ation permutes the ends of ∂Λ \ {g−}.
Taking an iterate of g, we an assume it stabilizes the ends. If ξ is lose to g−, it is also the

ase of gξ. As they belong to the same end, one an join them by a small ar J that avoids

g− (and g+). Then
⋃

n∈Z g
nJ joins g− to g+, and it is invariant under g. However, it is not

neessarily an ar if giJ intersets J in a nontrivial way for i 6= 0. To get a real ar, we will

shorten J as follows.

As gnJ onverges to g± when n tends to ±∞, the ar J an only interset �nitely many

giJ . Let us �x a parametrization u : [0, 1] → J . The quantity

inf{|t− s| : s, t ∈ [0, 1] and ∃i 6= 0, u(t) = giu(s)}
is realized by ompatness (sine i remains bounded), for some parameters s, t, i. Replaing
s, t, i with t, s,−i if neessary, we may assume i > 0. As g− and g+ are the only �xed

points of gi, we have s 6= t. Let K = u([s, t]), this is an ar between η = u(s) and

giη = u(t). Moreover, gjK does not interset K, exept maybe at its endpoints for j = ±i:
otherwise, there exists x in the interior of K suh that gjx also belongs to K, ontraditing

the minimality of |s− t|.
It follows that

⋃

n∈Z g
niK is an ar from g− to g+, invariant under gi. �

Proof of Proposition 3.2. Let us onsider the oyle c̄ = c mod Z. The assumption of the

proposition ensures that c̄(g, g+) = 0 for all hyperboli elements g. In geometri terms, this

would orrespond to an assumption that the oyle has vanishing average on all losed

orbits. Hene, we may apply a version of Livsi's theorem, due in this ontext to [INO08℄

(Theorem 5.1). It ensures that the oyle c̄ is a oboundary: there exists a Hölder ontin-

uous funtion b̄ : ∂Γ → R/Z suh that, for all ξ ∈ ∂Γ, for all g ∈ Γ,

(3.1) c̄(g, ξ) = b̄(gξ) − b̄(ξ).

Reall that, sine the group Γ is not virtually free, its boundary is not totally dison-

tinuous (see [KB02, Theorem 8.1℄). The stabilizer of a nontrivial omponent L of ∂Γ is a

subgroup Λ of Γ, quasi-onvex hene hyperboli, whose boundary is L (see the disussion

on top of Page 55 in [Bow98a℄).

Let us onsider an in�nite order element g ∈ Λ. Lemma 3.3 onstruts an ar I from g−

to g+ in ∂Λ ⊂ ∂Γ, invariant under an iterate gi of g. Replaing g with gi, we may assume

i = 1.
The restrition of the funtion b̄ to the ar I admits a ontinuous lift b : I → R, as

I is simply onneted. The funtion F : ξ 7→ c(g, ξ) − b(gξ) + b(ξ) is well de�ned on
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I, ontinuous, and it vanishes modulo Z by (3.1). Hene, it is onstant. In partiular,

c(g, g−) = F (g−) = F (g+) = c(g, g+). �

In order to apply Proposition 3.2, we will need the following result on stable translation

lengths in hyperboli groups ([BH99, Theorem III.Γ.3.17℄).

Lemma 3.4. Let (Γ, d) be a hyperboli group with a word distane. Then there exists an

integer N suh that, for any g ∈ Γ, one has Nl(g) ∈ Z.

The ombination of Lemma 3.1 and Lemma 3.4 shows that the oyle c′ = NcM/v satis-

�es c′(g, g+) ∈ Z for any hyperboli element g. Moreover, this oyle is Hölder-ontinuous

sine the Martin oyle cM is itself Hölder-ontinuous. This follows from [INO08℄ if µ has

�nite support, and from [Gou13℄ if it has a superexponential moment. Now, Proposition 3.2

implies the existene of a hyperboli element g suh that cM (g, g+) = cM (g, g−). This is a
ontradition sine c(g, g+) = vl(g) > 0 and c(g, g−) = −c(g−1, g−) = −vl(g) < 0 again by

Lemma 3.1. This onludes the proof of Theorem 1.5 when Γ+
µ = Γ.

If Γ+
µ is a �nite index subgroup of Γ, the same proof almost works in Γ+

µ to onlude that

Γ+
µ is virtually free if h = ℓv, implying that Γ is also virtually free. The only di�ulty is

that the distane we are onsidering on Γ+
µ is not a word distane for a system of generators

of Γ+
µ . However, the only properties of the distane we have really used are:

(1) It is hyperboli and quasi-isometri to a word distane (to apply Theorem 1.2).

(2) The stable translation lengths are rational numbers with bounded denominators.

These two properties are learly satis�ed for the restrition of the distane d to Γ+
µ . Hene,

the above proof also works in this ase. This ompletes the proof of Theorem 1.5. �

Remark 3.5. If Λ is a quasi-onvex subgroup of a hyperboli group Γ, then the restrition

to Λ of a word distane on Γ also satis�es the above two properties. Hene, Theorem 1.5

also holds in Λ for suh a distane.

4. Growth of non-distorted points in subgroups

Our goal in this setion is to prove Theorem 1.6 on the entropy of a random walk on

an in�nite index subgroup Λ of a hyperboli group Γ. Sine the geometry of suh random

walks is ompliated to desribe in general, our argument is indiret: we will show that, in

any in�nite index subgroup, the number of points that the random walk e�etively visits

is exponentially small ompared to the growth of Γ. This is trivial if the growth vΛ =

lim infn→∞
log|Bn∩Λ|

n is stritly smaller than v = vΓ. When vΛ = v, on the other hand, we

will argue that the random walk does not typially visit all of Λ, but only a subset made

of non-distorted points. To prove Theorem 1.6, the main step is to show that, even when

vΛ = v, the number of suh non-distorted points is exponentially smaller than env. We

introdue the notion of non-distorted points in Paragraph 4.1, prove this main geometri

estimate in Paragraph 4.2, and apply this to random walks in Paragraph 4.4. Paragraph 4.3

is devoted to the ase vΛ < v, where unexpeted phenomena happen even in distorted

subgroups.
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4.1. Non-distorted points. There are at least two di�erent ways to de�ne a notion of

non-distorted point.

De�nition 4.1. Let Γ be a �nitely generated group endowed with a word distane d = dΓ,
and let Λ be a subgroup of Γ.

• For ε > 0 and M > 0, we say that g ∈ Λ is (ε,M)-quasi-onvex if any geodesi γ
from e to g spends at least a proportion ε of its time in the M-neighborhood of Λ,
i.e.,

|{i ∈ [1, |g|] : d(γ(i),Λ) 6 M}| > ε|g|.

We write ΛQC(ε,M) for the set of points in Λ whih are (ε,M)-quasi-onvex.
• Assume additionally that Λ is �nitely generated, and endowed with a word distane

dΛ. For D > 0, we say that g ∈ Λ is D-undistorted if dΛ(e, g) 6 DdΓ(e, g). We

write ΛUD(D) for the set of D-undistorted points.

Up to a hange in the onstants, these notions do not depend on the hoie of the distane

d. The �rst de�nition has the advantage to work for in�nitely generated subgroups, but it

may seem less natural than the seond one. If Λ is a quasi-onvex subgroup of a hyperboli

group Γ, then all its points are (1,M)-quasi-onvex if M is large enough, and all its points

are also D-undistorted for large enough D. In the general ase, a quasi-onvex point does

not have to be undistorted: it may happen that the times i suh that d(γ(i),Λ) 6 M are all

inluded in [1, |g|/2], while between |g|/2 and |g| one needs to make a huge detour to follow

Λ, making dΛ(e, g) muh larger than dΓ(e, g). On the other hand, an undistorted point is

automatially quasi-onvex, at least in hyperboli groups:

Proposition 4.2. Let Γ be a hyperboli group, let Λ be a �nitely generated subgroup of Γ,
and let D > 0. There exist ε > 0 and M > 0 suh that any D-undistorted point is also

(ε,M)-quasi-onvex, i.e., ΛUD(D) ⊂ ΛQC(ε,M).

Proof. Consider g ∈ Λ whih is not (ε,M)-quasi-onvex, we have to show that dΛ(e, g) is
muh bigger than n = dΓ(e, g). The intuition is that, away from a Γ-geodesi from e to g,
the progress towards g is muh slower by hyperboliity.

Let us onsider a geodesi from e to g in Λ, with length dΛ(e, g). Replaing eah generator

of Λ by the produt of a uniformly bounded number of generators of Γ, we obtain a path

γΛ in the Cayley graph of Γ, remaining in the C0-neighborhood of Λ (for some C0 > 0) and
with length |γΛ| 6 C0dΛ(e, g).

Let us onsider a geodesi γΓ from e to g for the distane dΓ. For eah x ∈ Γ, we an

onsider its projetion π(x) on γΓ, i.e., the point on γΓ that is losest to x (if several points

orrespond, we take the losest one to e). This projetion is 1-Lipshitz. In partiular, the

projetion of γΛ overs the whole geodesi γΓ. For eah xi ∈ γΓ, let us onsider the �rst

point yi ∈ γΛ projeting to xi.
Let us �x an integer L, large enough with respet to the hyperboliity onstant of Γ.

Along γΓ, let us onsider the points at distane kL from e, i.e., x0 = e, xL, x2L, . . . , xmL

with m = ⌊n/L⌋. In partiular, |γΛ| >
∑

i dΓ(yiL, y(i+1)L). Moreover, a tree approximation

shows that dΓ(yiL, y(i+1)L) > dΓ(yiL, xiL) + L + dΓ(x(i+1)L, y(i+1)L) − C1 (where C1 only
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depends on the hyperboliity onstant of Γ). Choosing L > C1, we get

|γΛ| >
m
∑

i=0

dΓ(xiL, yiL) >

m
∑

i=0

(dΓ(xiL,Λ)− C0).

Sine we assume that g is not (ε,M)-quasi-onvex, the set of indies i with d(xi,Λ) 6 M
has ardinality at most εn. Taking M > C0, the previous equation is bounded from below

by

(m+ 1− εn)M − (m+ 1)C0 > (n/L− εn)M − nC0/L.

Finally, we get

dΛ(e, g) > |γΛ|/C0 > n(1/L− ε)M/C0 − n/L.

If ε is small enough and M is large enough so that (1/L − ε)M/C0 − 1/L > D, we obtain

dΛ(e, g) > Dn, i.e., g /∈ ΛUD(D), as desired. �

From this point on, we will mainly work with the notion of quasi-onvex points, sine

ounting results on suh points imply results on undistorted points by the previous propo-

sition.

4.2. Non-distorted points in subgroups with vΛ = v. In this setion, we show that

there are exponentially few quasi-onvex points in in�nite-index subgroups of hyperboli

groups.

Theorem 4.3. Let Γ be a nonelementary hyperboli group endowed with a word distane.

Let Λ be an in�nite index subgroup of Γ. Then

(4.1) |Bn ∩ Λ| = o(|Bn|).
Moreover, for all ε > 0 and M > 0, there exists η > 0 suh that, for all large enough n,

(4.2) |Bn ∩ ΛQC(ε,M)| 6 e−ηn|Bn|.
One may wonder why we put the estimate (4.1) in the statement of the theorem, while

the main emphasis is on ounting quasi-onvex points. It turns out that this estimate

is not trivial, and that its proof uses the same tehniques as for the proof of (4.2). To

illustrate that it is not trivial, let us remark that this estimate is not true without the

hyperboliity assumption. For instane, in Γ = F2 × Z (with its anonial generating

system, and the orresponding word distane), the in�nite index subgroup Λ = F2 satis�es

|Λ ∩Bn|/|Bn| > c > 0.
Theorem 4.3 is trivial if the growth rate vΛ of Λ is stritly smaller than the growth rate

v of Γ, sine in this ase |Bn ∩ Λ| itself is exponentially smaller than |Bn|. However, this is
not always the ase, even for �nitely generated subgroups.

Consider for instane a ompat hyperboli 3-manifold whih �bers over the irle, ob-

tained as a suspension of a hyperboli surfae with a pseudo-Anosov. Its fundamental group

Γ surjets into Z = π1(S
1). The kernel Λ of this morphism ϕ is the fundamental group of

the �ber. It is �nitely generated, with in�nite index, and |Bn ∩Λ| ∼ c|Bn|/
√
n, see [Sha98℄.

Heuristially, one an understand in this ase why there are exponentially few quasi-

onvex points in Λ. Let us onsider a geodesi of length n in Γ. It projets under ϕ to a

path in Z, whih behaves roughly like a random walk. In partiular, e−nv|Sn ∩ Λ| behaves
like the probability that a random walk on Z omes bak to the identity at time n. This
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is of order 1/
√
n, in aordane with the rigorous results of [Sha98℄. Suh an element is

quasi-onvex if the random walk in Z spends a big proportion of its time lose to the origin.

A large deviation estimate shows that this is exponentially unlikely.

The proof of the theorem onsists in making this heuristi preise, in the general ase

where the subgroup Λ is not normal (so that there is no morphism ϕ at hand). An important

point in the proof is that a hyperboli group is automati, i.e., there exists a �nite state

automaton that reognizes a system of geodesis parameterizing bijetively the points in

the group. Counting points in the group then amounts to a random walk on the graph of

this automaton, while ounting points in Λ amounts to a �bred random walk, on this graph

times Λ\Γ. As this spae is in�nite, the random walk spends most of its time outside of

�nite sets, i.e., far away from Λ.
To formalize this argument, we will redue the question to Markov hains on graphs,

where we will use the following probabilisti lemma.

Lemma 4.4. Consider a Markov hain (Xn) on a ountable set V , with a stationary mea-

sure m (i.e., m(x) =
∑

y m(y)p(y, x) for all x). Let Ṽ be the set of points x ∈ V suh that

∑

x→y m(y) = +∞, where we write x → y if there exists a positive probability path from x

to y. Then, for all x ∈ V and x′ ∈ Ṽ ,

(4.3) Px(Xn = x′) → 0 when n → ∞.

Take x ∈ Ṽ and ε > 0. There exists η > 0 suh that, for all large enough n,

(4.4) Px(Xn = x and Xi visits x at least εn times in between) 6 e−ηn.

Proof. In ountable state Markov hains, a point x an be either transient, or null reurrent,

or positive reurrent. Let us �rst show that points in Ṽ are not positive reurrent, by

ontradition. Otherwise, the points that an be reahed from x form an irreduible lass C,
whih admits a stationary probability measure p. The restrition of m to C is an exessive

measure. By uniqueness (see [Rev84, Theorem 3.1.9℄), the measure m is proportional on C
to p. In partiular, it has �nite mass there. This ontradits the assumption

∑

x→y m(y) =
+∞.

Let us now show that, for all x ∈ V and x′ ∈ Ṽ , the probability Px(Xn = x′) tends to 0.
Otherwise, onditioning on the �rst visit to x′, we dedue that Px′(Xn = x′) does not tend
to 0. This implies that x′ is positive reurrent, a ontradition.

Let us now prove (4.4). Consider x ∈ Ṽ , it is either transient or null reurrent. If it is

transient, the probability p to ome bak to x is < 1. Hene, the probability to ome bak

εn times is bounded by pεn, and is therefore exponentially small as desired.

Assume now that x is null reurrent: almost surely, the Markov hain omes bak to

x, but the waiting time τ has in�nite expetation. Let τ1, τ2, . . . be the length of the

suessive exursions based at x. They are independent and distributed like τ , by the Markov

property. The probability in (4.4) is bounded by P(
∑εn

i=1 τi 6 n), whih is bounded for any

M by P(
∑εn

i=1 τi1τi6M 6 n). The random variables τi1τi6M are bounded, independent and

identially distributed. If M is large enough, they have expetation > 1/ε. A standard large

deviation result then shows that P(
∑εn

i=1 τi1τi6M 6 n) is exponentially small, as desired. �

We will also need the following tehnial lemma, whih was explained to us by B. Bekka.
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Lemma 4.5. Let Λ be a subgroup of a group Γ. Assume that there exists a �nite subset B
of Γ suh that BΛB = Γ. Then Λ has �nite index in Γ.

Proof. We have by assumption Γ =
⋃

i,j biΛbj =
⋃

i,j Λibibj , where Λi = biΛb
−1
i is a onju-

gate of Λ (and has therefore the same index). A theorem of Neumann [Neu54℄ ensures that

a group is never a �nite union of right osets of in�nite index subgroups. Hene, one of the

Λi has �nite index in Γ, and so has Λ. �

Let Γ be a hyperboli group, with a �nite generating set S. Consider a �nite direted

graph A = (V,E, x∗) with vertex set V , edges E, a distinguished vertex x∗, and a labeling

α : E → S. We assoiate to any path γ in the graph (i.e., a sequene of edges σ0, σ1, . . . , σm−1

where the endpoint of σi is the beginning of σi+1) a path in the Cayley graph starting from

the identity and following the edges labeled α(σ0), then α(σ1), and so on. The endpoint of

this path is α∗(γ) := α(σ0) · · ·α(σm−1). We always assume that any point an be reahed

by a path starting at x∗.
A hyperboli group is automati (see, for instane, [Cal13℄): there exists suh a graph

with the following properties.

(1) For any path γ in the graph, the orresponding path α(γ) is geodesi in the Cayley

graph.

(2) The map α∗ indues a bijetion between the set of paths in the graph starting from

x∗ and the group Γ.

In partiular, the paths of length n in the graph originating from x∗ parameterize the

sphere S
n
of radius n in the group. The existene of suh a struture makes it for instane

possible to prove that the growth series of a hyperboli group is rational. We will use suh

an automaton to ount the points in the subgroup Λ, and in partiular the quasi-onvex

points.

We de�ne a transition matrix A, indexed by V . By de�nition, Axy is the number of edges

from x to y. Hene, (An)xy is the number of paths of length n from x to y. In partiular,

the number of paths of length n starting from x∗ is
∑

y(A
n)x∗y. Write u for the line vetor

with 1 at position x∗ and 0 elsewhere, and ũ for the olumn vetor with 1 everywhere. This

number of paths reads uAnũ. Therefore, |Sn| = uAnũ, proving the rationality of the growth

funtion of the group. Let v be the growth rate of balls in Γ. It satis�es |Bn| 6 Cenv,
by [Coo93℄. Hene, the spetral radius of A is ev , and A has no Jordan blok for this

maximal eigenvalue.

To understand the points of the in�nite index subgroup Λ of Γ, we onsider an extension

AΛ of A, with �bers Λ\Γ. Its vertex set VΛ is made of the pairs (x,Λg) ∈ V ×Λ\Γ. For any
edge σ in A, going from x to y and with label α(σ), we put for any g ∈ Γ an edge in AΛ

from (x,Λg) to (y,Λgα(σ)). A path γ in A, from x to y, lifts to a path γ̃ in AΛ originating

from (x,Λe). By onstrution, its endpoint is (y,Λα∗(γ)). This shows that the paths in the

graph AΛ remember the urrent right oset of Λ.
The next lemma proves that the relevant omponents of this �bred graph are in�nite.

Lemma 4.6. Let x̃0 = (x0,Λg0) belong to AΛ. Let C be the omponent of x0 in A (i.e., the

set of points that an be reahed from x0 and from whih one an go bak to x0). Let AC be

the restrition of the matrix A to the points in C. Assume that its spetral radius ρ(AC) is
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equal to ev. Then, starting from x̃0 in the graph CΛ (the restrition of AΛ to C ×Λ\Γ), one
an reah in�nitely many di�erent points of CΛ.
Proof. It su�es to show that one an reah in�nitely many points whose omponent in C
is x0. Assume by ontradition that one an only reah a �nite number of lasses (x0,Λgi).

Given w ∈ Γ and C > 0, let Yw,C be the set of points in Γ that have a geodesi expression

in whih, for any subword w̃ of this expression and for any a, b with length at most C, one
has w 6= aw̃b. In other words, the points in Yw,C are those that never see w (nor even a

thikening of w of size C) in their geodesi expressions. Theorem 3 in [AL02℄ proves the

existene of C0 suh that, for any w, the quantity |Bn∩Yw,C0
|/|Bn| tends to 0 (the important

point is that C0 does not depend on w).
The number of paths in C originating from x0 grows at least like c|Bn| sine the spetral

radius of AC is ev . These paths give rise to distint points in Γ. Hene, there exists suh a

path γ0 suh that α∗(γ0) /∈ Yw,C0
. In partiular, there exists a subpath γ1 suh that α∗(γ1)

an be written as a1wb1 with |a1| 6 C0 and |b1| 6 C0. We an hoose a path from x0 to the

starting point of γ1, with �xed length (sine C is �nite), and another path from the endpoint

of γ1 to x0. Conatenating them, we get a path γ2 from x0 to itself with α∗(γ2) = a2wb2
and |a2|, |b2| 6 C1 = C0 + 2diam(C). By assumption, Λg0α∗(γ2) is one of the �nitely many

Λgi sine we are returning to x0. Hene, there exists λ ∈ Λ suh that g0a2wb2 = λgi. This
shows that w ∈ BΛB, where B is the ball of radius C1+maxi d(e, gi). As this holds for any
w, we have proved that BΛB = Γ. By Lemma 4.5, this shows that Λ has �nite index in Γ,
a ontradition. �

Lemma 4.7. Let K(n, x̃0, ε0) denote the set of paths in AΛ starting at a point x̃0, of length
n, oming bak to x̃0 at time n, and spending a proportion at least ε0 of the time at x̃0.
Consider x̃0 ∈ AΛ and ε0 > 0. Then there exist η > 0 and C > 0 suh that, for all n ∈ N,

|K(n, x̃0, ε0)| 6 Cen(v−η).

Proof. Write x̃0 = (x0,Λg0), let C be the omponent of x0 in A. If the spetral radius of

the restrited transition matrix AC is < ev, we simply bound |K(n, x̃0, ε0)| by the number

of paths in C from x0 to itself. This is at most ‖An
C‖, whih is exponentially smaller than

env as desired.

Assume now that ρ(AC) = ev. We will understand the number of paths in C (and in its lift

CΛ) in terms of a Markov hain. The matrix AC has a unique eigenvetor q orresponding

to the eigenvalue ev, it is positive by Perron-Frobenius's theorem. By de�nition, p(x, y) =
e−vAxyq(y)/q(x) satis�es, for any x ∈ C,

∑

y∈C

p(x, y) =
e−v

q(x)

∑

Axyq(y) = 1.

This means that p(x, y) is a transition kernel on C. Denote by (Xn)n∈N the orresponding

Markov hain. By onstrution,

Px(Xn = y) = e−nv(An)xyq(y)/q(x).

Moreover, (An)xy is the number of paths of length n in A from x to y. Hene, up to a

bounded multipliative fator q(y)/q(x), the transition probabilities of the Markov hain Xn
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ount the number of paths in the graph C. Let m denote the unique stationary probability

for the Markov hain on C.
We lift everything to CΛ, assigning to an edge the transition probability of its projetion in

C. The stationary measure m lifts to a stationary measure mΛ, whih is simply the produt

of m and of the ounting measure in the diretion Λ\Γ. Denoting by XΛ
n the Markov hain

in CΛ, we have
e−nv|K(n, x̃0, ε0)| = Px̃0

(XΛ
n = x̃0 and XΛ

i visits x̃0 at least ε0n times in between).

By Lemma 4.6, the Markov hain starting from x̃0 an reah in�nitely many points. Equiva-

lently, sine m is bounded from below, it an reah a set of in�nite mΛ-measure. Therefore,

Lemma 4.4 applies, and shows that the above quantity is exponentially small. �

Proof of Theorem 4.3. Let us �rst prove (4.2). Counting the points in S
n∩ΛQC(ε,M) amounts

to ounting the paths of length n in AΛ, starting from (x∗,Λe) and spending a proportion

at least ε of their time in the �nite subset F = V × ΛBM ⊂ VΛ. Suh a path spends a

proportion at least ε0 = ε/|F | of its time at a given point x̃ ∈ F . Let k and k +m denote

the �rst and last visits to x̃ (with m > ε0n sine there are at least ε0n visits). Suh a path

is the onatenation of a path from (x∗,Λe) to x̃ of length k (their number is bounded by

the orresponding number of paths in A, at most ‖Ak‖ 6 Cekv), of a path in K(m, x̃, ε0),
and of a path starting from x̃ of length n − k −m (their number is again bounded by the

number of orresponding paths in A, at most Ce(n−k−m)v
). Hene, their number is at most

Ce(n−m)v |K(m, x̃, ε0)|. Summing over the points x̃ ∈ F , over the at most n possible values

of k, and the values of m, we get the inequality

|Sn ∩ ΛQC(ε,M)| 6 Cnenv
∑

x̃∈F

n
∑

m=ε0n

e−mv|K(m, x̃, ε0)|.

Lemma 4.7 shows that this is exponentially smaller than env.
Let us now prove (4.1), using similar arguments. A point in S

n ∩ Λ orresponds to a

path of length n in AΛ, starting from (x∗,Λe) and ending at a point (x,Λe). We say that a

omponent C in the graph A is maximal if the spetral radius of the orresponding restrited

matrix AC is ev. Sine the matrix A has no Jordan blok orresponding to the eigenvalue ev ,
a path in the graph enounters at most one maximal omponent. The paths in AΛ whose

projetion in A spends a time k in non-maximal omponents give an overall ontribution

to |Sn ∩ Λ| bounded by Ce(n−k)v+k(v−η) 6 Ce−ηk|Bn|. Given ε > 0, their ontribution for

k > k0(ε) is bounded by ε|Bn|. Hene, it su�es to ontrol the paths for �xed k. Let us �x
the beginning of suh a path, from (x∗,Λe) to a point (x0,Λg0) where x0 is in a maximal

omponent C, and its end from (x1,Λg1) with x1 ∈ C to a point (x,Λe). To onlude, one

should show that the number of paths of length n from (x0,Λg0) to (x1,Λg1) is o(e
nv). This

follows from the probabilisti interpretation in the proof of Lemma 4.7 and from (4.3). �

4.3. Non-distorted points in subgroups with vΛ < v. Let Λ be a subgroup of a hy-

perboli group Γ. Let vΛ and vΓ be their respetive growths, for a word distane on Γ. If

vΛ = vΓ, Theorem 4.3 proves that there is a dihotomy:

(1) Either Λ is quasi-onvex (equivalently, Λ has �nite index in Γ). Then |Bn ∩ Λ| >
cenvΛ , and all points in Λ are quasi-onvex.



ENTROPY AND DRIFT IN WORD HYPERBOLIC GROUPS 28

(2) Or Λ is not quasi-onvex (equivalently, it has in�nite index in Γ). Then |Bn ∩ Λ| =
o(envΛ), and there are exponentially few quasi-onvex points in Λ.

Consider now a general subgroup Λ with vΛ < vΓ. If it is quasi-onvex, then (1) above

is still satis�ed: |Bn ∩ Λ| > cenvΛ by [Coo93℄, and all points in Λ are quasi-onvex. One

may ask if these properties are equivalent, and if they haraterize quasi-onvex subgroups.

This question is reminisent of a question of Sullivan in hyperboli geometry: Are onvex

oompat groups the only ones to have �nite Patterson-Sullivan measure? Peigné showed

in [Pei03℄ that the answer to this question is negative. His ounterexamples adapt to our

situation, giving also a negative answer to our question.

Proposition 4.8. There exists a �nitely generated subgroup Λ of a hyperboli group Γ
endowed with a word distane, whih is not quasi-onvex, but for whih C−1envΛ 6 |Bn∩Λ| 6
CenvΛ . Moreover, most points of Λ are quasi-onvex: there exist ε and η suh that

(4.5) |Bn ∩ Λ \ ΛQC(ε,0)| 6 Cen(vΛ−η).

Proof. The example is the same as in [Pei03℄, but his geometri proofs are replaed by

ombinatorial arguments based on generating series.

Let G be a �nitely generated non-quasi-onvex subgroup of a hyperboli group G̃ (take

for instane for G̃ the fundamental group of a hyperboli 3-manifold whih �bers over the

irle, and for G the fundamental group of the �ber of this �bration). Let H = Fk, with k

large enough so that vH > vG. We take Λ = G ∗H ⊂ Γ = G̃ ∗H. It is not quasi-onvex,

beause of the fator G. Writing vΛ for its growth, we laim that, for some c > 0,

(4.6) |Sn ∩ Λ| ∼ cenvΛ .

We ompute with generating series. Let FG(z) be the growth series for G, given by FG(z) =
∑

n>0|Sn ∩ G|zn. Likewise, we de�ne FH and FΛ. Sine any word in Λ has a anonial

deomposition in terms of words in G and H, a lassial omputation (see [dlH00, Prop.

VI.A.4℄) gives

(4.7) FΛ =
FGFH

1− (FG − 1)(FH − 1)
.

Let zG = e−vG > zH = e−vH
be the onvergene radii of FG and FH . At zH , we have

FH(zH) = +∞, sine the ardinality of spheres in the free group is exatly of the order of

envH . When z inreases to zH , the funtion (FG(z) − 1)(FH (z)− 1) takes the value 1, at a
number z = zΛ. Sine this is the �rst singularity of FΛ, we have zΛ = e−vΛ

. Moreover, the

funtion FΛ is meromorphi at zΛ, with a pole of order 1 (sine the funtion (FG−1)(FH−1)
has positive derivative, being a power series with nonnegative oe�ients). It follows from

a simple tauberian theorem (see, for instane, [FS09, Theorem IV.10℄) that the oe�ients

of FΛ behave like cz−n
Λ , proving (4.6).

Let us estimate the number of non-quasi-onvex points in Λ. Consider a word w ∈ Λ of

length n, for instane starting with a fator in G and ending with a fator in H. It an be

written as g1h1g2h2 · · · hs. Along a geodesi from e to w, all the words g1h (with h pre�x

of h1) belong to Λ. So do all the words g1h1g2h with h pre�x of h2, and so on. Therefore,

the proportion of time that the geodesi spends outside of Λ is at most

∑|gi|/n. Suh a

point in Λ \ ΛQC(ε,0) satis�es
∑|gi| > (1 − ε)n and

∑|hi| 6 εn. Assuming ε 6 1/2, this



ENTROPY AND DRIFT IN WORD HYPERBOLIC GROUPS 29

gives

∑|hi| 6 (ε/2)
∑|gi|. In partiular, for any α > 0, we have eα(

∑
|gi|−2ε−1

∑
|hi|) > 1. Let

un = |Sn ∩Λ \ΛQC(ε,0)|, its generating series satis�es the following equation (where we only

write in details the words starting with G and ending in H, the other ones being ompletely

analogous):

∑

unz
n 6

∑

ℓ>1

∑

a1+b1+a2+···+bℓ=n

eα(
∑

ai−2ε−1
∑

bi)|Sa1 ∩G||Sb1 ∩H| · · · |Sbℓ ∩H|zn + . . .

=
∑

ℓ>1

[

(FG(e
αz)− 1)(FH (e−2αε−1

z)− 1)
]ℓ

+ . . .

=
FG(e

αz)FH(e−2αε−1

z)

1− (FG(eαz)− 1)(FH (e−2αε−1z)− 1)
.

This is the same formula as in (4.7), but the fator z has been shifted in FG and FH . Choose

α > 0 suh that eαzΛ < zG, and then ε small enough so that (FG(e
αzΛ)−1)(FH (e−2αε−1

zΛ)−
1) < 1. We dedue that the series

∑

unz
n
onverges for z = zΛ, and even slightly to its

right. It follows that un is exponentially small ompared to z−n
Λ . This proves (4.5). �

4.4. Appliation to random walks in in�nite index subgroups. In this paragraph,

we use Theorem 4.3 to prove Theorem 1.6 on random walks given by a measure µ on a

hyperboli group Γ, assuming that Γµ has in�nite index in Γ.
Before proving Theorem 1.6, we give another easier result, pertaining to the ase where

µ has a �nite moment for a word distane on Γµ (whih should be �nitely generated): In

this ase, the random walk typially visits undistorted points. This easy statement is not

used later on, but it gives a heuristi explanation to Theorem 1.6.

Lemma 4.9. Let Λ be a �nitely generated subgroup of a �nitely generated group Γ. Let dΛ
and dΓ be the two orresponding word distanes. Consider a probability measure µ on Λ,
with a moment of order 1 for dΛ (and therefore for dΓ), with nonzero drift for dΓ. Let Xn

denote the orresponding random walk. There exists D > 0 suh that P(Xn ∈ ΛUD(D)) → 1.

Proof. Almost surely, dΓ(e,Xn) ∼ ℓΓn, for some nonzero drift ℓΓ. In the same way,

dΛ(e,Xn) ∼ ℓΛn. For any D > ℓΛ/ℓΓ, we get almost surely dΛ(e,Xn) 6 DdΓ(e,Xn) for

large enough n, i.e., Xn ∈ ΛUD(D). �

This lemma readily implies Theorem 1.6 under the additional assumption that Λ is �nitely

generated and that µ has a moment of order 1 for dΛ. Indeed, for large n, with probability

at least 1/2, the point Xn belongs to B(ℓ+ε)n ∩ ΛUD(D), whose ardinality is bounded by

Ce(ℓ+ε)n(v−η)
aording to Theorem 4.3. Lemma 2.4 yields h 6 (ℓ + ε)(v − η), hene

h 6 ℓ(v − η) < ℓv, ompleting the proof.

However, the assumptions of Theorem 1.6 are muh weaker: even when Λ is �nitely

generated, it is muh more restritive to require a moment of order 1 on Λ than on Γ,
preisely beause the Γ-distane is smaller than the Λ-distane on distorted points, whih

make up most of Λ. The general proof will not use undistorted points (whih are not even

de�ned when Λ is not �nitely generated), but rather quasi-onvex points: we will show

that, typially, the random walk onentrates on quasi-onvex points. With the previous

argument, Theorem 1.6 readily follows from the next lemma.
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Lemma 4.10. Let Λ be a subgroup of a hyperboli group Γ endowed with a word distane

d = dΓ. Let us onsider a probability measure µ on Λ, with a moment of order 1 for dΓ.
There exist ε > 0 and M > 0 suh that P(Xn ∈ ΛQC(ε,M)) > 1/2 for large enough n.

Proof. The lemma is trivial if µ is elementary, sine all the elements of Γµ ⊂ Λ are then

quasi-onvex. We may therefore assume that µ is non-elementary.

The random walk at time n is given by Xn = g1 · · · gn, where gi are independent and

distributed like µ. We will show that most produts g1 · · · gi (whih belong to Λ) are within
distane M of a geodesi from e to Xn (this amounts to the lassial fat that trajetories

of the random walk follow geodesis in the group), and moreover that they approximate a

proportion at least ε of the points on this geodesi. This will give Xn ∈ ΛQC(ε,M) as desired.

The seond point is more deliate: we should for instane exlude the situation where, given

a geodesi γ, one has Xn = γ(a(n)) where a(n) is the smallest square larger than n. In this

ase, Xn follows the geodesi γ at linear speed, but nevertheless the proportion of γ it visits

tends to 0. This behavior will be exluded thanks to the fat that, with high probability,

the jumps of the random walk are bounded.

The argument is probabilisti and formulated in terms of the bilateral version of the

random walk. On Ω = ΓZ
with the produt measure P = µ⊗Z

, let gn be the n-th oordinate.

The gn are independent, identially distributed, and orrespond to the inrements of a

random walk (Xn)n∈Z with X0 = e and X−1
n Xn+1 = gn+1. Almost surely, Xn onverges

when n → ±∞ towards two random variables ξ± ∈ ∂Γ, with ξ+ 6= ξ− almost surely sine

these random variables are independent and atomless. Following Kaimanovih [Kai00℄,

denote by S(ξ−, ξ+) the union of all the geodesis from ξ− to ξ+. Let π be the projetion

on S(ξ−, ξ+), i.e., π(g) is the losest point to g on S(ξ−, ξ+). It is not uniquely de�ned, but

two possible hoies are within distane C0, for some C0 only depending on Γ.
Let us hoose L > 0 large enough (how large will only depend on the hyperboliity

onstant of the spae). Any measurable funtion is bounded on sets with arbitrarily large

measure. Hene, there exists K > 0 suh that, with probability at least 9/10,

(1) For every |k| > K, the projetions π(Xk) are distant from π(X0) by at least L (and

they are loser to ξ+ if k > 0, and to ξ− if k < 0).
(2) We have d(e, S(ξ−, ξ+)) 6 K.

As everything is equivariant, we dedue that, for all i ∈ Z, the point Xi satis�es the same

properties with probability at least 9/10, i.e.,

(4.8) d(Xi, S(ξ
−, ξ+)) 6 K and, for all |k| > K, d(π(Xi), π(Xi+k)) > L.

Let n be a large integer. Write m = ⌊n/K⌋. Among the integers K, 2K, . . . ,mK 6 n, we
onsider the set In(ω) of those i suh that Xi satis�es (4.8). We have E(|In|) > m · 9/10.
As |In| 6 m, we get

9m

10
6 E(|In|) 6

m

10
P(|In| < m/10) +mP(|In| > m/10) =

m

10
+

9m

10
P(|In| > m/10).

This gives P(|In| > m/10) > 8/9. Let η = 1/(20K). Let Ωn be the set of ω suh that

|In(ω)| > ηn + 1, and X0 and Xn satisfy (4.8), and d(Xn, e) 6 2ℓn (where ℓ is the drift of

µ). It satis�es P(Ωn) > 1/2 if n is large enough. This is the set of good trajetories for

whih we an ontrol the position of many of the Xi.
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ξ−
π(X0) π(Xi) π(Xn)

ξ+

X0 Xn

Xi

Yi γ

Figure 1. The projetions on γ and S

Let ω ∈ Ωn. We write Yi for a projetion of Xi on a geodesi γ from e to Xn. Let

Ĩn = In \ {mK}, so that the elements of Ĩn are at distane at least K of 0 and n. As X0

and Xn satisfy (4.8), the projetions π(Xi) for i ∈ Ĩn are loated between π(X0) and π(Xn),
and are at a distane at least L of these points (see Figure 1). If L is large enough, we

obtain d(π(Xi), Yi) 6 C1 by hyperboliity, where C1 only depends on Γ. This gives

d(Yi,Λ) 6 d(Yi, π(Xi)) + d(π(Xi),Xi) 6 C1 +K,

thanks to (4.8) for Xi. When i 6= j belong to Ĩn, we have d(π(Xi), π(Xj)) > L again thanks

to (4.8), hene d(Yi, Yj) > L − 2C1. If L was hosen larger than 2C1 + 1, this shows that
Yi 6= Yj . We have found along γ at least |In| − 1 distint points, within distane C1 +K of

Λ. Moreover, for large enough n,

|In| − 1 > ηn > 2ℓn · (η/2ℓ) > d(e,Xn) · (η/2ℓ).
Let ε = η/2ℓ and M = C1 +K. We have shown that, for ω ∈ Ωn (whose probability is at

least 1/2), the point Xn(ω) belongs to ΛQC(ε,M). �

5. Constrution of maximizing measures

In this setion, we prove Theorem 1.7: Given any �nite subset Σ in a hyperboli group Γ,
there exists a measure µΣ maximizing the quantity h(µ)/ℓ(µ) over all measures µ supported

on Σ with ℓ(µ) > 0. To prove this result, we start with a sequene of measures µi supported

on Σ suh that h(µi)/ℓ(µi) onverges to the maximumM of these quantities. We are looking

for µΣ with h(µΣ)/ℓ(µΣ) = M . Replaing µi with (µi + δe)/2 (this multiplies entropy and

drift by 1/2, and does not hange their ratio) and adding e to Σ, we an always assume

µi(e) > 1/2, to avoid periodiity problems.

Extrating a subsequene, we an ensure that µi onverges to a limit probability measure

µ. We treat separately the two following ases:

(1) Γµ is non-elementary.

(2) Γµ is elementary.

Let us handle �rst the easy ase, where Γµ is non-elementary. In this ase, the entropy

and the drift are ontinuous at µ, by Proposition 2.3 and Theorem 2.9, both due to Ershler
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and Kaimanovih in [EK13℄. Therefore, h(µi)/ℓ(µi) tend to h(µ)/ℓ(µ), sine in this ase

ℓ(µ) > 0. One an thus take µΣ = µ.

The ase where Γµ is elementary is muh more interesting. Let us desribe heuristially

what should happen, in a simple ase. We assume that µi = (1 − ε)µ + εν where ν is a

�xed measure, and ε tends to 0. The random walk for µi an be desribed as follows. At

eah jump, one piks µ (with probability 1 − ε) or ν (with probability ε), then one jumps

aording to the hosen measure. After time N , the measure ν is hosen roughly εN times,

with intervals of length 1/ε in between, where µ is hosen. Thus, µ∗N
i behaves roughly like

(µ∗1/ε ∗ ν)εN .
When Γµ is �nite, the measure µ∗1/ε

is lose, when ε is small, to the uniform measure π on

Γµ. Therefore, µ
∗N
i is lose to (π ∗ ν)εN . We dedue h(µi) ∼ εh(π ∗ ν) and ℓ(µi) ∼ εℓ(π ∗ ν).

In partiular, h(µi)/ℓ(µi) → h(π ∗ ν)/ℓ(π ∗ ν). One an take µΣ = π ∗ ν.
When Γµ is in�nite, it is virtually yli. Assuming that µ is entered for simpliity,

the walk given by µ∗1/ε
arrives essentially at distane 1/

√
ε of the origin, by the entral

limit theorem. Then, one jumps aording to ν, in a diretion transverse to Γµ, preventing

further anellations. Hene, the walk given by (µ∗1/ε ∗ ν)εN is at distane roughly εN/
√
ε

from the origin, yielding ℓ(µi) ∼ √
ε. On the other hand, eah step µ∗1/ε

only visits 1/ε

points, hene the measure (µ∗1/ε ∗ ν)εN is supported by roughly (1/ε)εN points, yielding

h(µi) ∼ ε|log ε|. In partiular, h(µi) = o(ℓ(µi)). This implies that h(µi)/ℓ(µi), whih tends

to 0, an not tend to the maximum M . Therefore, this ase an not happen.

The rigorous argument is onsiderably more deliate. One di�ulty is that µi does not

deompose in general as (1−ε)µ+εν: there an be in µi points with a very small probability

(whih are not seen by µ), but muh larger than ε, the probability to visit a nonelementary

subset of Γ. These points will play an important role on the relevant time sale, i.e., 1/ε.
Hene, we have to desribe the di�erent time sales that happen in µi.

For eah a ∈ Σ, we have a weight µi(a), whih tends to 0 if a is not in the support of µ.
Reordering the ak and extrating a subsequene, we an assume that Σ = {a1, . . . , ap} with

µi(a1) > · · · > µi(ap) (and a1 = e). Extrating a further subsequene, we may also assume

that µi(ak)/µi(ak−1) onverges for all k, towards a limit in [0, 1].
Let Γk be the subgroup generated by a1, . . . , ak. We onsider the smallest r suh that

Γr is non-elementary. Then, we onsider the biggest s < r suh that µi(r) = o(µi(s)).
Roughly speaking, the random walk has enough time to spread on the elementary subgroup

Γs, before seeing ar. It turns out that the asymptoti behavior will depend on the nature

of Γs (�nite or virtually yli in�nite).

We will deompose the measure µi as the sum of two omponents (1− εi)αi+ εiβi, where
εi tends to 0, the measure αi mainly lives on Γs, and the measure βi orresponds to the

remaining part of µi, on {as+1, . . . , ap}. The preise onstrution depends on the nature of

Γs:

• If Γs is �nite. Let β
(0)
i be the normalized restrition of µi to {as+1, . . . , ap}. To

avoid periodiity problems, we rather onsider βi = (δe + β
(0)
i )/2. We deompose

µi = (1 − εi)αi + εiβi, where αi is supported on a1, . . . , as. By onstrution, the

probability of any element in the support of αi is muh bigger than εi.
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• If Γs is virtually yli in�nite. The group Γs ontains a hyperboli element g0, with
repelling and attrating points at in�nity denoted by g−0 and g+0 . The elements of

Γs all �x the set {g−0 , g+0 }. We take for αi the normalized restrition of µi to those

elements in Σ that �x {g−0 , g+0 }, and for βi the normalized restrition of µi to the

other elements. One again, we an write µi = (1− εi)αi + εiβi.

In both ases, εi is omparable to the probability µi(ar), and is therefore negligible with

respet to µi(as). We will write µi = µε (and, in the same way, we will replae all indies i
with ε, sine the main parameter is ε = εi). The measure µε onverges to µ when ε tends to
0, while βε tends to a probability measure β, supported on e, as+1, . . . , ap. If the measures

µε are symmetri to begin with, the measures αε and βε are also symmetri by onstrution.

To generate the random walk given by µε, one an �rst independently hoose random

measures ρn: one takes ρn = αε with probability 1 − ε, and ρn = βε with probability ε.
Then, one hooses elements gn randomly aording to ρn, and one multiplies them: the

produt g1 · · · gn is distributed like the random walk given by µε at time n.

We will group together suessive gk, into bloks where the equidistribution on Γs an

be seen. More preisely, denote by t1, t2, . . . the suessive times where ρn = βε (and

t0 = 0). They are stopping times, the suessive di�erenes are independent and identially

distributed, with a geometri distribution of parameter ε (i.e., P(t1 = n) = (1 − ε)n−1ε),
with mean 1/ε. Write LN = gtN−1+1 · · · gtN . By onstrution, the Li are independent,

identially distributed, and the random walk they de�ne, i.e., L1 · · ·LN , is a subsequene

of the original random walk g1 · · · gn. Let λε be the distribution of Li on Γ, i.e.,

λε =

∞
∑

n=0

(1− ε)nεα∗n
ε ∗ βε.

Lemma 5.1. The measure λε has �nite �rst moment and �nite time one entropy. Moreover,

ℓ(µε) = εℓ(λε) and h(µε) = εh(λε).

Proof. As the mean of t1 is 1/ε, the random walk generated by λε is essentially the random

walk generated by µε, but on a time sale 1/ε. This justi�es heuristially the statement.

For the rigorous proof, let us �rst hek that λε has �nite �rst moment (and hene �nite

time one entropy). Sine all the measures have �nite support, we have |L1| 6 Ct1. Sine a
geometri distribution has moments of all order, the same is true for |L1|.

The strong law of large numbers ensures that, almost surely, tN ∼ N/ε. Therefore, almost

surely,

ℓ(λε) = lim
|L1 · · ·LN |

N
= lim

|g1 · · · gtN |
N

= lim
|g1 · · · gtN |

tN
· tN
N

= ℓ(µε) · 1/ε.

This proves the statement of the lemma for the drift.

For the entropy, we use the haraterization of Lemma 2.4. We will show that h(µε) 6

εh(λε) and h(µε) > εh(λε). Let Kn be a set of ardinality at most e(h(µε)+η)n
whih ontains

g1 · · · gn with probability at least 1/2. Let N = εn. With large probability, tN is lose to

n, up to η′n (where η′ is arbitrarily small). Hene, with probability at least 1/3, the point

L1 · · ·LN belongs to the Cη′n-neighborhood of Kn, whose ardinality is at most

|Kn| · eC
′η′n

6 e(h(µε)+η+C′η′)n = e(h(µε)+η+C′η′)N/ε.
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As η and η′ are arbitrary, this shows that h(λε) 6 h(µε)/ε. The onverse inequality is

proved in the same way. �

The previous lemma shows that we should understand λε. We de�ne an auxiliary proba-

bility measure α̃ε so that λε = α̃ε ∗ βε, by

(5.1) α̃ε =

∞
∑

n=0

(1− ε)nεα∗n
ε .

In this formula, most weight is onentrated around those n of the order of 1/ε. Hene, we
have to understand the iterates of αε in time 1/ε. When Γs is �nite, we will see that it

has enough time to equidistribute on Γs (even though αε may give a very small weight to

some elements, this weight is by onstrution muh larger than ε, so that 1/ε iterates are

enough to equidistribute). When Γs is virtually yli, we will see that the random walk

has enough time to drift away signi�antly from the identity.

In both ases, we will need quantitative results on basi groups, but in weakly ellipti ases

(i.e., the transition probabilities are not bounded from below). There are tehniques to get

quantitative estimates in suh settings, espeially omparison tehniques (due for instane

to Varopoulos, Diaonis, Salo�-Coste): one an ompare weakly ellipti walks to ellipti

ones (whih we understand well) thanks to Dirihlet forms arguments: these arguments

make it possible to transfer results from the latter to the former (modulo some loss in the

onstants, due to the lak of elliptiity). We will rely on suh results when Γs is in�nite.

When it is �nite, suh tehniques an also be used, but we will rather give a more elementary

argument.

We start with the ase where Γs is �nite. We need to quantify the speed of onvergene

to the stationary measure in �nite groups, with the following lemma.

Lemma 5.2. Let Λ be a �nite group. Let ΣΛ ⊂ Λ be a generating subset (it does not have

to be symmetri). Let πΛ be the uniform measure on Λ, and let d(µ, πΛ) be the eulidean

distane between a measure µ and πΛ (i.e.,

(
∑

(µ(g) − πΛ(g))
2
)1/2

). For any δ > 0, there
exists K > 0 with the following property. Let η > 0. Consider a probability measure µ on Λ
with µ(σ) > η for any σ ∈ ΣΛ ∪ {e}. Then, for all n > K/η,

d(µ∗n, πΛ) 6 δ.

In other words, the time to see the equidistribution towards the stationary measure is

bounded by 1/η, where η is the minimum of the transition probabilities on ΣΛ.

Proof. Endow the spae M(Λ) of signed measures on Λ with the salar produt orrespond-

ing to the quadrati form |ν|2 = ∑

ν(g)2. Denote by H = {ν :
∑

ν(g) = 0} the hyperplane
π⊥
Λ of zero mass measures. For any probability ρ, denote by Mρ the left-onvolution operator

on M(Λ), that isMρ(ν) = ρ∗ν. Sine onvolution preserves mass, H isMρ-invariant. Let us

prove that the operator norm of Mρ is bounded by 1. Indeed, put uρ(g) =
∑

h∈Λ ρ(h)ρ(hg),



ENTROPY AND DRIFT IN WORD HYPERBOLIC GROUPS 35

this is a probability on Λ. We have

|Mρν|2 =
∑

g∈Λ

(Mρν(g))
2 =

∑

(g,h1,h2)∈Λ3

ρ(gh−1
1 )ρ(gh−1

2 )ν(h1)ν(h2)

=
∑

(h1,h2)∈Λ2

ν(h1)ν(h2)uρ(h1h
−1
2 ) =

∑

(g,h)∈Λ2

ν(h)ν(g−1h)uρ(g)

6
∑

g∈Λ

|ν|2uρ(g) = |ν|2.

This proves that ‖Mρ‖ 6 1. Now �x ρo to be the uniform probability on the set ΣΛ ∪ {e}.
Notie that uρo(g) > 0 for any g ∈ ΣΛ ∪ {e}, sine ρo(e) > 0. We laim that Mρo restrited

to H has an operator norm c < 1. Would it be not the ase, there would exist ν ∈ H − {0}
suh that the previous inequalities would be equalities. Thanks to the equality ase in the

Cauhy-Shwarz inequality, this implies that, for any g ∈ ΣΛ, the two measures h 7→ ν(h)
and h 7→ ν(g−1h) are positively proportional. Sine their norm are equal, they must be

equal. Sine ΣΛ generates Λ, ν is Λ-invariant and belongs to H, so it must be zero.

By assumption, the probability µ an be deomposed as

µ = ηρo + (1− η)ν,

where ν is some probability. This implies that Mµ restrited to H has operator norm at

most ηc+ (1− η). Therefore,

d(µ∗n, πΛ) = |µ∗n − πΛ| = |Mn
µ (δe − πΛ)| 6 2(1− (1− c)η)n.

This inequality implies the result. �

We an now desribe the asymptoti behavior of µε when the group Γs is �nite.

Lemma 5.3. Assume that Γs is �nite. De�ne a new probability measure λ = πΓs ∗ β (it

generates a non-elementary subgroup). When ε tends to 0, we have h(µε) ∼ εh(λ) and

ℓ(µε) ∼ εℓ(λ).

Proof. The random variable t1, being geometri of parameter ε, is of the order of 1/ε with

high probability (i.e., for any δ > 0, there exists u > 0 suh that P(t1 > u/ε) > 1 − δ).
Writing Σs = {a1, . . . , as} for the support of αε, we have minσ∈Σs αε(σ) = (1 − ε)−1µε(as),
whih is muh bigger than ε by de�nition of s. Lemma 5.2 shows that the measures α∗n

ε

are lose to πΓs for n > u/ε. This implies that α̃ε (de�ned in (5.1)) onverges to πΓs when

ε → 0. As βε onverges to β, this shows that λε onverges to λ.
The support of the measure λ ontains Γs and as+1, . . . , ar (as the support of β ontains

{e, as+1, . . . , ar} by onstrution). Hene, Γλ ontains the non-elementary subgroup Γr. It

follows that the entropy and the drift are ontinuous at λ, by Proposition 2.3 and Theo-

rem 2.9. We get h(λε) → h(λ) and ℓ(λε) → ℓ(λ). With Lemma 5.1, this ompletes the

proof. �

We dedue from the lemma that h(µε)/ℓ(µε) tends to h(λ)/ℓ(λ). Hene, the measure

µΣ = λ satis�es the onlusion of the theorem, at least in the non-symmetri ase. In the

symmetri ase, where we are looking for a symmetri measure µΣ, the measure λ = πΓs ∗β
is not an answer to the problem. However, λ′ = πΓs ∗ β ∗ πΓs is symmetri, and it learly
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has the same entropy and drift as λ (sine πΓs ∗ πΓs = πΓs). Hene, we an take µΣ = λ′
.

This ompletes the proof of Theorem 1.7 when the group Γs is �nite.

Example 5.4. Let Γ = Z/2 ∗ Z/4, with Σ = {a, b, b−1} (where a is the generator of Z/2
and b the generator of Z/4), with the word distane oming from Σ. [MM07, Setion 5.1℄

shows that the supremum over measures supported on Σ of h(µ)/ℓ(µ) is the growth v of the

group (note that Γ is virtually free), and that it is not realized by a measure supported on

Σ. This shows that, in Theorem 1.7, the fat that µΣ may need a support larger than Σ is

not an artefat of the proof.

In this example, any symmetri measure on Σ is of the form µε = (1−ε)δa+εβ where β is

uniform on {b, b−1}. The above proof shows that, when ε tends to 0, h(µε)/ℓ(µε) onverges
to h(λ)/ℓ(λ) where λ = πΓs ∗ β = 1

2 (δe + δa) ∗ 1
2(δb + δb−1) is the uniform measure on

{b, b−1, ab, ab−1}.

It remains to treat the ase where Γs is virtually yli in�nite. Suh a group surjets

onto Z or Z⋊Z/2 (the in�nite dihedral group), with �nite kernel. From the point of view of

the random walk, most things happen in the quotient. Hene, it would su�e to understand

these two groups (separating in the ase of Z the entered and non-entered ases). We will

rather give diret arguments whih do not use this redution and whih avoid separating

ases. Let t 6 s be the smallest index suh that {a1, · · · , at} generates an in�nite group.

Let η = η(ε) = µε(at), this parameter governs the equidistribution speed on Γs (or, at least,

on Γt, whih has �nite index in Γs sine these two groups are virtually yli in�nite). We

will �nd the asymptotis of the entropy and the drift in terms of η/ε (whih tends to in�nity

by de�nition of s). We start with the entropy (for whih an upper bound su�es). Note

that the random walk direted by αε does not live on Γs, but on a possibly bigger group

sine we have put in αε all the points that �x the set {g−0 , g+0 } (this will be important in

the ontrol of the drift below). Let Γ̃s be the group they generate, it is still virtually yli

(see, for instane, [GdlH90, Théorème 37 page 157℄), and it ontains Γs as a �nite index

subgroup.

Lemma 5.5. There exists a onstant C suh that h(λε) 6 C log(η/ε).

Proof. Let K be the group generated by {a1, . . . , at−1}. It is �nite by de�nition of t. Let Σ′

be the set of points among at, . . . , ap whih stabilize {g−0 , g+0 }. The group Γ̃s is generated

by K and Σ′
. Let us onsider the assoiated word pseudo-distane d′, where we deide that

elements in K have 0 length. This pseudo-distane is quasi-isometri to the usual distane,

and it satis�es d′(e, xk) = d′(e, x) for all x ∈ Γ̃s and all k ∈ K.

Let us �rst estimate the average distane to the origin for an element given by α̃ε. We

deompose αε as the average of a measure supported on {a1, . . . , at−1} ⊂ K, and of a

measure supported on Σ′
(the ontribution of the latter has a mass m(ε) bounded by (p−

t+ 1)η 6 Cη). The measure α∗n
ε an be obtained by piking at eah step one of these two

measures (aording to their respetive weight), and then jumping aording to a random

element for this measure. When we use the �rst measure, the d′-distane to the origin does

not hange by de�nition. Hene, the distane to the origin is bounded by the number of
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hoies of the seond measure. We obtain

Eα̃ε(d
′(e, g)) 6

∞
∑

n=0

(1− ε)nε

n
∑

i=0

(

n

i

)

m(ε)i(1−m(ε))n−i · Ci

= Cm(ε)
∞
∑

n=0

(1− ε)nε
n
∑

i=1

n

(

n− 1

i− 1

)

m(ε)i−1(1−m(ε))n−i

= Cm(ε)
∞
∑

n=0

(1− ε)nεn = Cm(ε)(1− ε)/ε 6 Cη/ε.

A measure supported on the integers with �rst moment A has entropy bounded by

C logA+C (see, for instane, [EK10, Lemma 2℄). The proof also applies to virtually yli

situations (the �nite thikening does not hange anything). Therefore, we get H(α̃ε) 6

C log(η/ε) + C.
Finally,

H(λε) = H(α̃ε ∗ βε) 6 H(α̃ε) +H(βε) 6 C log(η/ε) + C,

sine the support of βε is uniformly bounded. As η/ε → ∞, this gives H(λε) 6 C log(η/ε).
Finally, we estimate h(λε) = infn>0H(λ∗n

ε )/n 6 H(λε) to get the onlusion of the lemma.

�

For the drift, we need to be more preise sine we need a lower bound to onlude. We

will use a lemma giving lower bounds on the equidistribution speed in virtually yli in�nite

groups, using omparison tehniques.

Lemma 5.6. Let Λ be a virtually yli in�nite group. Let ΣΛ ⊂ Λ be a �nite subset

generating an in�nite subgroup of Λ. There exists a onstant C with the following property.

Let η > 0. Let µ be a probability measure on Λ with µ(e) > 1/2 and µ(σ) > η for any

σ ∈ ΣΛ. Then, for all n > 1,

sup
g∈Λ

µ∗n(g) 6 C(ηn)−1/2.

The interest of the lemma is that C does not depend on the measure µ, and that we obtain

an expliit ontrol on µ∗n
just in terms of a lower bound on the transition probabilities of

µ.

Proof. We use the omparison method. Let ρ be the uniform measure on e, ΣΛ and Σ−1
Λ .

The random walk it generates does not have to be transitive (sine ΣΛ does not neessarily

generate the whole group Λ), but Λ is partitioned into �nitely many lasses where it is

transitive (and isomorphi to the random walk on the group generated by ΣΛ). Moreover,

it is symmetri, and therefore reversible for the ounting measure m on Λ. The Dirihlet

form assoiated to ρ is by de�nition

Eρ(f, f) =
1

2

∑

x,y

|f(x)− f(y)|2ρ(x−1y),

for any f : Λ → C. As Λ has linear growth, the following Nash inequality holds (see, for

instane, [Woe00, Proposition 14.1℄).

‖f‖6L2 6 C‖f‖4L1Eρ(f, f),
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where all norms are de�ned with respet to the measure m on Λ. Let Pµ be the Markov

operator assoiated to µ. It satis�es

‖f‖2L2 − ‖Pµf‖2L2 = 〈f, f〉 − 〈Pµf, Pµf〉 = 〈(I − P ∗
µPµ)f, f〉.

The operator P ∗
µPµ is the Markov operator assoiated to the symmetri probability measure

ν = µ̌ ∗ µ, whih satis�es ν(σ) > η/2 for σ ∈ ΣΛ ∪ Σ−1
Λ and ν(e) > 1/4 (sine µ(e) > 1/2).

Therefore, ρ(g) 6 Cη−1ν(g) for all g. We dedue

‖f‖2L2 − ‖Pµf‖2L2 =
∑

f(x)(f(x)− f(y))ν(x−1y) =
1

2

∑

|f(x)− f(y)|2ν(x−1y)

>
η

2C

∑

|f(x)− f(y)|2ρ(x−1y) =
η

C
Eρ(f, f).

Combining this inequality with Nash inequality, we obtain

‖f‖6L2 6 Cη−1‖f‖4L1(‖f‖2L2 − ‖Pµf‖2L2).

The operator P ∗
µ satis�es the same inequality, for the same reason. Composing these in-

equalities, we obtain an estimate for the norm of Pn
µ from L1

to L∞
(this is [VSCC92,

Lemma VII.2.6℄), of the form

‖Pn
µ ‖L1→L∞ 6 (C ′η−1/n)1/2.

Applying this inequality to the funtion δe, we get the desired result. �

The previous lemma implies that, if C ′
is large enough, a neighborhood of size (ηn)1/2/C ′

of the identity has probability for µ∗n
at most 1/2. Hene, the average distane to the origin

is at least of the order of (ηn)1/2.
Now, we study the stationary measure for βε ∗ α̃ε on ∂Γ. We reall that g0 is a hyperboli

element in Γs, �xed one and for all.

Lemma 5.7. There exists a neighborhood U of {g−0 , g+0 } in ∂Γ suh that the stationary

measure νε of βε ∗ α̃ε satis�es νε(U) → 0.

Proof. Let us �rst show that, for any neighborhood U of {g−0 , g+0 }, then (α̃ε ∗ δz)(U c) tends
to 0, uniformly in z ∈ ∂Γ. This is not surprising sine a typial element for α̃ε is large in the

virtually yli group Γ̃s, and sends most points into U . To make this argument rigorous, we

will use Lemma 5.6. The de�nition (5.1) shows that it su�es to prove that (α∗n
ε ∗ δz)(U c)

is small for n > u/ε.

The subgroup generated by g0 has �nite index in Γ̃s. Hene, any element in Γ̃s an be

written as gk0γi, for γi in a �nite set. Thus, the measure α∗n
ε an be written as

∑

cn(k, i)δgk
0
γi
,

for some oe�ients cn(k, i). Lemma 5.6 (applied to Λ = Γ̃s with ΣΛ = {a1, . . . , at}) ensures
that supk,i cn(k, i) 6 C/(ηn)1/2. When n > u/ε, this quantity tends to 0 sine ε = o(η). We

have

(α∗n
ε ∗ δz)(U c) =

∑

k,i

cn(k, i)1(g
k
0γiz /∈ U).

As the element g0 is hyperboli, there exists C suh that, for any w ∈ ∂Γ,

|{k ∈ Z : gk0w /∈ U}| 6 C.
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The uniformity in w follows from the ompatness of (∂Γ \ {g−0 , g+0 })/〈g0〉. We obtain

(α∗n
ε ∗ δz)(U c) 6

(

sup
k,i

cn(k, i)
)

∑

i

|{k ∈ Z : gk0γiz /∈ U}| 6 C sup
k,i

cn(k, i) 6 C/(ηn)1/2.

This shows that (α∗n
ε ∗ δz)(U c) is small, as desired.

As α̃ε ∗ δz(U
c) tends to 0 uniformly in z, we dedue that (α̃ε ∗ νε)(U c) also tends to 0,

and therefore that (α̃ε ∗ νε)(U) tends to 1.
Let A = {g−0 , g+0 }. We laim that, for all g suh that gA∩A 6= ∅, then gA = A. Indeed, if

g(g−0 ) ∈ A for instane, then g−1g0g is a hyperboli element stabilizing g−0 . It also stabilizes
g+0 , by [GdlH90, Théorème 30 page 154℄, i.e., g0g(g

+
0 ) = g(g+0 ). Hene, g(g

+
0 ) is a �xed point

of g0, i.e., g(g
+
0 ) ∈ A.

By de�nition of βε, the �nitely many elements of its support do not �x A. They even

satisfy gA∩A = ∅ for all g in this support, by the previous argument. If U is small enough,

we get gU ∩ U = ∅, i.e., g(U) ⊂ U c
.

Finally,

νε(U
c) = (βε ∗ α̃ε ∗ νε)(U c) > (α̃ε ∗ νε)(U),

whih tends to 1 when ε tends to 0. �

Lemma 5.8. The drift ℓ(λε) satis�es ℓ(λε) > c · (η/ε)1/2.
Proof. Let ρε be a stationary measure for λε, on the Busemann boundary ∂BΓ. By Propo-

sition 2.2,

ℓ(λε) =

∫

cB(g, ξ) dρε(ξ) dλε(g),

where cB(g, ξ) = hξ(g
−1) is the Busemann oyle. As λε = α̃ε ∗ βε, this gives

ℓ(λε) =

∫

cB(Lb, ξ) dρε(ξ) dα̃ε(L) dβε(b).

With the oyle relation (2.2), this beomes

ℓ(λε) =

∫

cB(L, bξ) dρε(ξ) dα̃ε(L) dβε(b) +

∫

cB(b, ξ) dρε(ξ) dα̃ε(L) dβε(b).

The seond integral is bounded independently of ε sine the support of βε is �nite. In the

�rst integral, ξ′ = bξ is distributed aording to the measure ρ̃ε := βε∗ρε, whih is stationary

for βε∗α̃ε. Lemma 5.7 implies that its projetion (πB)∗ρ̃ε on the geometri boundary, whih

is again stationary for βε ∗ α̃ε, gives a small measure to a neighborhood U of {g−0 , g+0 }.
As the limit set of Γ̃s is {g−0 , g+0 }, there exists a onstant C suh that, for all ξ /∈ π−1

B U

and g ∈ Γ̃s, we have |hξ(g−1)− d(e, g)| 6 C. For ξ ∈ π−1
B U , we only use the trivial bound

hξ(g
−1) > −d(e, g), sine horofuntions are 1-Lipshitz and vanish at the origin. We get

ℓ(λε) >

∫

(L,ξ)∈Γ×π−1

B
Uc

d(e, L) dα̃ε(L) dρ̃ε(ξ)−
∫

(L,ξ)∈Γ×π−1

B
U
d(e, L) dα̃ε(L) dρ̃ε(ξ)−C

=

(
∫

d(e, L) dα̃ε(L)

)

(ρ̃ε(π
−1
B U c)− ρ̃ε(π

−1
B U))− C.
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For small enough ε, we have ρ̃ε(π
−1
B U) 6 1/4 (and therefore ρ̃ε(π

−1
B U c) > 3/4). Moreover,

Lemma 5.6 ensures that the average distane to the origin for the measure α̃ε is at least

c · (η/ε)1/2. Hene, the previous formula ompletes the proof. �

Combining Lemmas 5.5 and 5.8, we get

h(λε)/ℓ(λε) 6 C log(η/ε)/(η/ε)1/2 .

This tends to 0 sine η/ε tends to in�nity. We dedue from Lemma 5.1 that h(µε)/ℓ(µε)
tends to 0. This is a ontradition sine we were assuming that it onverges to the maximum

M , whih is positive.

This onludes the proof of Theorem 1.7. �

The study of the ase where Γs is virtually yli in�nite gives in partiular the following

result.

Theorem 5.9. Let (Γ, d) be a metri hyperboli group. Let Σ be a �nite subset of Γ whih

generates a non-elementary group. Let µi be a sequene of measures on Σ, with h(µi) >
0, onverging to a probability measure µ suh that Γµ is in�nite virtually yli. Then

h(µi)/ℓ(µi) → 0.

Note that the preise value of ℓ(µi) depends on the hoie of the distane, but if two

distanes are equivalent then the assoiated drifts vary within the same onstants. Hene,

the onvergene h(µi)/ℓ(µi) → 0 does not depend on the distane.

We reover results of Le Prine [LP07℄: In any metri hyperboli group, there exist

admissible probability measures with h/ℓ < v. The onstrution of Le Prine is rather

similar to the examples given by Theorem 5.9.

Example 5.10. We an use the above proof to also �nd an example where h(µε)/ℓ(µε) → 0
although µε tends to a measure µ for whih Γµ is �nite and nontrivial. Consider Γ =
Z/2× F2 = {0, 1} × 〈a, b〉, endowed with the probability measure µε given by

µε(0, e) = µε(1, e) = 1/2− ε− ε2, µε(0, a) = µε(0, a
−1) = ε, µε(0, b) = µε(0, b

−1) = ε2.

The measure µε onverges to µ = (δ(0,e)+δ(1,e))/2. With the above notations, Γµ = Z/2×{e}
but Γs = Z/2× 〈a〉 is virtually yli in�nite (so that h(µε)/ℓ(µε) → 0) and Γr = Γ.

6. Examples for non-symmetri measures

In this setion, we desribe the additional di�ulties that arise if one tries to prove

Theorem 1.3 for non-symmetri measures. The main problem is that the random walk lives

on the subsemigroup Γ+
µ , whih is not a subgroup any more. While many ases an be

handled with the tools we have desribed in this artile, one ase an not be treated in this

way: when the subsemigroup Γ+
µ has no nie geometri properties (it is not quasi-onvex, it

is not a subgroup), but Γµ = Γ.
Let us �rst show that the growth properties of suh a subsemigroup an be more om-

pliated than what happens for subgroups. If Λ is a subgroup of Γ, either |Bn ∩ Λ| ≍ env,
or |Bn ∩ Λ| = o(env) (the �rst ase happens if and only if Λ has �nite index in Γ, see the

disussion at the beginning of Paragraph 4.3). Unfortunately, the behavior of semigroups

an be more ompliated.
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Proposition 6.1. In F2, there exists a subsemigroup Λ+
suh that lim inf|Bn∩Λ+|/|Bn| = 0

and lim sup|Bn ∩ Λ+|/|Bn| > 0.

Proof. Let S
n
a,a denote the geodesi words in F2 = 〈a, b〉 of length n whih start and end

with a. Let nj be a sequene tending very quikly to in�nity. Let Λ+
be the subsemigroup

generated by

⋃

S
nj
a,a. Then |Bnj

∩ Λ+| > c|Bnj
|. We laim that

|Bnj−1 ∩ Λ+|/|Bnj−1| → 0.

Indeed, the subsemigroup Λ+
j−1 generated by

⋃

k<j S
nk
a,a has a growth rate whih is < env,

sine some subwords suh as bnj−1
are forbidden in this subsemigroup. Hene, if nj is large

enough with respet to nj−1, we have |Snj−1 ∩ Λ+| = |Snj−1 ∩ Λ+
j−1| = o(e(nj−1)v). �

In this example, most points in S
nj ∩Λ+

are introdued by S
nj
a,a. This shows that Λ+

is far

from being quasi-onvex. In partiular, tehniques based only on non-quasi-onvexity and

sub- or super-multipliativity will never show that |Bn ∩ Λ+| = o(|Bn|) for subsemigroups.

Now, we give an example of a well-behaved measure (apart from the fat that it is not

symmetri, not admissible and not �nitely supported) for whih h = ℓv. The onstrution

is done in free produts. The idea is to forbid simpli�ations, so that we have an expliit

ontrol on the random walk at time n. To enfore this behavior, we will work in a free

produt Γ1 ∗Γ2, and onsider a probability measure supported on elements of the form g1g2
with gi ∈ Γi \{e}. The next statement applies to some non virtually free hyperboli groups,

for instane the free produt of two surfae groups. It also applies to some non-hyperboli

groups, more preisely to all �nitely generated groups without torsion and with in�nitely

many ends, by Stallings' theorem. It would be of interest to extend it to all groups with

in�nitely many ends. For this, we would need to also handle amalgamated free produts

and HNN extensions.

Proposition 6.2. Let Γ1 and Γ2 be two nontrivial groups, generated respetively by �nite

symmetri sets S1 and S2. Let Γ = Γ1 ∗ Γ2 with the generating set S = S1 ∪ S2 and the

orresponding word distane. There exists on Γ a (nonsymmetri, nonadmissible) probability

measure µ, with an exponential moment and nonzero entropy, satisfying h(µ) = ℓ(µ)v.

Proof. For i = 1, 2, let Γ∗
i = Γi \ {e}. We laim that

(6.1)

∑

g1∈Γ∗

1
,g2∈Γ∗

2

e−v|g1g2| = 1,

where v is the growth rate of Γ.
Let Fi(z) be the growth series of Γi, i.e., Fi(z) =

∑

g∈Γi
z|g|. The spheres Sni ∈ Γi satisfy

S
n+m
i ⊂ S

n
i · Smi . Hene, the sequene log|Sni | is subadditive. This implies that log|Sni |/n

onverges to its in�mum vi, and moreover that |Sni | > envi . We dedue that the radius of

onvergene of Fi is e
−vi

, and moreover Fi(e
−vi) = +∞.

Let F (z) be the growth series of Γ. As in the proof of Proposition 4.8, it is given by

F (z) =
F1(z)F2(z)

1− (F1(z)− 1)(F2(z)− 1)
.
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Assume for instane v1 > v2. As F1(e
−v1) = +∞, the funtion (F1(z)− 1)(F2(z)− 1) takes

the value 1 when z inreases to e−v1
, at a point whih is preisely the radius of onvergene

e−v
of F . This shows that (F1(e

−v)−1)(F2(e
−v)−1) = 1 . This is preisely the equality (6.1).

We de�ne a probability measure µ on Γ as follows: for (g1, g2) ∈ Γ∗
1 × Γ∗

2, let

µ(g1g2) = e−v|g1g2|.

Sine there is only one way to generate the word g11g
1
2 · · · gn1 gn2 using µ, we have

µ∗n(g11g
1
2 · · · gn1 gn2 ) = e−v

∑
i|g

i
1
gi
2
|.

Denoting by Xn the position of the random walk at time n, it follows that − log µ∗n(Xn) =
v|Xn|. Dividing by n and letting n tend to in�nity, this gives h(µ) = ℓ(µ)v. �

If one is interested in measures with �nite support, one an only get the following approx-

imation result. It has the same �avor as Theorem 1.4, but it is both stronger sine it also

applies to some non-hyperboli groups, and weaker sine the measures it produes are not

admissible nor symmetri.

Proposition 6.3. Let Γ1 and Γ2 be two nontrivial groups, generated respetively by �nite

symmetri sets S1 and S2. Let Γ = Γ1 ∗ Γ2 with the generating set S = S1 ∪ S2 and the

orresponding word distane. Then

sup
{

h(µ)/ℓ(µ) : µ �nitely supported probability measure in Γ, ℓ(µ) > 0
}

= v.

Proof. Any element in Γ an be anonially deomposed as a word in elements of Γ1 and

Γ2. Let S
p
i,j be the set of elements of length p that start with an element in Γi and end with

an element in Γj . We have the deomposition

S
p = S

p
1,1 ∪ S

p
1,2 ∪ S

p
2,1 ∪ S

p
2,2.

One term in this deomposition has ardinality at least |Sp|/4. Hene, there exist i, j suh

that lim sup log|Spi,j|/p = v. Multiplying by �xed elements at the beginning and at the end

to go from Γ1 to Γi, and from Γj to Γ2, we get

(6.2) lim sup log|Sp1,2|/p = v.

Let µp be the uniform probability measure on S
p
1,2. By onstrution, there are no simpli-

�ations when one iterates µp. Hene, µ∗n
p is the uniform probability measure on (Sp1,2)

∗n
,

whose ardinality is |Sp1,2|n. We get H(µ∗n
p ) = n log|Sp1,2| and L(µ∗n

p ) = np. Therefore,

h(µp) = log|Sp1,2| and ℓ(µp) = p, giving

h(µp)/ℓ(µp) = log|Sp1,2|/p.
Together with (6.2), this proves the proposition. �
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