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Abstract

We consider the Artin groups of dihedral type I2(k) defined by the presentation Ak =
〈a, b | prod(a, b; k) = prod(b, a; k)〉 where prod(s, t; k) = ststs..., with k terms in the product
on the right-hand side. We prove that the spherical growth series and the geodesic growth
series of Ak with respect to the Artin generators {a, b, a−1, b−1} are rational. We provide
explicit formulas for the series.
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1 Introduction

The spherical and geodesic growth series S and G of a finitely-generated group, formally defined
in (4) and (5), are a way to capture the combinatorial structure of the group. As such, they
are attracting a lot of attention, see for instance [17] and the references therein. In many cases,
these series are known to be rational. This is usually proved as follows: for S by exhibiting a
geodesic cross-section which is regular, for G by showing that the set of all geodesics is regular.

Consider the braid group on three strands B3 = 〈a, b | aba = bab〉 and the set of Artin generators
S = {a, b, a−1, b−1}. The pair (B3, S) is well understood. When run over (B3, S), the GAP
package KBMAG provides a short-lex automatic structure, see [14, Example 6.1]. In particular,
there exists a regular geodesic cross-section, and, therefore, S is rational. The explicit rational
expression for S is given in [26, Theorem 5.3]. The regularity of the set of all geodesics is proved
in Sabalka [26], and an explicit formula for G is derived. The proof is based on a careful study
of the structure of the Cayley graph.

The extension to other braid groups is an intriguing open problem, mentioned for instance
in [19] or [10]. That is, consider the braid group on n > 4 strands Bn = 〈 a1, . . . , an−1 |
∀i, aiai+1ai = ai+1aiai+1, ∀i, j, |j − 1| > 1, aiaj = ajai 〉 and the Artin generators S =
{a1, . . . , an−1, a

−1
1 , . . . , a−1

n−1}. Is the set of all geodesics of (Bn, S) regular? Does there exist a
geodesic cross-section which is regular?

The same two questions can be asked for any pair formed by an Artin group of finite Coxeter
type and its Artin generators. Among these groups, there are two natural families generalizing
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B3: the braid groups and the Artin groups of dihedral type I2(n). In this paper, we answer the
above two questions positively for Artin groups of dihedral type.

Set prod(u, v; k) = uvu · · · , with k letters on the right-hand side. For n > 3, consider the Artin
group An of dihedral type I2(n) and the set of Artin generators S defined by:

An = 〈 a, b | prod(a, b;n) = prod(b, a;n) 〉, S = {a, b, a−1, b−1} . (1)

Observe that A3 = B3. We prove that the pair (An, S) enjoys the same properties as the
pair (B3, S). We exhibit a finite automaton recognizing the set of all geodesics, and a finite
automaton recognizing a specific geodesic cross-section. The explicit formulas for G and S are
given in Theorem 3.1. When specializing to n = 3, we recover the above mentionned results
with shorter proofs.

The Artin generators of An or Bn are natural in several respect. First, they are minimal for
inclusion. Second, they correspond to natural generators in the associated Coxeter group. Third,
in Bn, they have a nice interpretation in terms of braids. However, they are more complicated
to deal with than other a priori less natural sets of generators. More specifically, let T be the
set of Garside generators associated with the Garside normal form [15, 13, 8] (several variants
are possible for T ). Typically, for An, one may consider

T = {a, b, ab, ba, · · · ,prod(a, b;n− 1),prod(b, a;n− 1),prod(a, b;n) = prod(b, a;n)}± . (2)

Then the growth series with respect to T are rational. Most of the results hold not only for
An or Bn but more generally for Artin groups of finite Coxeter type. This approach has been
pursued by Charney and others. For precise statements, see [5, 8, 9, 10].

The generators in (2) have different lengths with respect to S. Hence, geodesics with respect
to S and T may be very different. And knowing the growth series with respect to T does not
help in getting the growth series with respect to S. Our study also starts with the Garside
normal form. But then we need an additional ingredient which is a procedure to go from a
Garside geodesic to an Artin geodesic. Such a procedure was proposed by Berger [2] for B3

and we extend it to An in [22]. Here we use it to prove a simple characterization of geodesics
(Proposition 4.3). Eventually the growth series for S that we obtain in Theorem 3.1 have a more
complicated structure than their counterpart for T derived in [9, 10] and recalled in (19)-(20).

In the monoid case, the situation is simpler. Indeed, dealing with Garside or Artin generators
is virtually the same for the following reason. View the left-hand side of (1) as a monoid
presentation. This defines the positive Artin monoid A+

n . The positive braid monoid B+
n is

defined similarly. The relations defining A+
n or B+

n are equal-length relations with respect to
the Artin generators S+ (for A+

n , S+ = {a, b}). It follows that all the words over S+ are
geodesic. Now consider the set of Garside normal forms. For the same reason, it provides a
geodesic cross-section not only over the Garside generators T + but also over the Artin generators
S+. The approach extends to all Artin monoids of finite Coxeter type for which the spherical
growth series are therefore computable. Explicit computations have been carried out in [6, 29].

The group An admits the following so-called dual presentation: Ân = 〈 σ1, . . . , σn | σ1σ2 =
σ2σ3 = · · · = σnσ1 〉. Let Ŝ = {σ1, . . . , σn}± be the corresponding set of dual generators.
One may associate with this presentation a dual Garside-type normal form. And this does not
require a change of generators, in other words Ŝ plays the role of both S and T . Consequently,
the generating series of (Ân, Ŝ) can be computed using an approach similar to the one used for
(An, T ). For instance, the spherical growth series of Â3 is computed in [28, Theorem 9], and
the geodesic growth series of Ân is given in [10, Example 4.3].
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Now let us consider the braid groups Bn, n > 4. They also admit a dual presentation B̂n and
dual generators Ŝ, introduced by Birman, Ko, and Lee [4].

Now, working with the Garside-type normal form of B̂n requires a switch to a new set of
generators T̂ 6= Ŝ. And the elements of T̂ have different lengths with respect to Ŝ. Consequently,
the situation is as follows. On the one hand, computing the generating series of (B̂n, T̂ ), à la
Charney, is feasible (see [10, Corollary 4.2]). On the other hand, computing the generating
series of (B̂n, Ŝ) is presumably as difficult as computing the generating series of (Bn, S). In
particular, we can state the following dual open problem. Is the set of all geodesics of (B̂n, Ŝ)
regular? Does there exist a geodesic cross-section which is regular?

The same two questions can again be asked for any Artin group of finite Coxeter type. Indeed,
a dual structure may be defined for all such groups. This is linked to Garside monoids and is a
subject of active research, see for instance [3, 4, 11, 25].

2 Preliminaries

2.1 Growth series

Given a finite set Σ, the free monoid it generates is denoted by Σ∗. The length (number of
letters) of a word w is denoted by |w|Σ. We denote by Rat(Σ∗), the set of regular languages
of Σ∗, that is the set of languages associated with rational expressions of Σ∗, or equivalently
(Kleene Theorem) the set of languages recognized by a finite automaton. The counting series(∑

u∈L x|u|Σ
)

associated with a regular language L is a rational series of
�
[[x]].

Let (G, ∗) be a finitely generated group. Let Σ ⊂ G be a finite set of generators of G with
1G 6∈ Σ and s ∈ Σ =⇒ s−1 ∈ Σ. Denote by π : Σ∗ → G the monoid homomorphism which
associates to a word a1 · · · ak the group element a1 ∗ · · · ∗ ak. A word w ∈ π−1(g) is called a
representative of g. The length with respect to Σ of a group element g is:

|g|Σ = min{k | g = s1 ∗ · · · ∗ sk, si ∈ Σ} . (3)

A representative w of g is a geodesic (word) if |w|Σ = |g|Σ.

A language L of Σ∗ is a cross-section of G (over the alphabet Σ) if the restriction of π to L
defines a bijection, that is if every element of G has a unique representative in L. A word of L
is then called a normal form word.

The spherical growth series of G with respect to Σ is the formal series S(G,Σ) ∈ �
[[x]] defined

by:

S(G,Σ) =
∑

g∈G

x|g|Σ =
∑

n∈ �
#

{
g ∈ G | |g|Σ = n

}
xn . (4)

The geodesic growth series of G with respect to Σ is the series G(G,Σ) ∈ �
[[x]] defined by:

G(G,Σ) =
∑

g∈G

#
{
u ∈ π−1(g) | |u|Σ = |g|Σ

}
x|g|Σ =

∑

n∈ �
#

{
w ∈ Σ∗ | |w|Σ = |π(w)|Σ = n

}
xn .

(5)

If the set of all the geodesics is regular, the pair (G,Σ) is said to be strongly geodesic regular, or
to form a Cannon pair [21]. It implies that G is rational. If there exists a geodesic cross-section,
the pair is unique geodesic regular and it implies that S is rational.

The two notions of strong and unique geodesic regularity depend on the pair group-generators
and not on the group alone, see for instance [13, Example 4.4.2] and [27]. On the other hand, a
word-hyperbolic group with any finite set of generators is strongly and unique geodesic regular.
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More precisely, the following diagram of implications holds (for definitions and background, see
[18, 16] on word-hyperbolic groups and [13] on automatic groups):

word-hyperbolic
KS

��
strongly geodesic automatic

��

+3 strongly geodesic regular +3 G rational

unique geodesic automatic +3 unique geodesic regular +3 S rational

The implication [strongly geodesic automatic] =⇒ [unique geodesic automatic] is proved in
[13, Corollary 2.5.2]. The implication [word-hyperbolic] =⇒ [strongly geodesic automatic]
is essentially due to Cannon [7], and the converse is due to Papasoglu [24]. All the other
implications are immediate consequences of the definitions.

Below we consider the family (Ak)k>3 of Artin groups of dihedral type, together with the Artin
generators S. The groups Ak are not word-hyperbolic. We prove that (Ak, S) is strongly
geodesic regular and unique geodesic regular. Very roughly, the spirit of the proof is as follows.
First, the quotient Ak/Z, where Z is the center of Ak, is word-hyperbolic. So we can deal with
(Ak/Z, S). Second, there is a way to go from the geodesics in Ak/Z to the geodesics in Ak.

2.2 Artin groups of dihedral type

For k > 3, we denote by Ak the Artin group of dihedral type I2(k). This group is defined by the
(group) presentation:

Ak = 〈 a, b | prod(a, b ; k) = prod(b, a ; k) 〉 , (6)

where prod(s, t; k) = ststs..., with k terms in the product on the right-hand side. Observe that
A3 = B3, the braid group on three strands. The Coxeter group of Ak is: Wk = 〈 a, b | a2 = b2 =
(ab)k = 1 〉. The group Wk is the dihedral group of order 2k, hence the name of Ak. Set

∆ = prod(a, b ; k) = prod(b, a ; k) .

The center Z of Ak is generated by ∆2 if k is odd, and by ∆ if k is even, see for instance [23].

Let A+
k be the monoid defined by (6) interpreted as a monoid presentation. The Artin generators

of Ak and A+
k are respectively:

S = {a, b, a−1, b−1}, S+ = {a, b} . (7)

Denote by π : S∗ → Ak the canonical morphism.

Lemma 2.1. The monoid A+
k injects into the group Ak.

See [12], or [23, Cor. 3.2] for a proof. It is therefore licit to view A+
k as a subset of Ak. Besides,

observe that all the relations defining A+
k are equal-length relations (with respect to S+). A

consequence of Lemma 2.1 is then:

∀u ∈ (S+)∗, |u|S+ = |π(u)|S . (8)

That is, all the words containing only the letters a and b are geodesic words of Ak. Similarly,
all the words containing only a−1 and b−1 are geodesic.
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A central ingredient in what follows is a normal form due to Garside [15] (see also [12, 13, 8]). It
is defined for all Artin groups of finite Coxeter type. For dihedral Artin groups, the statement
is the following. Set M+ = {a, b, ab, ba, . . . ,prod(a, b ; k − 1),prod(b, a ; k − 1)}. For u ∈ M +,
let First(u) ∈ S+ be the first letter of u, and let Last(u) ∈ S+ be the last letter of u.

Proposition 2.2. For every g ∈ Ak, one can find δ ∈ � and g1, . . . , gm ∈M+ such that

g = g1 · . . . · gm ·∆δ . (9)

If m is minimal, such a decomposition is unique. We call the decomposition with m minimal
the Garside normal form of g. Moreover, g1 · . . . · gm ·∆δ, gi ∈M+, is the Garside normal form
of an element in Ak if and only if:

∀i ∈ {1, ...,m − 1} ,Last (gi) = First (gi+1) . (10)

Formally, a Garside normal form is an element of the monoid (M +∪{∆,∆−1})∗. The condition
in (10) implies that the set of Garside normal forms is a regular language of (M +∪{∆,∆−1})∗.
The Garside normal form g1 · . . . · gm · ∆δ of g, viewed as an element of S∗, is a geodesic
representative of g with respect to S if and only if δ > 0. For the if direction, use (8). For the
only if direction, observe that, for all i ∈ {1, . . . , k − 1}:

π(prod(a, b ; i)∆−1) = π(prod(b−1, a−1; k − i))

|prod(a, b ; i)∆−1|S = k + i, |prod(b−1, a−1; k − i)|S = k − i . (11)

Let us introduce two more notations. Following [8, 9], we write

g = ∆g∆−1 = ∆−1g∆ (12)

(since ∆2 is central) for the conjugate of g by ∆. For instance, if k is odd, one has a = b and
b = a. If k is even, ∆ is central so a = a and b = b. Next, for g ∈M +, we set

g∗ = ∆g−1 . (13)

Note that g∗ ∈ M+, and that g∗ = g∗ = g−1∆. Keeping in mind that g∗ · g = ∆, one
may think of g∗ as the left-complement of g to get ∆. For instance, in A3 = B3, we have
a∗ = ab, b∗ = ba, (ab)∗ = b, and (ba)∗ = a.

Consider the following algorithm.

Algorithm 1 : Suitable-spread

Input: v1 · · · vn∆δ, vi ∈M+, δ ∈ � , a Garside normal form
I ← {1, . . . , n};
while (δ < 0) ∧ (I 6= ∅) do

Pick i ∈ I such that |vi|S+ = maxj∈I{|vj |S+};
for all j ∈ {i + 1, . . . , n} do

vj ← vj;
end for

vi ← (v−1
i )∗; δ ← δ + 1;

I ← I \ {i};
end while

Output: v1 · · · vn∆δ.
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The input and the output of the Suitable-spread procedure are clearly two representatives of
the same group element. Observe that, according to the choices made in the “Pick i” line, there
may be several different outputs for a given input. Observe also that any output v1 · · · vn∆δ

satisfies:

[δ > 0] =⇒ [∀i, vi ∈M+], [δ < 0] =⇒ [∀i, vi ∈M−], ∀i,Last (vi) = First (vi+1) ,

where the definition of First(·) and Last(·) on M− is given in (21). We have the following result.

Proposition 2.3. The Suitable-spread procedure applied to the Garside normal form of an
element g ∈ Ak leads to a representative of g which is geodesic with respect to S.

For A3 = B3, this is proved in [2]. We now prove the result for Ak with a different type of
argument.

Proof. Consider a group element g with Garside normal form v = v1 · · · vm∆δ, vi ∈M+, δ ∈ � .

Assume first that δ ≥ 0. The output from the Suitable-spread procedure is the input word
itself. Now, according to Lemma 2.1 and Eq. 8, the word v is indeed of minimal length with
respect to S.

Next, assume that δ ≤ −m. In the Suitable-spread procedure, all the vi’s are going to be
picked and transformed. Therefore, the output is

w = (ṽ1∆
−1) · · · (ṽm∆−1) ·∆δ+m

where ṽj = vj if j is odd and ṽj = vj if j is even. Observe that w, viewed as an element of S∗,
contains only the letters {a−1, b−1}. Using the observation following (8), the word w is therefore
geodesic with respect to S.

Finally, suppose that −m < δ < 0. Among all the ways of spreading the inverses of ∆ among
v1, . . . , vm, and doing the transformations [vi∆

−1 → (v∗i )
−1], it is clear that the way that leads

to the smallest length consists in choosing |δ| elements vi of maximal possible length. What
remains to be proved is that this choice leads to a word whose length is actually |g|S .

Let w be a word of minimal length representing g. There is a unique decomposition of w
as w = w1 · w2 · · ·w`, where the words wi are non-empty and built alternatively from the
alphabets {a, b} and {a−1, b−1}. We carry out the proof for w = w1 · w2 with w1 ∈ {a−1, b−1}∗
and w2 ∈ {a, b}∗. The proof for the general case follows easily. Let x1 = u1 · · · um1

·∆δ1 be the
Garside normal form of (the element represented by) w1. Let x2 = v1 · · · vm2

·∆δ2 be the Garside
normal form of w2. We first observe that we must have δ1 = −m1 and δ2 = 0. Otherwise, we
would contradict the minimality of w. (For a detailed argument, see the proof of Proposition
4.3, case I + J > k.) Assume for simplicity that m1 is even (the odd case is treated similarly).
With this choice of parity, we have

w1 = (u1∆
−1) · · · (um1

∆−1), w2 = v1 · · · vm2
.

We claim that the Garside normal form of g is z = u1 · · · um1
· v1 · · · vm2

·∆−m1 . According to
the local characterization in (10), it is enough to prove that Last(um1

) = First(v1). Assume it
is not the case, with for instance Last(um1

) = b and First(v1) = a. Then the last letter in w1,
which is the last letter in (um1

∆−1), is actually a−1. We conclude that the last letter of w1 is
the inverse of the first letter of w2, which contradicts the fact that w is minimal.

Now, starting from z, there is obviously a way of spreading the ∆−1 to get w. This completes
the proof.
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3 Statement of the results

For n ∈ �
, let Xn ∈

�
[x] be defined by: X0 = 0 and, ∀n > 1,

Xn = x + x2 + · · ·+ xn . (14)

Theorem 3.1. Consider the Artin group Ak of dihedral type I2(k) with the Artin generators S.
The set of all the geodesics is regular, and there exists a geodesic cross-section which is regular.
The geodesic and spherical growth series are:

G(Ak, S) =
∑

I,J>1
I+J=k

1 + XI + XJ

1−XI −XJ
−

∑

I,J>1
I+J=k−1

1 + XI + XJ

1−XI −XJ
+2

1

1− 2x
− 2

1 + Xk−1

1−Xk−1
(15)

S(Ak, S) =
∑

I,J>1
I+J=k−1

1 + XI + XJ

1−XI −XJ
−

∑

I,J>1
I+J=k−2

1 + XI + XJ

1−XI −XJ
+ 2

1 + Xk−1

1−Xk−1

1

1− xk

− 2
1 + Xk−2

1−Xk−2
+

∑

I,J>1
I+J=k

2xk

(1−XI−1 −XJ−1)(1−XI−1 −XJ )(1−XI −XJ−1)
(16)

We also give an explicit description of: (i) an automaton recognizing the set of all the geodesics;
(ii) an automaton recognizing a geodesic cross-section. The expressions in (15) and (16) are
byproducts of this description.

For A3 and A4, we have:

G(A3, S) = 1 +
4x

(1− x− x2)(1− 2x− x2)

S(A3, S) = 1 +
2x(2− 2x− x2)

(1− x)(1 − 2x)(1− x− x2)

G(A4, S) = 1 +
4x(1 − x)(1 + x)(1− 6x + 10x2 − x3 − 3x4 − 5x5 − 2x6 − x7)

(1− 2x)(1 − 2x− x2)(1− 2x− 2x2)(1− x− x2 − x3)(1− 2x− x2 − x3)

S(A4, S) = 1 +
4x(1 − x− x2)(1 − 2x− x3)

(1− x)(1 − x− x2 − x3)(1− 2x− x2)2
.

For instance, G(A4, S) = 1+4x+12x2 +36x3 +108x4 +308x5 +868x6 +2420x7 +O(x8) and
S(A4, S) = 1 + 4 x + 12 x2 + 36 x3 + 100 x4 + 268 x5 + 708 x6 + 1848 x7 + O(x8). The formulas
for A3 appear in [26], see the discussion in the Introduction.

Formula (16) enables to compute the growth rate of the volume of the spheres in the Cayley
graph of (Ak, S). One has:

lim
n→∞

1

n
log #{g ∈ Ak

∣∣ |g|S = n} = log(ρk) , (17)

where ρ3 = 2, and where, for k ≥ 4, ρk is the inverse of the minimal module of a root of
1− 2x− x2 − · · · − xk−2. For instance, ρ4 =

√
2 + 1.

For comparison, consider

T = {a, b, ab, ba, · · · ,prod(a, b; k − 1),prod(b, a; k − 1),∆}± . (18)
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We have:

G(Ak, T ) = 1 +
2x

[
(k − 1)(2k2 − 3k + 4)x2 − (2k − 1)2x + 2k − 1

]

(1− x)(1− (k − 1)x)(1 − kx)(1− 2(k − 1)x)
(19)

S(Ak, T ) = 1 +
2x

[
1 + (k − 1)(2 − 2x− (k − 1)x)

]

(1− x)(1− (k − 1)x)2
. (20)

The formula for S(Ak, T ) appears in [9, Example 4.5] and the one for G(Ak, T ) is given in [10,
Example 4.4]. The combinatorial structure of (Ak, S) is more complex than the one of (Ak, T ).
This is reflected in the respective number of poles of the series in (15)-(16) and (19)-(20).

4 Geodesic words

The goal is to provide an algorithm to decide if a word is geodesic in Ak with respect to S.

We first introduce a couple of notations. Denote by � the group freely generated by S+. Any
element u ∈ � is uniquely represented by a reduced word of S∗, that is a word u1 · ... · ul ∈ S∗

such that ui 6= u−1
i+1 for all i ∈ {1, ..., l − 1}. Below, we identify an element of � with the

corresponding reduced word of S∗. We still denote by π : � → Ak the canonical homomorphism
and we still say that u is a representative of g if π(u) = g.

For all n > 1, set Σn = Σ+
n t Σ−

n with

Σ+
n = {prod(a, b ; j) ,prod(b, a ; j) ; 1 6 j 6 n}

Σ−
n = {prod(a−1, b−1 ; j) ,prod(b−1, a−1 ; j) ; 1 6 j 6 n} .

Set also
M = Σk−1, M+ = Σ+

k−1, M− = Σ−
k−1 .

At last, set

T = Σk−1 ∪ {∆,∆−1}, T+ = Σ+
k−1 ∪ {∆}, T− = Σ−

k−1 ∪ {∆−1} .

Observe that T is the set of generators in (18). For instance, for k = 3, one has:

Σ+
3 = {a, b, ab, ba, aba, bab}, M+ = {a, b, ab, ba}, T + = {a, b, ab, ba,∆} .

Recall that, for u ∈M+, we defined First(u) ∈ S+ as being the first letter of u, and Last(u) ∈ S+

as being the last letter of u. We now define First(.) and Last(.) for elements of M − in the
following way (the reason for this weird definition will appear soon):

First(a−1u) = b , First(b−1u) = a , Last(ua−1) = b , and Last(ub−1) = a . (21)

Consider the algorithm Bracketting-with-respect-to-T . For u ∈ � , let Brack(u) denote
the output of the algorithm when applied to the input u. Consider u ∈ � with Brack(u) = v =
v1 · ... · v`. Define

Pos(u) = max {n | ∃i, vi = prod(a, b ;n) or prod(b, a ;n)}
Neg(u) = max {n | ∃i, vi = prod(a−1, b−1 ;n) or prod(b−1, a−1 ;n)} . (22)

For convenience reasons, we also set Pos(v) = Pos(u) and Neg(v) = Neg(u). Note that Pos(·)
and Neg(·) are less than or equal to k.
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Algorithm 2 : Bracketting-with-respect-to-T

Input: u ∈ �
v ← 1T ∗ , the empty word;
while u 6= 1 � do

u1 ← the longest prefix of u that belongs to Σk;
v ← v · π(u1) in T ∗;
u← u−1

1 u in � ;
end while

Output: v ∈ T ∗.

Lemma 4.1. Consider u ∈ � with Brack(u) = v1 · ... · v`. If Pos(u) < k and Neg(u) < k then
∀i = 1, . . . , `− 1,

Last(vi) = First(vi+1) . (23)

The proof of the Lemma follows directly from the structure of the algorithm. When Pos(u) = k
or Neg(u) = k then (23) does not make too much sense since we have not defined First(·) and
Last(·) for ∆ or ∆−1.

When Pos(u) < k and Neg(u) < k, one easily obtains the Garside normal form starting from
Brack(u).

Algorithm 3 : Garside

Input: v1 · · · v` = Brack(u) for u ∈ � ,Pos(u) < k,Neg(u) < k
δ ← 0;
for i = 1 to ` do

if vi ∈M− then[
vi ← (v−1

i )∗, vi+1 ← vi+1, . . . , v` ← v`

]
; δ ← δ − 1;

end if

end for

Output: v1 · · · v`∆
δ.

Consider the Garside algorithm. Denote by Gars(v) the output of the procedure when applied
to the input v = Brack(u).

Lemma 4.2. Consider u ∈ � with Pos(u) < k and Neg(u) < k. Then u, Brack(u), and
Gars ◦Brack(u) are representatives of the same group element g. Moreover, Gars ◦Brack(u) is
the Garside normal form of g.

Proof. The argument is in three steps: (a) the input word v satisfies (23); (b) the transforma-
tions performed in the Garside algorithm preserve the property Last(ui) = First(ui+1); (c) in
the output word, all the elements vi belong to M+. Hence Gars(v) satisfies (10) and is therefore
in Garside normal form.

When Pos(u) = k or Neg(u) = k, then it becomes more subtle to obtain the Garside normal
form, and the above algorithm cannot be directly adapted. Consider for instance a group
element g ∈ A3 having a representative u = bbbaba−1b ∈ � . We have Brack(u) = b · b ·∆ · a−1 · b
and Pos(u) = 3,Neg(u) = 1. Pushing the ∆ to the right, we get bbb−1a∆. After simplification,
we obtain the Garside normal form of g which is simply (ba) ·∆.

We do not give the algorithm to get the Garside normal form starting from any representative
u ∈ � since it will not be needed in the sequel.
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Next proposition characterizes the geodesic representatives of the elements of Ak with respect
to S.

Proposition 4.3. Let g ∈ Ak, let u ∈ � be a representative of g.

• If Pos(u) + Neg(u) < k, then u is the unique geodesic representative of g.

• If Pos(u) + Neg(u) = k, then u is geodesic, but g has several geodesic representatives.

• If Pos(u) + Neg(u) > k, then u is not geodesic.

In the case k = 3, Proposition 4.3 appears in [26, Theorem 1.1] (without the distinction between
uniqueness and non-uniqueness of geodesics). Our method of proof differs perceptibly from the
one in [26].

Before proving Proposition 4.3, we explain how to choose a particular geodesic representative
of an element when the second case of Proposition 4.3 occurs.

Set I = Pos(u) and J = Neg(u). If (I, J) = (k, 0), a particular geodesic representative can be
choosen using Proposition 2.2. The case (I, J) = (0, k) is treated similarly. When I > 1, J > 1,
we have:

Proposition 4.4. Let g ∈ Ak and let u ∈ � be a representative of g. Set I = Pos(u) and
J = Neg(u). Assume that I > 1, J > 1, and I + J = k. Then there exists a unique geodesic
representative û of g with the following property:

∃v(1), v(2), v(3) ∈ � ,

∃v− ∈ {prod(a−1, b−1 ; J), prod(b−1, a−1 ; J)}, ∃v+ ∈ {prod(a, b ; I), prod(b, a ; I)}

such that
û = v(1) · v− · v(2) · v+ · v(3) , (24)

{
Pos(v(1)) 6 I − 1

Neg(v(1)) 6 J − 1
,

{
Pos(v(2)) 6 I − 1

Neg(v(2)) 6 J
, and

{
Pos(v(3)) 6 I

Neg(v(3)) 6 J − 1
. (25)

Proof of Proposition 4.3. Let g ∈ Ak, let u ∈ � be a representative of g and v = Brack(u). Set
I = Pos(u), J = Neg(u). Write v = v1 · ... · vl with vi ∈ T .

• The case I + J > k.

Since I 6 k and J 6 k (cf. the definition of I and J), this implies that both I and J are
positive. Pick vi ∈ T+ such that |vi|S = I and vj ∈ T− such that |vj|S = J . Assume for
instance that i < j. We have:

vj = ∆−1(v−1
j )∗, |(v−1

j )∗|S = k − |vj |S = k − J ,

with the convention that (v−1
j )∗ is the empty word when vj = ∆−1. Now move ∆−1 along v

towards vi and do the transformation [vi∆
−1 → (v−1

i )∗]. This produces a new representative of
g denoted by w. We now prove that |w|S < |v|S . Transforming v into w changes the length of
only two elements: vi and vj. More precisely, these two elements change respectively to (v−1

i )∗

and (v−1
j )∗ whose respective lengths are: k− |v−1

i |S = k− |vi|S = k− I and k− J . Therefore,
one has

|(v−1
i )∗|S + |(v−1

j )∗|S = k − I + k − J < I + J = |vi|S + |vj |S .

We conclude that u is not geodesic.

10



• The case I + J < k.

In particular, we have I < k and J < k. According to Lemma 4.1, we have, for all i ∈
{1, ..., l − 1},

Last(vi) = First(vi+1) . (26)

Suppose first that J = 0. Then all the vi’s belong to M+, which implies that g belongs to
the monoid A+

k and that u is geodesic, see (8). It also implies, compare (26) and (10), that
v1 · ... ·vl is actually the Garside normal form of g, which leads to the uniqueness of the geodesic
representative of g.

Next, suppose that I = 0. This case reduces to the previous one by considering v−1 and
observing that S = S−1.

Last, suppose that I > 1 and J > 1. Denote by Gars(v) = v ′
1 · ... · v′l · ∆δ the output of the

Garside algorithm, and recall that this word is precisely the Garside normal form of g.

By looking at the Garside algorithm, one observes that |δ| is exactly the number of indices
i ∈ {1, ..., l} such that vi ∈M−.

Now, starting from the Garside normal form v ′
1 · ... · v′l ·∆δ, we execute the Suitable-spread

procedure defined in Section 2.2.

This procedure is exactly the inverse of what we have done just before, and precisely leads to
v that we started from. The reason is the following: if vi ∈M−, then we have:

|v′i|S = |(v−1
i )∗|S = k − |vi|S > k − J > I .

On the other hand, if vi ∈ M+, then |v′i|S = |vi|S 6 I. We obtain that there are exactly |δ|
indices i ∈ {1, ..., l} such that |v′

i|S > I. So these indices are precisely the ones choosen in the
“Pick i” line of the Suitable-spread algorithm. We conclude that the word u is geodesic.

Let us now prove the uniqueness. Let ũ ∈ � be another geodesic representative of g. Set
ṽ = Brack(ũ), Ĩ = Pos(ũ), J̃ = Neg(ũ). Since neither g nor g−1 belong to A+

k (recall that

I > 1 and J > 1), we have Ĩ > 1 and J̃ > 1. Also since ũ is geodesic, we have Ĩ + J̃ 6 k (first
part of the proof).

In particular, Ĩ < k and J̃ < k, so we can apply the same argument as above. The Garside

procedure applied to the input ṽ followed by the Suitable-spread procedure leads back to ṽ.
Since Gars(v) = Gars(ṽ) (uniqueness of the Garside normal form), we conclude that ṽ = v and
ũ = u.

• The case I + J = k.

Suppose first that J = 0. Then all the vi’s belong to T + with some of them equal to ∆. Again,
according to (8), the word u is geodesic. The non-uniqueness is directly deduced from the fact
that ∆ = prod(a, b ; k) = prod(b, a ; k). The case I = 0 again reduces to the latter one.

Now, suppose that I > 1 and J > 1. Since I + J = k, we have I < k and J < k, therefore we
can apply the Garside algorithm. Set Gars(v) = v ′

1 · ... ·v′l ·∆δ, where |δ| = Card{i | v′i ∈M−}.
We introduce the following sets of indices:

A = {i | vi ∈M+, |vi|S = I} = {i | v′i ∈M+, |v′i|S = I}
B = {i | vi ∈M−, |vi|S = J} = {i | v′i ∈M+, |v′i|S = I}
C = {i | vi ∈M−, |vi|S < J} = {i | v′i ∈M+, |v′i|S > I} .

11



Observe that A and B are both non-empty. Apply now the Suitable-spread algorithm to the
Garside normal form v′1 · ... · v′l ·∆δ of g. If one chooses the set B ∪C in the “Pick i” line of the
algorithm (that is, if I = {1, . . . , l} \ (B ∪ C) at the end of the while loop), then the output
is precisely v. Therefore v is geodesic according to Proposition 2.3. If one replaces some of
the indices from B by indices from A in the “Pick i” line, then the output is another geodesic
representative of g.

Proof of Proposition 4.4. Let g ∈ Ak, let u ∈ � be a representative of g and v = Brack(u). Set
I = Pos(u), J = Neg(u), and assume that I > 1, J > 1, and I +J = k. Write v = v1 · ... ·vl with
vi ∈M . Run the Garside procedure on the input v, and denote the output by v ′

1 · ... · v′l ·∆δ,
with |δ| = Card{i | v′i ∈M−}.
In order to prove the existence and the uniqueness stated in Proposition 4.4, the central point
is the following: the requested geodesic representative û of g satisfying (24) and (25) is exactly
the output of the Suitable-spread procedure applied to v ′

1 · ... · v′l ·∆δ if, in the “Pick i” line
of the algorithm, among all the elements v ′

i of maximal length, one chooses the |δ| smallest
possible indices. We call this the left-greedy choice.

We now give some details.

• Existence.

Denote by w = w1 · ... ·wl the output of the Suitable-spread algorithm when the left-greedy
choice is performed. Recall that S+ = {a, b} and set S− = {a−1, b−1}.
We denote by α the index defined by

α = 1 + max{i | Pos(w1 · ... · wi) ≤ I − 1, Neg(w1 · ... · wi) ≤ J − 1 } ,

and α = 1 if the set of indices i is empty. We set v(1) = w1 · ... · wα−1 (v(1) may be the empty
word).

We assert that wα ∈ M− and |wα|S− = J . Let us prove this point. Suppose that wα ∈ M+

and |wα|S+ = I. Then, there exists β > α such that wβ ∈M− and |wβ |S− = J . Write wβ =
∆−1(w−1

β )∗, move ∆−1 to the left towards wα, and do the transformation [wα∆−1 → (w−1
α )∗].

This exhibits a contradiction with the fact that the Suitable-spread procedure was run in
the left-greedy way: the index α should have been picked instead of the index β.

Set v− = wα. Denote by β the index defined by

β = 1 + max{i > α + 1 | Pos(wα+1 · ... · wi) ≤ I − 1, Neg(wα+1 · ... · wi) ≤ J } ,

and β = 1 if the set of indices i is empty. Set v(2) = wα+1 · ... · wβ−1 (again, this may be the
empty word). Clearly, wβ ∈ M+ and |wβ|S+ = I. We set v+ = wβ. What remains to be
proved is the following: Neg(wβ+1 · ... ·wl) ≤ J − 1. If it were false, there would exist γ > β +1
such that wγ ∈M− and |wγ |S− = J . Repeating the above argument with respectively wβ and
wγ instead of wα and wβ leads again to a contradiction.

Finally, we set v(3) = wβ+1 · ... ·wl. One has w = v(1) · v− · v(2) · v+ · v(3) and the word û = w
is as required.

• Uniqueness.

Suppose that û is a geodesic representative of g such that û = v(1) · v− · v(2) · v+ · v(3) satisfies
(24) and (25). Write v(1) = w1 · ... · wα−1, v− = wα, v(2) = wα+1 · ... · wβ−1, v+ = wβ, and
v(3) = wβ+1 · ... · wl with wi ∈M .
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Executing the Garside procedure with input w1 · ... · wl provides the Garside normal form
v′1 · ... · v′l ·∆δ of g as output. The indices α and β are related to this Garside normal form by
means of the following formulas:

α = 1 + max{i | Pos(v′1 · ... · v′i) 6= I}

β = 1 + max{i | Card{j | j 6 i, |v′j |S > I} = |δ| } .
Therefore, α and β are unique. Another consequence of these formulas is that û is exactly the
output of the Suitable-spread procedure when the left-greedy choice is performed.

A close inspection of the proof of Proposition 4.3 also provides the following converse to Propo-
sition 2.3:

Lemma 4.5. Let g ∈ Ak and let v be the Garside normal form of g. Any geodesic representative
of g with respect to S can be obtained as an output to the Suitable-spread algorithm with
input v.

Application to translation lengths. Another by-product of Proposition 4.3 is to enable
the computation of translation lengths. Let G be a group generated by the finite set S. The
translation length (or translation number) of an element g ∈ G with respect to S is

τS(g) = lim
n→+∞

|gn|S
n

.

The limit exists by subadditivity. It is known that for any word-hyperbolic group G and for any
finite generating set S of G, the length τS(g) is a rational number for every g ∈ G (see [1]). If G
is a Garside group and S the set of simple elements, then the set of all the translation lengths
{τS(g), g ∈ G} is a discrete set (see [20]). In the case of Artin groups of dihedral type, we have:

Proposition 4.6. For S = {a, b, a−1, b−1} and g ∈ Ak, the translation length τS(g) is an
integer. More precisely, τS(g) = |g′|S where g′ is an element of shortest length in [g], the
conjugacy class of g in G.

In the case A3 = B3, this statement is due to Sabalka (see [26]). Using Proposition 4.3, the
proof of [26] can be directly adapted to get Proposition 4.6.

5 Computing the growth series

Define the sets:
SI,J =

{
u ∈ � | Pos(u) = I, Neg(u) = J

}
. (27)

Let SI,J ∈
�
[[x]] be the generating series of SI,J , that is:

SI,J =
∑

u∈SI,J

x|u|S =
∑

n∈ �
#

{
u ∈ SI,J | |u|S = n

}
xn .

According to Proposition 4.3, the sets SI,J , I + J 6 k, partition the set of all the geodesic
representatives of Ak. Hence we have:

G(Ak, S) =
∑

I+J6k

SI,J . (28)
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Now we turn our attention to the spherical growth series. According to Proposition 4.3, the
sets SI,J , I +J = k, contain several geodesic representatives of the same element. The sets ŜI,J ,
I + J = k, to be defined soon, will be cross-sections of the sets SI,J , I + J = k.

Consider Sk,0. We denote by Ŝk,0 the subset of Sk,0 consisting of the words which are in Garside
normal form, see Lemma 2.2. More precisely:

Ŝk,0 = {u ∈ � | u = u1 · · · un∆δ, δ > 1, ∀i, ui ∈M+, Last(ui) = First(ui+1)} . (29)

We define Ŝ0,k similarly over the subalphabet {a−1, b−1}.

For I + J = k, I > 1, J > 1, let ŜI,J be the subset of SI,J defined by:

ŜI,J =
{

û ∈ � | (24) and (25) hold
}

. (30)

Denote by ŜI,J ∈
�
[[x]], I + J = k, the corresponding generating series. According to Proposi-

tions 4.3 and 4.4, the sets SI,J , I + J 6 k − 1, and ŜI,J , I + J = k, are disjoint and their union
forms a geodesic cross-section of Ak. Consequently, the spherical growth series of Ak is:

S(Ak, S) =
∑

I+J6k−1

SI,J +
∑

I>1,J>1
I+J=k

ŜI,J + Ŝk,0 + Ŝ0,k . (31)

In order to compute the series G(Ak, S) and S(Ak, S), we have to partition the languages Si,j

(or Ŝi,j) in a certain way, which is illustrated in Figure 1.

unique geodesic

several geodesics
S(Ak, S)G(Ak, S)

Figure 1: Snapshot of the proof of Theorem 3.1.

Let us build automata recognizing the languages SI,J and ŜI,J .

According to (8), we have ∪i6k Si,0 = {a, b}∗. Similarly, we have ∪j6k S0,j = {a−1, b−1}∗. It
follows that: ∑

i6k

Si,0 =
∑

j6k

S0,j =
1

1− 2x
. (32)

Consider now I, J , such that I + J 6 k and (I, J) 6∈ {(k, 0), (0, k)}. Consider the language
∪i6I,j6J Si,j . It is recognized by the deterministic automaton A6I,6J defined as follows:

• States: 1 ∪Σ+
I ∪ Σ−

J ; initial state: 1; final states: 1 ∪Σ+
I ∪ Σ−

J ;

• Transitions: ∀v ∈ Σ+
I ∪Σ−

J , 1
v−→ v, and ∀u, v ∈ Σ+

I ∪Σ−
J , u

v−→ v if Last(u) = First(v).
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The proof follows directly from Lemma 4.1. Now let us translate this at the level of the
generating series. Recall that X0 = 0 and for n > 1, Xn = x + x2 + · · ·+ xn.

Lemma 5.1. We have:

∀I, J, I + J 6 k, (I, J) 6= (k, 0), (0, k),
∑

i6I,j6J

Si,j =
1 + XI + XJ

1−XI −XJ
. (33)

Consequently, we have:

Sk,0 = S0,k =
1

1− 2x
− 1 + Xk−1

1−Xk−1
, ∀I 6 k − 1, SI,0 = S0,I =

1 + XI

1−XI
− 1 + XI−1

1−XI−1
, (34)

and for all I, J, I > 1, J > 1, I + J 6 k,

SI,J =
∑

i6I,j6J

Si,j −
∑

i6I−1,j6J

Si,j −
∑

i6I,j6J−1

Si,j +
∑

i6I−1,j6J−1

Si,j

=
1 + XI + XJ

1−XI −XJ
− 1 + XI−1 + XJ

1−XI−1 −XJ
− 1 + XI + XJ−1

1−XI −XJ−1
+

1 + XI−1 + XJ−1

1−XI−1 −XJ−1
.

Proof. Assume that (I, J) 6= (k, 0), (0, k). Consider u ∈ ∪i6I,j6JSi,j and v =
v1 · · · vn = Brack(u). According to Lemma 4.1, we have: v1 may be any element
of Σ+

I t Σ−
J ; if vi = wia then vi+1 may be any element of {a, ab, . . . ,prod(a, b; I)} t

{b−1, b−1a−1, . . . ,prod(b−1, a−1; J)}; if vi = wia
−1 then vi+1 may be any element of

{b, ba, . . . ,prod(b, a; I)} t {a−1, a−1b−1, . . . ,prod(a−1, b−1; J)}; and so on. At the level of the
generating series, we get:

∑

i6I,j6J

Si,j = 1 +
2x + · · ·+ 2xI + 2x + · · ·+ 2xJ

1− x− · · · − xI − x− · · · − xJ
=

1 + XI + XJ

1−XI −XJ
.

The other equalities follow easily.

a

b

ab

ba

b−1

a−1

Figure 2: The graph A62,61.

Denote by A6I,6J the labelled directed graph obtained from the automaton A6I,6J by removing
the state 1 and the outgoing transitions from 1 (in A6I,6J , no initial or final state is specified).
The graph A62,61 is represented in Figure 2 (we have omitted the labels on the arcs).
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Let BI,0 be the graph consisting of two isolated nodes labelled respectively by prod(a, b; I) and
prod(b, a; I). Let B0,J be the graph consisting of two isolated nodes labelled respectively by
prod(a−1, b−1; J) and prod(b−1, a−1; J).

For I 6 k−1, a direct argument shows that the language SI,0 is recognized by the deterministic
automaton whose structure is given in Figure 3.

1 A6I−1,60 BI,0 A6I,60

Figure 3: Automaton recognizing SI,0.

The initial state is the state 1. The final states are all the states from the two right-most blocks:
BI,0 and A6I,60. Between the initial state and the outgoing blocks, the transitions are: 1

v→ v.

Between the other blocks, the transitions are: u
v→ v if Last(u) = First(v).

Consider the language SI,J , I > 1, J > 1, I + J ≤ k. Similarly, a straightforward argument
shows that it is recognized by the deterministic automaton whose structure is given in Figure
4.

1 A6I−1,6J−1

BI,0

B0,J

A6I,6J−1

A6I−1,6J

B0,J

BI,0

A6I,6J

Figure 4: Automaton recognizing SI,J .

Consider the language Ŝk,0 (the case of Ŝ0,k is treated similarly). By definition, see (29), it is
recognized by the deterministic automaton whose structure is given in Figure 5.

Consider now the language ŜI,J , I + J = k, I > 1, J > 1. A direct transposition of the con-

ditions (24) and (25) yields the following. The language ŜI,J is recognized by the deterministic
automaton whose structure is given in Figure 6.

When translating the above on the generating series, we get:

Lemma 5.2. We have:

Ŝk,0 = Ŝ0,k =
1 + Xk−1

1−Xk−1

xk

1− xk
. (35)
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1 A6k−1,60 prod(a, b; k)

Figure 5: Automaton recognizing Ŝk,0.

1 A6I−1,6J−1 B0,J A6I−1,6J BI,0 A6I,6J−1

Figure 6: Automaton recognizing ŜI,J .

Consider I, J with I > 1, J > 1, I + J = k. We have:

ŜI,J =
2xk

(1−XI−1 −XJ−1)(1−XI−1 −XJ)(1−XI −XJ−1)
. (36)

Using (28) and Lemma 5.1, we get a rational expression for G(Ak, S). Using (31) and Lemmas
5.1 and 5.2, we get a rational expression for S(Ak, S). To get the simple formulas in Theorem
3.1, we need an additional trick.

Lemma 5.3. We have, for ` 6 k,
∑

I+J6`

SI,J = S0,` + S`,0 +
∑

I,J>1
I+J=`

∑

06i6I
06j6J

Si,j −
∑

I,J>1
I+J=`−1

∑

06i6I
06j6J

Si,j . (37)

Proof. This is shown by a simple counting argument. (Here, the specific values of the series Si,j

do not play any role.)

Proof of Theorem 3.1.

Consider (28) and replace the right-hand side using (37) for ` = k. We get:

G(Ak, S) = Sk,0 + S0,k +
∑

I,J>1
I+J=k

∑

06i6I
06j6J

Si,j −
∑

I,J>1
I+J=k−1

∑

06i6I
06j6J

Si,j .

Replace the various terms on the right-hand side using (33) and (34). We get precisely (15) in
Theorem 3.1.

Consider (31) and replace the first sum in the right-hand side using (37) for ` = k− 1. We get:

S(Ak, S) = Sk−1,0 + S0,k−1 +
∑

I,J>1
I+J=k−1

∑

06i6I
06j6J

Si,j −
∑

I,J>1
I+J=k−2

∑

06i6I
06j6J

Si,j

+
∑

I,J>1
I+J=k

ŜI,J + Ŝk,0 + Ŝ0,k .
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Now replace the various terms on the right-hand side using (33), (34), (35), and (36). We obtain
(16) in Theorem 3.1. �
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1972.

[13] D. Epstein, J. Cannon, D. Holt, S. Levy, M. Paterson, and W. Thurston. Word processing
in groups. Jones and Bartlett, Boston, 1992.

[14] D. Epstein, D. Holt, and S. Rees. The use of Knuth-Bendix methods to solve the word
problem in automatic groups. J. Symbolic Comput., 12(4-5):397–414, 1991.

[15] F. Garside. The braid groups and other groups. Quart. J. Math. Oxford, 20:235–254, 1969.
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[22] J. Mairesse and F. Mathéus. Random walks on free products of cyclic groups and on
Artin groups with two generators. LIAFA Research Report 2004-06, Univ. Paris 7, 2004.
http://www.liafa.jussieu.fr/web9/rapportrech/rapport en.php.

[23] J. Michel. A note on words in braid monoids. J. Algebra, 215(1):366–377, 1999.

[24] P. Papasoglu. Strongly geodesically automatic groups are hyperbolic. Invent. Math.,
121(2):323–334, 1995.

[25] M. Picantin. Petits groupes gaussiens. PhD thesis, Univ. Caen, 2000.

[26] L. Sabalka. Geodesics in the braid group on three strands. In Group theory, statistics, and
cryptography, volume 360 of Contemp. Math., pages 133–150. Amer. Math. Soc., 2004.

[27] M. Stoll. Rational and transcendental growth series for the higher Heisenberg groups.
Invent. Math., 126(1):85–109, 1996.

[28] P. Xu. The genus of closed 3-braids. J. Knot Theory Ramifications, 1(3):303–326, 1992.

[29] P. Xu. Growth of the positive braid semigroups. J. Pure Appl. Algebra, 80(2):197–215,
1992.

19


