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1. Introduction

We are interested in the time-harmonic Maxwell equations in and near a composite material with
boundary conditions modeling electromagnetic field radiated by an electromagnetic pulse (EMP). An
electromagnetic pulse is a short burst of electromagnetic energy. It may be generated by a natural
occurrence such like a lightning strike, meteoric EMP, EMP caused by geomagnetic Storm or nuclear
EMP. This focuses on what happens over a period of time of a millisecond during the peak of the first
return stroke. We study the electromagnetic pulse caused by this lightning strike. This is the first step
of a larger study which goal is to understand the behavior of the electromagnetic field and its interaction
with a composite material.

EMP interference is generally damaging to electronic equipment. A lightning strike can damage phys-
ical objects such as aircraft structures, either through heating effects or disruptive effects of the very
large magnetic field generated by the current. Structures and systems require some form of protection
against lightning. Every commercial aircraft is struck by lightning at least once a year on average.
Aircraft lightning protection is a major concern for aircraft manufacturers. Increasing its use of com-
posite materials, up to 53% for the latest Airbus A350, and 50% for the Boeing B787, aircrafts offer
increased vulnerability facing lightning. Earlier generation aircrafts, whose fuselages were predom-
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inantly composed of aluminum, behave like a Faraday cage and offer maximum protection for the
internal equipment. Currently, in aircrafts, composite materials consisting of a resin enclosing carbon
fibers have significant advantages in terms of weight gain and therefore fuel saving. Yet,because alu-
minium conducts 100 to 1000 times more than composite, we lose the Faraday effect. Modern aircrafts
have seen also the increasing reliance on electronic avionics systems instead of mechanical controls
and electromechanical instrumentation. For these reasons, aircraft manufacturers are very sensitive to
lightning protection and pay special attention to aircraft certification through testing and analysis.

There are two types of lightning strikes to aircraft: the first one is the interception by the aircraft
of a lightning leader. The second one, which makes about 90% of the cases, is when the aircraft
initiates the lightning discharge by emitting two leaders when it is found in the intense electric field
region produced by a thundercloud, our approach applies in this case. When the aircraft flies through a
cloud region where the atmospheric electric field is large enough, an ionized channel, called a positive
leader, merges from the aircraft in the direction of the ambient electric field. Laroche et al [?], at an
altitude of 6000m, observed an atmospheric electric field close to 50 kV/m inside the storm clouds,
100kV/m to the ground. When upward leader connects with the downward negative leader of the
cloud, a return stroke is produced and a bright return stroked wave travels from aircraft to cloud. The
lightning return strokes radiate powerful electromagnetic fields which may cause damage to aircraft
electronic equipment. Our work is devoted to the study of the electromagnetic waves propagation
in the air and in the composite material. In this artificial periodic material, the electromagnetic field
satisfies the Maxwell equations.

We evaluate the electromagnetic field within and near a periodic structure when the period of this
microstructure is small compared to the wavelength of the electromagnetic wave. Our model is com-
posed by air above the composite fuselage and we study the behavior of the electromagnetic wave in
the domain filled by the composite material, representing the skin aircraft, and the air. We build the
3D model, under simplifying assumptions, using linear time-harmonic Maxwell equations and con-
stitutive relations for electric and magnetic fields. Composite materials consist of conducting carbon
fibers, distributed as periodic inclusions in a matrix (epoxy resin). We impose a magnetic permeability
µ0 uniform and an electrical permittivity ε = ε0ε

?, where ε? is the relative permittivity depending of
the medium. In the future, we will enrich this model by adding complexity and we will consider non
uniform magnetic permeability and electrical permittivity.

Now, we account for some characteristic values. In the first place we focus on the boundary conditions
as we consider them as the source. Then, we use on the upper frontier, the magnetic field induced by
the peak of the current of the first return stroke

Hd =
I

2πr
, (1)

with current intensity I = 200 kA and r the radius of the lightning strike, this is the worst aggression
that can suffer an aircraft, and we deduce a characteristic electric field E = 20 kV/m. In our model we
consider that we have very conductive - but not perfect conductors - carbon fibers and an epoxy resin
whose conduction depends on its doping rate. The conductivity of the air is non-linear. Air is a strong
insulator [23] with conductivity of the order of 10−14 S .m−1 but beyond some electric solicitation, the
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air loses its insulating nature and locally becomes suddenly conductive. The ionization phenomenon
is the only cause that can make the air conductor of electricity. The ionized channel becomes very
conductive.

Our mathematical context is periodic homogenization. We consider a microscopic scale ε, which rep-
resents the ratio between the diameter of the fiber and thickness of the composite material. So, we
are trying to understand how the microscopic structure affects the macroscopic electromagnetic field
behavior. Homogenization of Maxwell equations with periodically oscillating coefficients was studied
in many papers. N. Wellander homogenized linear and non-linear Maxwell equations with perfect con-
ducting boundary conditions using two-scale convergence in [20] and [21]. N. Wellander and B. Kris-
tensson homogenized the full time-harmonic Maxwell equation with penetrable boundary conditions
and at fixed frequency in [22]. The homogenized time-harmonic Maxwell equation for the scattering
problem was done in F. Guenneau, S. Zolla and A. Nicolet [10]. Y. Amirat and V. Shelukhin perform
two-scale homogenization time-harmonic Maxwell equations for a periodical structure in [4]. They
calculate the effective dielectric ε and effective electric conductivity σ. They proved that homogenized
Maxwell equations are different in low and high frequencies. The result obtained by two-scale conver-
gence approach takes into account the characteristic sizes of skin thickness and wavelength around the
material.

On of the parameter we account for in our model: δ = 1√
ω σµ0

, where σ is the characteristic conduc-

tivity and ω the order of the magnitude of the pulsation shares much with the definition of theoretical

thickness skin δ =
√

2
ωσµ0

. The thickness skin is the depth at which the surface current moves to a

factor of e−1. Indeed, at high frequency, the skin effect phenomenon appears because the current tends
to concentrate at the periphery of the conductor. On the other side, at low frequencies the penetration
depth is much greater than the thickness of the plate which means that a part of the electric field pen-
etrates the composite plate. We use the theory of two-scale convergence introduced by G. Nguetseng
[15] and developed by G. Allaire [2].

The paper is organized as follows : in Section 2 we specify the geometry of the model and the dimen-
sionless equations converting the problem into an equivalent one with which we work in the following
sections. In Section 3 we perform the mathematical analysis of the model. In particular, we intro-
duce the weak formulation of the problem for the electric field and we regularize it using divergence
term. We establish the existence and uniqueness result for the regularized Maxwell equations thanks
to Lax-Milgram Theorem. We conclude this section by estimate of the electric field. The last section
is devoted to the homogenization of the problems for electric field using the two-scale convergence
concept.

2. Modeling

This section is dedicated to the complete mathematical model we will study in this paper. First,
we consider a problem that seems relevant with the perspective of propagation of the electromagnetic
field in the air and in the skin of aircraft fuselage made of composite material. Secondly, we make a
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scaling of this model and finally we operate simplifications. If desired, the reader can go directly to
the mathematical analysis knowing that the problem to be studied is given by (65), (70) equipped with
boundary conditions (68), (69).

2.1. Notations and setting of the problem

We consider set Ω̃ = {(x̃, ỹ, z̃) ∈ R3, ỹ ∈ (−L, d)} for L and d two positive constants, with two open
subsets Ω̃a and P̃ (see Figure 1). The air fills Ω̃a and we consider that the composite material, with two
materials periodically distributed, stands in domain P̃.

We assume that the thickness L of the composite material is much smaller than its horizontal size.
We denote by e the lateral size of the basic cell Ỹe of the periodic microstructure of the material. The
cell is composed of a carbon fiber in the resin. We define now more precisely the material, introducing:

P̃ = {(x̃, ỹ, z̃) ∈ R3/ − L < ỹ < 0}, (2)

which is the domain containing the material. Now we describe precisely the basic cell. For this we first
introduce the following cylinder with square base:

Z̃e = [−
e
2
,

e
2

] × [−e, 0] × R, (3)

We consider α such that 0 < α < 1, and R̃e = α e
2 . We set

D̃e = {(x̃, ỹ) ∈ R2/(x̃2 + (̃y +
e
2

)2) < (R̃e)2}. (4)

We define the cylinder containing the fiber as (see fig 1):

C̃e = D̃e × R. (5)

Then the part of the basic cell containing the matrix is

Ỹe
R = Z̃e \ C̃e, (6)

and by definition, the basic cell Ỹe is the couple

(Ỹe
R, C̃

e). (7)

The composite material results from a periodic extension of the basic cell. More precisely the part
of the material that contains the carbon fibers is

Ω̃c = P̃ ∩ {(ie, je, 0) + C̃e, i ∈ Z, j ∈ Z−}, (8)

where the intersection with P̃ limits the periodic extension to the area where stands the material. Set
{(ie, je, 0) + C̃e, i ∈ Z, j ∈ Z−} is a short notation for

{(x̃, ỹ, z̃) ∈ R3,∃i ∈ Z,∃ j ∈ Z−,∃(xb, yb, zb) ∈ C̃e; x̃ = xb + ie, ỹ = yb + je, z̃ = zb}. (9)
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In the same way the part of the material that contains the resin is

Ω̃r = P̃ ∩ {(ie, je, 0) + Ỹe
R}, (10)

or equivalently

Ω̃r = P̃ ∩ {(ie, je, 0) + Z̃e \ C̃e} = (R × (−L, 0) × R)\Ω̃c. (11)

So the geometrical model of our composite material is couple (Ω̃c, Ω̃r). Now, it remains to set the
domain that contains the air:

Ω̃a = {(x̃, ỹ, z̃)/0 ≤ ỹ < d}. (12)

We consider that d is of the same order as L and we introduce the upper frontier Γ̃d = {(x̃, ỹ, z̃)/̃y = d}
of domain Ω̃. On this frontier we will consider that the electric field and magnetic field are given. We
also introduce the lower frontier Γ̃L = {(x̃, ỹ, z̃)/̃y = −L} with those definitions we have Ω̃a ∩ P̃ = ∅,
Ω̃c ∩ Ω̃r = ∅, P̃ = Ωr ∪ Ωc, Ω̃ = Ωa ∪ P̃ = Ωa ∪ Ωr ∪ Ωc, and for any (x̃, ỹ, z̃) ∈ ∂Ω̃ = Γ̃d ∪ Γ̃L and, we
write ñ, the unit vector, orthogonal to ∂Ω̃ and pointing outside Ω̃. We have :

ñ = e2 on Γ̃d

ñ = −e2 on Γ̃L.
(13)

In the following we need to describe what happens at the interfaces between resin and carbon fibers,
and resin and air. So we define Γra = {(x̃, ỹ, z̃) / ỹ = 0} and Γcr the boundary of the set defined by (9).

2.2. Maxwell equations

In Ω̃, we now write a PDE model that has to do with electromagnetic waves radiated from return
stroke. We are well aware that the model we write is a simplified one. Nonetheless, it seems to be
well dimensioned for our problem which consists in making homogenization. It is well known (see
Maxwell [?]) the propagation of the electromagnetic field is described by the Maxwell equations which
write:

−
∂D̃?

∂t
+ ∇×H̃? = J̃?, (14)

∂B̃?

∂t
+ ∇×Ẽ? = 0, (15)

∇·D̃? = ρ̃?, (16)

∇·B̃? = 0, (17)

in R × Ω̃.
In (14)-(17), ∇× and ∇· are the curl and divergence operators. Ẽ?(t, x, y, z) is the electric field,

H̃?(t, x, y, z) the magnetic field, D̃?(t, x, y, z) the electric induction, B̃?(t, x, y, z) the magnetic induction
and ρ̃?(t, x, y, z) is the charges density (see T. Abboud and I. Terrasse [?]).
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Figure 1. The global domain

System of Maxwell equations ((14) - (17)) is completed by the constitutive laws which are given in
R × Ω̃ by :

D̃? = ε0ε
?Ẽ?, (18)

B̃? = µ0H̃?. (19)

where µ0 and ε0 are the permeability and permittivity of free space. ε? is the relative permittivity of the
domains defined by

ε?
|Ω̃a

= 1, ε?
|Ω̃r

= εr, ε
?

|Ω̃c
= εc, (20)

where εr and εc are positives constants. In order to account for energy transfer between the electromag-
netic compartment and the propagation of the electric charges, we take for granted the Ohmic law, in
R × Ω̃

J̃? = σẼ?, (21)

where σ is the electric conductivity. Its value depends on the location:

σ
|Ω̃a

= σa, σ|Ω̃r
= σr, σ|Ω̃c

= σc, (22)

where Ω̃a, Ω̃r and Ω̃c were defined in (12), (10) and (8).
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Figure 2. Left: The global microstructure in 2D. Right: Z-cell of the periodic structure.

2.3. Boundary conditions

For mathematical as well as physical reasons we have to set boundary conditions on Γ̃d and Γ̃L. On
Γ̃d we will write conditions that translate that Ẽ? and H̃? are given by the source located in ỹ = d. The
way we chose consists in setting:

Ẽ? × ñ = Ẽ?
d × ñ; H̃? × ñ = H̃?

d × ñ on R × Γ̃d, (23)

where Ẽ?
d , H̃?

d are functions defined on Γ̃d for any t ∈ R. On Γ̃L, we chose something simple, i.e :

∇×Ẽ? × ñ = 0 on R × Γ̃L, (24)

that translate that Ẽ? does not vary in the ỹ-direction near Γ̃L.
Problem (14)-(21) supplemented with (23) and (24), is considered as containing all physics we want

to account for. In the following we will consider simplifications of it.

2.4. Time-harmonic Maxwell equations

The first simplification we make, consists in considering the harmonic version of the Maxwell equa-
tions (14)-(22). This simplification is used in many references studying electromagnetic phenomena
and especially for lightning applications [?], in spite of the fact that it considers implicitly that every
fields and currents are waves of the form, for all ω̃ ∈ R :

a(x̃, ỹ, z̃) cos(−ω̃t + φ(x̃, ỹ, z̃)) = <e[a(x̃, ỹ, z̃) expiω̃t expiφ(x̃,̃y,̃z)], (25)

where ω̃ is the pulsation, φ(x̃, ỹ, z̃) is the phase shift of the wave and a(x̃, ỹ, z̃) is its amplitude. In
particular, it supposes Ẽ?

d , H̃?
d in (23) are of the form, for all w̃ ∈ R:

Ẽ?
d (t, x̃, z̃) = <e(Ẽd(x̃, z̃) expiω̃t), (26)
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H̃?
d (t, x̃, z̃) = <e(H̃d(x̃, z̃) expiω̃t), (27)

where Ẽd and H̃d take into account the amplitude and the phase shift of their corresponding fields.
Taking (21) into account, the time-harmonic Maxwell equations, which describe the electromagnetic
radiation, are written:

∇×H̃ − iω̃ε0ε
?Ẽ = σẼ, Maxwell - Ampere equation (28)

∇×Ẽ + iω̃µ0H̃ = 0, Maxwell - Faraday equation (29)

∇·(ε0ε
?Ẽ) = ρ̃, (30)

∇·(µ0H̃) = 0, (31)

where Ẽ?(t, x̃, ỹ, z̃) = <e(Ẽ(x̃, ỹ, z̃) expiω̃t) and H̃?(t, x̃, ỹ, z̃) = <e(H̃(x̃, ỹ, z̃) expiω̃t), (x̃, ỹ, z̃) ∈ Ω̃. The
magnetic field H̃ can be directly computed from the electric field Ẽ

H̃ = −
1

iωµ0
∇×Ẽ. (32)

Now, for the electric approach, taking the curl of equation (32) yields an expression of ∇×H̃ in term of
∇ × ∇×Ẽ. Inserting ∇×H̃ in (28) we get the following equation for the electric field:

∇×∇×Ẽ + (−ω̃2µ0ε0ε
? + iω̃µ0σ)Ẽ = 0 in Ω̃. (33)

Taking the divergence of the equation (28) yields the natural gauge condition:

∇·[(iω̃ε0ε
? + σ)Ẽ] = 0 in Ω̃. (34)

Notice that iω̃ε0 + σ is equal to iω̃ε0 + σa in Ω̃a, to iω̃ε0εr + σr in Ω̃r and to iω̃ε0εc + σc in Ω̃c, those
quantities being all nonzero. Then (34) is equivalent to:

∇·Ẽ|Ωa = 0 in Ω̃a, ∇·Ẽ|Ωr = 0 in Ω̃r, ∇·Ẽ|Ωc = 0 in Ω̃c. (35)

with the transmission conditions

(iω̃ε0 + σa)Ẽ
|Ω̃a
.̃n = (iω̃ε0εr + σr)Ẽ|Ω̃r

.̃n on Γ̃ra,

(iω̃ε0εr + σr)Ẽ|Ω̃r
.̃n = (iω̃ε0εc + σc)Ẽ|Ω̃c

.̃n on Γ̃cr.
(36)

Summarizing, we finally obtain the PDE model:

∇×∇×Ẽ + (−ω̃2µ0ε0ε
? + iω̃µ0σ)Ẽ = 0 in Ω̃. (37)

According to the tangential trace of the Maxwell-Faraday equation (29) we obviously obtain that using
boundary condition (23), is equivalent to using:

∇×Ẽ × e2 = −iω̃µ0H̃d(x̃, z̃) × e2 on Γ̃d (38)

where H̃d is defined in (27) and where we used (13). And on Γ̃L we have the following boundary
condition:

∇×Ẽ × e2 = 0 on Γ̃L. (39)
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2.5. Scaling

In this subsection we propose a rescaling of system ((37)-(39)), we will consider a set of characteris-
tic sizes related to our problem. Physical factors are then rewritten using those values leading to a new
set of dimensionless and unitless variables and fields in which the system is rewritten. The considered
characteristic sizes are : ω the characteristic pulsation, σ the characteristic electric conductivity, E the
characteristic electric magnitude, H the characteristic magnetic magnitude. We also use the already
introduced thickness L of the plate P̃. We then introduce the dimensionless variables: x = (x, y, z) with
x = x̃

L
, y =

ỹ
L
, z = z̃

L
and fields E, H and σ that are such that

E(ω, x) =
1

E
Ẽ(ωω, Lx, Ly, Lz),

H(ω, x) =
1

H
H̃(ωω, Lx, Ly, Lz),

σ(x) =
1
σ
σ̃(Lx, Ly, Lz),

(40)

Taking (22) into account, σ also reads:

σ(x) =
σa

σ
if 0 ≤ Ly ≤ d, (41)

σ(x) =
σr

σ
if (Lx, Ly, Lz) ∈ Ω̃r, (42)

σ(x) =
σc

σ
if (Lx, Ly, Lz) ∈ Ω̃c. (43)

Doing this gives the status of units to the characteristic sizes. Since, for instance:

∂E
∂x

(ω, x) =
L

E

∂Ẽ
∂x̃

(ωω, Lx, Ly, Lz), (44)

using those dimensionless variables and fields and taking (41)-(43) into account, equation (37) gives:

E ∇×∇×E(ω, x) −
(L

2
ω2

c2 ε?ω2 + iσ ω ωL
2
µ0σ(x, ω)

)
EE(ω, x, y, z) = 0, (45)

for any (ω, x) such that (ωω, Lx, Ly, Lz) ∈ Ω̃. Now we exhibit

λ =
2πc
ω
, (46)

which is the characteristic wave length and

δ =
1√
ω σµ0

, (47)

which is the characteristic skin thickness. Using those quantities equation (45) reads, for any (ω, x) ∈
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Ω:

∇×∇×E(ω, x) + (−
4π2L

2

λ
2 ω2 + i

L
2

δ
2

σa

σ
ω)E(ω, x) = 0 when 0 ≤ Ly ≤ d,

∇×∇×E(ω, x) + (−
4π2L

2

λ
2 εr ω

2 + i
L

2

δ
2

σr

σ
ω)E(ω, x) = 0 when (Lx, Ly, Lz) ∈ Ω̃r,

∇×∇×E(ω, x) + (−
4π2L

2

λ
2 εc ω

2 + i
L

2

δ
2

σc

σ
ω)E(ω, x) = 0 when (Lx, Ly, Lz) ∈ Ω̃c.

(48)

In the following expressions, L
λ

and L
δ

appearing in the equations above will be rewritten in terms of a
small parameter ε.

The boundary conditions are written

∇×E(ω, x) × e2 = −iωωµ0
L

E
H̃d(Lx, Lz) × e2 when (Lx, Ly, Lz) ∈ Γ̃d,

∇×E(ω, x) × e2 = 0 when (Lx, Ly, Lz) ∈ Γ̃L.

(49)

The characteristic thickness of the plate L is about 10−3m and the size of the basic cell e is about
10−5m. Since e is much smaller than the thickness of the plate L, it is pertinent to assume the ratio e

L
equals a small parameter ε:

e

L
∼ 10−2 = ε. (50)

Then, in what concerns the characteristic pulsation ω, in the tables below we consider several values.
The lightning is seen as a low frequency phenomenon. Indeed, energy associated with radiation tracers
and return stroke are mainly burn by low and very low frequencies (from 1kHz to 300kHz). Compo-
nents of the frequency spectrum are however observed beyond 1GHz (see [?]). So, in the case when we
want to catch low frequency ie we considerω = 100 rad/s, (in our study we will considerω = 106rad/s),
for medium frequency we set ω = 1010 rad/s and for high frequency phenomena ω = 1012 rad/s. Then,
concerning the characteristic electric conductivity it seems to be reasonable to take for σ the value
of the effective electric conductivity of the composite material. Yet this choice implies to compute a
coarse estimate of this effective conductivity at this level.

For this we take into account that the composite material is composed of carbon fibers and epoxy resin.
The resin can be doped, which increases strongly its conductivity, or not. The tables below summarize
the cases when the resin is doped and also when the resin is not doped. We also account for the fact
there is not only one effective electric conductivity but a first one in the fiber direction : the effective
longitudinal electric conductivity (in cases 1, 2, 5 and 6 of the tables below), and a second effective
electric conductivity, in the direction transverse to the fibers (considered in cases 3, 4, 7 and 8). In this
context, we consider the basic model which is based on the electrical analogy and the law of mixtures.
It corresponds to the Wiener limits: the harmonic average and the arithmetic average. The effective
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case 1 case 2 case 3 case 4 case 5 case 6 case 7 case 8
L(m) 10−3 10−3 10−3 10−3 10−3 10−3 10−3 10−3

e(m) 10−5 10−5 10−5 10−5 10−5 10−5 10−5 10−5

λ(m) 106 106 106 106 106 106 106 106

σ(S .m−1) 40000 40000 10−10 10−3 40000 104 10−10 10−3

δ(m) 0, 1 0, 1 107 103 0, 1 0, 1 107 103

σc(S .m−1) σ σ σ
ε7

σ
ε4 σ σ σ

ε7
σ
ε4

σr(S .m−1) ε7σ ε4σ σ σ ε7σ ε4σ σ σ

σa(S .m−1) ε9σ ε9σ ε2σ ε6σ εσ εσ σ
ε5

σ
ε2

4πL
2

λ
2 ε9 ε9 ε9 ε9 ε9 ε9 ε9 ε9

L
2

δ
2 ε2 ε2 ε10 ε7 ε2 ε2 ε10 ε7

Table 1. for ω = 100rad.s−1.

values are the extreme limits of the conductivity of the composite introduced by Wiener in 1912 see S.
Berthier p 76 [6].
The effective longitudinal electric conductivity corresponding of the upper Wiener limit is expressed
by the equation:

σ = σlong = fc σc + (1 − fc) σr, (51)

where fc = πα
2

4 is the volume fraction of the carbon fiber.
The effective transverse electric conductivity corresponding of the lower Wiener limit is expressed

by

σ = σtrans =
1

fc
σc

+
(1− fc)
σr

. (52)

For the computation, we take values close to reality. We consider composite materials with similar
proportions of carbon and resin, this means that α is close to 1

2 . When the resin is not doped σr ∼

10−10S .m−1 is much smaller than σc ∼ 40000S .m−1. Then, σ = σlong is close to πα
2

4 σc ∼ σc and
σ = σtrans is close to σr

(1−π α
2

4 )
∼ σr.

Now, we express the electric conductivity of the air in terms of σ, we consider two possibilities. The
first one is relevant for a situation with a ionized channel. The second one of situation with a strong
atmospheric electric field but without a ionized channel. In this situation air is not ionized and has a
low conductivity. All possible situations are gathered in the tables below. Cases 5 to 8 are associated
with the first situation with air conductivity σa being σlightning = 4242S .m−1 for an ionized lightning
channel see [11]. Cases 1 to 4, to the second one, with σa = 10−14S .m−1.

All calculations of the different cases of the tables are detailed in Annex A. In our study we consider
the case 6 for ω = 106 rad.s−1, which corresponds to the air ionized, a resin doped and the effective
longitudinal electric conductivity of the carbon fibers.

As it is well known the tables confirm that at high frequencies the thickness of the plate is much
greater than the skin depth. This one depends on σ and ω and decreases strongly for high conductivity
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case 1 case 2 case 3 case 4 case 5 case 6 case 7 case 8
L(m) 10−3 10−3 10−3 10−3 10−3 10−3 10−3 10−3

e(m) 10−5 10−5 10−5 10−5 10−5 10−5 10−5 10−5

λ(m) 103 103 103 103 103 103 103 103

σ(S .m−1) 40000 40000 10−10 10−3 40000 40000 10−10 10−3

δ(m) 10−3 10−3 105 10 10−3 10−3 105 10
σc(S .m−1) σ σ σ

ε7
σ
ε5 σ σ σ

ε7
σ
ε5

σr(S .m−1) ε7σ ε4σ σ σ ε7σ ε4σ σ σ

σa(S .m−1) ε9σ ε9σ ε2σ ε6σ εσ εσ σ
ε5

σ
ε2

4πL
2

λ
2 ε5 ε5 ε5 ε5 ε5 ε5 ε5 ε5

L
2

δ
2 1 1 ε8 ε5 1 1 ε8 ε5

Table 2. for ω = 106rad.s−1.

case 1 case 2 case 3 case 4 case 5 case 6 case 7 case 8
L(m) 10−3 10−3 10−3 10−3 10−3 10−3 10−3 10−3

e(m) 10−5 10−5 10−5 10−5 10−5 10−5 10−5 10−5

λ(m) 10−1 10−1 10−1 10−1 10−1 10−1 10−1 10−1

σ(S .m−1) 40000 40000 10−10 10−3 40000 40000 10−10 10−3

δ(m) 10−5 10−5 103 10−1/2 10−5 10−5 103 10−1/2

σc(S .m−1) σ σ σ
ε7

σ
ε4 σ σ σ

ε7
σ
ε4

σr(S .m−1) ε7σ ε4σ σ σ ε7σ ε4σ σ σ

σa(S .m−1) ε9σ ε9σ ε2σ ε6σ εσ εσ σ
ε5

σ
ε2

4πL
2

λ
2 ε ε ε ε ε ε ε ε

L
2

δ
2

1
ε2

1
ε2 ε6 ε3 1

ε2
1
ε2 ε6 ε3

Table 3. for ω = 1010rad.s−1.
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case 1 case 2 case 3 case 4 case 5 case 6 case 7 case 8
L(m) 10−3 10−3 10−3 10−3 10−3 10−3 10−3 10−3

e(m) 10−5 10−5 10−5 10−5 10−5 10−5 10−5 10−5

λ(m) 10−3 10−3 10−3 10−3 10−3 10−3 10−3 10−3

σ(S .m−1) 40000 40000 10−10 10−3 40000 40000 10−10 10−3

δ(m) 10−6 10−6 1 10−3/2 10−6 10−6 1 10−3/2

σc(S .m−1) σ σ σ
ε7

σ
ε4 σ σ σ

ε7
σ
ε4

σr(S .m−1) ε7σ ε4σ σ σ ε7σ ε4σ σ σ

σa(S .m−1) ε9σ ε9σ ε2σ ε6σ εσ εσ σ
ε5

σ
ε2

4πL
2

λ
2 1 1 1 1 1 1 1 1

L
2

δ
2

1
ε3

1
ε3 ε3 ε 1

ε3
1
ε3 ε3 ε

Table 4. for ω = 1012rad.s−1.

or high frequencies. For ω = 1010 rad.s−1 and σ = 4 ∗ 104 S .m−1, the effective conductivity in the
direction of the carbon fibers, which the skin effect phenomenon appears. Indeed, for high frequencies
ω = 1012rad.s−1 and when σ is the effective conductivity is in direction of the carbon fibers i.e. in
high conductivity, δ = 10−4 m. In low frequencies and low conductivity δ is large so the electromag-
netic wave can penetrate the composite material. The high conductivity limits the penetration of the
electromagnetic wave to a boundary layer whose depth is about δ.

Now, we will discuss on the values of E and ρ. It seems that the density of electrons in a ionized
channel is about 1010 part.m−3. Hence we take ρ = 1010. When the air is not ionized, the charge density
is much smaller, and we choose: ρ = 1.

For the boundary conditions, in the context of the case 6 and ω = 106 rad/s, we consider the peak
of the current of the first return stroke. Then the magnetic field magnitude H is Hd given by (1).

Then the dimensionless boundary conditions (38) writes:

∇×E(x, ω) × e2 = −iωωµ0
L

E
HdHd(x, z) × e2, (53)

where HdHd(x, z) = H̃d(Lx, Lz) and where ωµ0
L
E

Hd being of order 1, with the characteristic electric
field E = 20 kV/m.

From the physical spatial coordinates (x̃, ỹ, z̃) ∈ Ω̃ we define y = (ξ, ν, ζ) with ξ = x̃
e , ν =

ỹ
e , ζ = z̃

e
or equivalently ξ = x

ε
, ν =

y
ε
, ζ = z

ε
. And we now introduce Y , the basic cell. It is built from:

Z = [−1
2 ,

1
2 ] × [−1, 0] × R and the set C = D × R with the disc D defined by:

D = {(ξ, ν) ∈ R2 /ξ2 + (ν +
1
2

)2 < R2}, (54)

and R = α
2 . The set Ωc is then defined as:

Ωc = {(i, j, 0) + C, i ∈ Z, j ∈ Z−}. (55)
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We denote Yr as Yr = Z\C and then the set

Ωr = {(i, j, 0) + Yr, i ∈ Z, j ∈ Z−}. (56)

Then unit cell Y is defined as Y = (Yr,C). Finally, we define the domain Ωa:

Ωa = {y = (ξ, ν, ζ) / ν > 0}. (57)

Using this, we will give a new expression of the sets in which the variables range in equations (48).
We see the following:

(Lx, Ly, Lz) ∈ Ω̃r ⇔

 (Lx, Ly, Lz) ∈ P̃,
( L

e x, L
e y, L

e z) ∈ Ωr,
(58)

i.e.

(Lx, Ly, Lz) ∈ Ω̃r ⇔

{
(Lx, Ly, Lz) ∈ P̃,
( x
ε
, y
ε
, z
ε
) ∈ Ωr.

(59)

In the same way:

(Lx, Ly, Lz) ∈ Ω̃c ⇔

{
(Lx, Ly, Lz) ∈ P̃,
( x
ε
, y
ε
, z
ε
) ∈ Ωc,

(60)

and:

0 ≤ Ly ≤ d ⇔
{

y ∈ R2

Ly ≤ d,
(61)

or

(Lx, Ly, Lz) ∈ Ω̃a ⇔

{
Ly ≤ d
( x
ε
, y
ε
, z
ε
) ∈ Ωa.

(62)

We define:

Σε(y) = Σε(ξ, ν, ζ) =


Σεa in Ωa,

Σεr in Ωr,

Σεc in Ωc,

(63)

where Σεa = σa
σ

L
2

δ
2 ,Σ

ε
r = σr

σ
L

2

δ
2 and Σεc = σc

σ
L

2

δ
2 have their expressions in term of ε given from Tables

above depending on the case we are interested in. The detail of this expressions are in appendix B. The
model that we present is the case ω = 106 rad.s−1, η = 5, Σεa = ε, Σεr = ε4 and Σεc = 1.
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Defining also mapping

ψε : R3 → R3

(x, y, z) 7→ (
x
ε
,

y
ε
,

z
ε

),
(64)

we can set Ωε
a as ψ−1

ε (Ωa) ∩ (R × [0, d
L
] × R), Ωε

r as ψ−1
ε (Ωr) ∩ P̃ and Ωε

c as ψ−1
ε (Ωc) ∩ P̃. We also define

the boundaries Γd = {x ∈ R3, y = d
L
} and ΓL = {x ∈ R3, y = −L} and interfaces Γra = {x ∈ R3, y = 0}

and Γεcr = ∂Ωc. Hence equation (48) reads:

∇×∇×Eε + (−ω2εηε? + i ω σε(x, y, z))Eε = 0 in Ω, (65)

where Ω = Ωε
a ∪ Ωε

r ∪ Ωε
c = {x ∈ R3,−1 < y < d

L
} does not depend on ε. Only its partition in Ωε

a, Ωε
r

and Ωε
c is ε-dependent where

σε(x, y, z) = Σε(
x
ε
,

y
ε
,

z
ε

), (66)

with Σε given by (63) and

εη =
4π2L

2

λ2 , (67)

with the value of η ≥ 0 extracted from Tables, and where we replace E by Eε, to clearly state that it
depends on ε.

Equation (65) is provided with the following boundary conditions:

∇×Eε × e2 = −iωHd(x, z) × e2 on Γd, (68)

coming from (53). And, coming from (49),

∇×Eε × e2 = 0 on ΓL. (69)

From (65) we can deduce the condition on the divergence of Eε which can be written in two ways. As
previously in (34), (35) and (36) we obtain:

∇·[(−ω2εηε? + iωσε)Eε] = 0 in Ω, (70)

which will be preferentially used with (65) and its second one is

∇·Eε
|Ωε

a
= 0 in Ωε

a, ∇·E
ε
|Ωε

r
= 0 in Ωε

r , ∇·E
ε
|Ωε

c
= 0 in Ωε

c, (71)

with the transmission conditions on the interfaces Γra and Γεcr

(−ω2εη + iωΣεa) Eε
|Ωε

a
· n|Ωε

a = (−ω2εηεr + iωΣεr ) Eε
|Ωε

r
· n|Ωε

r on Γra,

(−ω2εηεr + iωΣεr ) Eε
|Ωε

r
· n|Ωε

r = (−ω2εηεc + iωΣεc) Eε
|Ωε

c
· n|Ωε

c on Γεcr.
(72)
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Before treating mathematically the question we are interested in, we make a last simplification. Since
it seems clear that physical relevant phenomena occur in the upper part of the plate. The boundary
condition on the lower boundary of the plate has very little influence on the physics of what happens
in the upper part, we consider that the lower boundary of Ω is located in y = −∞ in place of y = −1,
making the second boundary condition useless. Besides, as L and d are of the same order it seems
reasonable to set Γd = {x ∈ R3, y = 1} and consequently

Ω = {x ∈ R3, y < 1} = Ωε
a ∪Ωε

r ∪Ωε
c, with,

Ωε
a = ψ−1

ε (Ωa),
Ωε

r = ψ−1
ε (Ωr),

Ωε
c = ψ−1

ε (Ωc),

(73)

with ψε defined in (64). We have that the border of Ω is Γd. In the following section we will establish
existence and uniqueness results.

3. Mathematical analysis of the models

3.1. Preliminaries

We are going to make precise the variational formulation. First of all, we need to introduce the
following functional spaces. We have the standard function spaces L2(Ωε) = [L2(Ωε)]3

H(curl,Ω) = {u ∈ L2(Ω) : ∇×u ∈ L2(Ω)},
H(div,Ω) = {u ∈ L2(Ω) : ∇·u ∈ L2(Ω)},

(74)

with the usual norms:

‖u‖2
H(curl,Ω)

= ‖u‖2L2(Ω) + ‖∇×u‖2L2(Ω),

‖u‖2
H(div,Ω)

= ‖u‖2L2(Ω) + ‖∇·u‖2L2(Ω).
(75)

They are well known Hilbert spaces.

We use in this paper, the trace spaces H−
1
2 (curl,Γd) and H−

1
2 (div,Γd) defined by

H−
1
2 (curl,Γd) = {u ∈ H−

1
2 (Γd,R

3), (n · u)|Γd = 0, curlΓd u ∈ H−
1
2 (Γd,R

3)}, (76)

H−
1
2 (div,Γd) = {u ∈ H−

1
2 (Γd,R

3), (n · u)|Γd = 0, divΓd u ∈ H−
1
2 (Γd,R

3)} (77)

where the surface divergence divΓd u and the surface rotation curlΓd u are defined by

(divΓd u,V)L2(Γd) = −(u,∇Γd V)L2(Γd ,R3), ∀ V ∈ C1(Γd)
curlΓd u = n · (∇ × u|Γd )

(78)

and the surface gradient ∇Γd V is defined by the orthogonal projection of ∇ on Γd, n denotes the outward
unit vector normal to Γd.
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Finally we recall the trace theorems, see J.C Nédélec [13] for the demonstration, stating that
the traces mappings

γT : H(curl,Ω) −→ H−
1
2 (curl,Γd), that assigns any u ∈ H(curl,Ω) its tangential components

n × (u × n), is continuous and surjective, that is:

‖γT (u)‖
H−

1
2 (curl,Γd)

≤ CγT ‖u‖H(curl,Ω), ∀u ∈ H(curl,Ω)

γt : H(curl,Ω) −→ H−
1
2 (div,Γd), that assigns any u ∈ H(curl,Ω) its tangential components u × n, is

continuous and surjective:

‖γt(u)‖
H−

1
2 (div,Γd)

≤ Cγt‖u‖H(curl,Ω), ∀u ∈ H(curl,Ω).

Moreover, H−
1
2 (div,Γd) is the dual of H−

1
2 (curl,Γd) and one has the Green’s formula:

∫
Ω

(∇×u · V − u · ∇×V)dx = 〈u × n,VT 〉Γd ∀(u,V) ∈ H(curl,Ω). (79)

We define the next space:

X(Ω) = {u ∈ H(curl,Ω) | ∇·u|Ωε
a ∈ L2(Ωε

a),∇·u|Ωε
r ∈ L2(Ωε

r ), ∇·u|Ωε
c ∈ L2(Ωε

c)}. (80)

Our variational space is:

Xε(Ω) = {u ∈ X(Ω) | (−ω2εη + iωσε
|Ωε

a
)u|Ωε

a · e2 = (−ω2εηεr + iωσε
|Ωε

r
)u|Ωε

r · e2,

(−ω2εηεr + iωσε
|Ωε

r
)u|Ωε

r · n
ε
|Ωε

r
= (−ω2εηεc + iωσε

|Ωε
c
)u|Ωε

c · n
ε
|Ωε

c
.

(81)

Finally

Xε(Ω) = {u ∈ X(Ω) | (−ω2εη + iωΣεa)u|Ωε
a · e2 = (−ω2εηεr + iωΣεr )u|Ωε

r · e2,

(−ω2εηεr + iωΣεr )u|Ωε
r · n

ε
|Ωε

r
= (−ω2εηεc + iωΣεc)u|Ωε

c · n
ε
|Ωε

c
}.

(82)

This space is equipped with the norm

‖u‖2Xε(Ω) = ‖u‖2
L2(Ω)

+ ‖∇·u|Ωε
a‖

2
L2(Ωε

a) + ‖∇·u|Ωε
r ‖

2
L2(Ωε

r ) + ‖∇·u|Ωε
c‖

2
L2(Ωε

c) + ‖∇×u‖2
L2(Ω)

.
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3.2. Weak formulation

Now, we introduce the variational formulation of our problem (65), (68) and (69) for the electric
field. Integrating (65) over Ω and using the Green’s formula and (68) we obtain∫

Ω

∇×Eε · ∇×V dx +

∫
Ωε

a

(−ω2εη + iωΣεa)Eε · V dx

+

∫
Ωε

c

(−ω2εηεc + iωΣεc)Eε · V dx +

∫
Ωε

r

(−ω2εηεr + iωΣεr )Eε · V dx

=

∫
Γd

(∇×Eε × e2) · VT dσ

=

∫
Γd

−iωHd × e2 · VT dσ

(83)

where V is the complex conjugate of V and VT = (e2 × V) × e2. We introduce the sesquilinear form
depending on parameters η and ε:

For Eε,V ∈ Xε(Ω),

aε,η(Eε,V) =

∫
Ω

∇×Eε · ∇×V dx +
∑

i=a,r,c

∫
Ωε

i

(−ω2εηεi + iωΣεi ) Eε · V dx. (84)

Hence, the weak formulation of (65), (68) and (69) that we will use is the following:
Find Eε ∈ Xε(Ω) such as ∀ V ∈ Xε(Ω) we have :

aε,η(Eε,V) = −iω
∫

Γd

Hd × e2 · VT dσ.
(85)

Integrating by parts in the variational formulation (83), we find the following transmission problem:

∇×∇×Eε + (−ω2εη + i ω Σεa)Eε = 0 in Ωε
a,

∇×∇×Eε + (−ω2εηεr + i ω Σεr )Eε = 0 in Ωε
r ,

∇×∇×Eε + (−ω2εηεc + i ω Σεc)Eε = 0 in Ωε
c.

Eε
|Ωε

a
× e2 = Eε

|Ωε
r
× n|Ωε

r on Γra,

Eε
|Ωε

r
× n|Ωε

r = Eε
|Ωε

c
× n|Ωε

c on Γεcr,

∇×Eε
|Ωε

a
× e2 = ∇×Eε

|Ωε
r
× n|Ωε

r on Γra,

∇×Eε
|Ωε

r
× n|Ωε

r = ∇×Eε
|Ωε

c
× n|Ωε

c on Γεcr,

(86)

where e2 is the unit outward normal to Ωε
a, n|Ωε

r is the unit outward normal to Ωε
r and n|Ωε

c is the unit
outward normal to Ωε

c. We refer to Annex C for the proof that transmission problem (86) is equivalent
to ((65), (68), (69), (71)).

3.3. Regularized Maxwell equations for the electric field

The sesquilinear form aε,η is not coercive on Xε(Ω), so we regularize it adding terms involving the
divergence of Eε in Ωε

a, Ωε
r and Ωε

c. Thanks to the additional terms, existence and uniqueness of the
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regularized variational formulation solution will be established by the Lax-Milgram theory. Let s be
an arbitrary positive number, we define the regularized formulation of problem (85):

Find Eε ∈ Xε(Ω) such that for any V ∈ Xε(Ω)

aε,ηR (Eε,V) = aε,η(Eε,V) + s
∫

Ωε
a

∇·Eε∇·V dx

+ s
∫

Ωε
r

∇·Eε∇·V dx + s
∫

Ωε
c

∇·Eε∇·V dx

= −iω
∫

Γd

Hd × e2 · VT dσ.

(87)

For any ε > 0 and any η ≥ 0, sesquilinear form aε,ηR (., .) is continuous over Xε(Ω) thanks to the
continuity conditions. We will show that it is also coercive. The following proposition was inspired by
article [8] Lemma 1.1.

Proposition 3.1. For any ε > 0, for any η ≥ 0 and for any s > 0, there exists a positive constant
ω0 which does not depend on ε and such that for all ω ∈ (0, ω0), there exists a positive constant C0

depending on εr, εc, s, ω but not on ε such that:

∀ Eε ∈ Xε(Ω), <[exp(−i
π

4
) aε,ηR (Eε, Eε)] ≥ C0‖Eε‖Xε(Ω) (88)

Proof. We have:

<[exp(−i
π

4
) aε,ηR (Eε, Eε)] = aεR(Eε, Eε) −

∫
Ωε

a

ω2εη|Eε|2 dx

−

∫
Ωε

r

ω2εηεr|Eε|2 dx −
∫

Ωε
c

ω2εηεc|Eε|2 dx.
(89)

with

aεR(Eε, Eε) =

∫
Ω

|∇×Eε|2 dx + s
∫

Ωε
a

|∇·Eε|2 dx

+ s
∫

Ωε
r

|∇·Eε|2 dx + s
∫

Ωε
c

|∇·Eε|2 dx

+

∫
Ωε

a

ωΣεa|E
ε|2 dx +

∫
Ωε

r

ωΣεr |E
ε|2 dx

+

∫
Ωε

c

ωΣεc |E
ε|2 dx.

(90)

We have the following estimate:

|aεR(Eε, Eε)| ≥ min{1, ω, s}(‖∇×Eε‖2L2(Ω) + ‖∇·Eε‖2L2(Ωε
a) + ‖∇·Eε‖2L2(Ωε

r )

+ ‖∇·Eε‖2L2(Ωε
c) + ‖Eε‖2L2(Ω)).

(91)

Then we have:

| aεR(Eε, Eε)| ≥ min{1, ω, s}‖Eε‖2Xε(Ω). (92)
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Returning to formulation (88), for η ≥ 0, since max(Σεa,Σ
ε
r ,Σ

ε
c) > εη, inequality (88) is valid with

C0 = min{1, ω, s} as soon as ω2 min{1, εr, εc} < min{1, ω, s} or ω <
√

min{1,ω,s}
min{1,εr ,εc}

. This ends the proof of
Proposition 3.1. �

Thanks to Proposition 3.1 we can state the existence and uniqueness of the solution to regularized
problem (87).

Theorem 3.2. Under the assumptions of Proposition 3.1, there exists a unique solution Eε to regular-
ized problem (87).

Proof. The sesquilinear form aε,ηR is continuous, bounded, coercive thanks to Proposition 3.1 and the
right hand side is continuous on Xε(Ω), then problem (87) has a unique solution in Xε(Ω) thanks to the
Lax-Milgram Lemma. �

3.4. Existence, uniqueness and estimate

Theorem 3.3. For any ε > 0, for any η ≥ 0, there exists a positive constant ω0 which does not depend
on ε and such that for all ω ∈ (0, ω0), there exists a unique solution of (86) or ((65), (68), (69), (71)).

Proof. We show that for an appropriate choice of s that Eε satisfies all equations (86) or ((65), (68),
(69), (71)). It is obvious that any solution of (86) or of ((65), (68), (69),(71)) is also solution to (87).
Indeed, since from (86) or from ((65), (68), (69),(71)) we have ∇·Eε

|Ωε
a

= 0, ∇·Eε
|Ωε

r
= 0, ∇·Eε

|Ωε
c

= 0, the
additional terms s

∫
Ωε

a
∇·Eε∇·V dx + s

∫
Ωε

r
∇·Eε∇·V dx + s

∫
Ωε

c
∇·Eε∇·V dx cancel in (87).

Uniqueness follows from that if Eε
1 and Eε

2 are two solutions to (65) with the boundary condition
(69) their difference eε = Eε

2 − Eε
1 satisfies the problem (65) with (69). Then it comes∫

Ω

|∇×eε|2 dx +

∫
Ωε

a

(−ω2εη + iωΣεa)|eε|2 dx

+

∫
Ωε

c

(−ω2εηεc + iωΣεc)|eε|2 dx +

∫
Ωε

r

(−ω2εηεr + iωΣεr )|eε|2 dx

= 0.

(93)

Taking the imaginary part of the expression we get
∫

Ωε
a
ωΣεa|e

ε|2 dx+
∫

Ωε
c
ωΣεc |e

ε|2 dx+
∫

Ωε
r
ωΣεr |e

ε|2 dx = 0
and then eε = 0.

Let us consider the reciprocal assertion, according to the same proof of S. Hassani, S. Nicaise, A.
Maghnouji in [17], we define H1

0(Ωε
c,∆) the subspace of ψ ∈ H1

0(Ωε
c) such that ∆(ψ) ∈ L2(Ωε

c).
Let Eε

s be the solution of the regularized formulation (87). In (87) we take a test function V = ∇ψ

where ψ ∈ H1
0(Ωε

c,∆), extended by zero outside Ωε
c. We get:∫

Ωε
c

s∇·Eε
s∇·(∇ψ) dx +

∫
Ωε

c

(−ω2εηεc + iωΣεc)Eε
s · ∇ψ dx = 0. (94)

By Green’s formula, ∀ψ ∈ H1
0(Ωε

c,∆), we obtain:∫
Ωε

c

∇·Eε
s(∆ψ +

ω2εηεc − iωΣεc

s
ψ) dx = 0. (95)
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Thus, if we choose s such that ω2εηεc−iωΣεc
s is not an eigenvalue of (∆dir,Ω

ε
c): the Laplacian operator in

Ωε
c with Dirichlet condition on its boundary, then for all ϕ ∈ L(Ωε

c)2 there exists ψ ∈ H1
0(Ωε

c,∆) solution
of

∆ψ +
ω2εηεc − iωΣεc

s
ψ = ϕ. (96)

Then, we conclude that

∇ · Eε
s|Ωε

c
= 0. (97)

A similar argument in Ωε
a yields ∇·Eε

s|Ωε
a

= 0 for s such that ω2εη−iωΣεa
s is not an eigenvalue of (∆dir,Ω

ε
a).

In the same way, we obtain in Ωε
r , ∇·Eε

s|Ωε
r

= 0 with s such that ω2εηεr−iωΣεr
s is not an eigenvalue of

(∆dir,Ω
ε
r ).

Hence ∇·Eε
s = 0 in Ωε

c, this cancels the additional term s
∫

Ωε
c
∇·Eε

s∇·V dx in (87). In the same

way, ∇·Eε
s = 0 in Ωε

r and ∇·Eε
s = 0 in Ωε

a cancel s
∫

Ωε
r
∇·Eε

s∇·V dx and s
∫

Ωε
a
∇·Eε

s∇·V dx in (87). So,
(87) becomes (83). Applying Green’s formula, we find (65). �

Theorem 3.4. Under the assumptions of Theorem 3.2, Eε ∈ Xε(Ω) solution of (87) satisfies

‖Eε‖Xε(Ω) ≤ C (98)

with C =
Cγt CγT
C0
‖Hd‖H(curl,Ω)

Proof. The sesquilinear form aε,ηR (Eε,V) is coercive, weak formulation (87) becomes:

C0‖Eε‖2Xε(Ω) ≤ <(exp(−i
π

4
)aε,ηR (Eε, Eε))

≤ | exp(−i
π

4
) · aε,ηR (Eε, Eε)| = |aε,ηR (Eε, Eε)|

≤ |

∫
Γd

−iωHd × e2 · Eε
T dσ|

≤ ‖Hd × e2‖H−
1
2 (div,Γd)

‖Eε
T ‖H−

1
2 (curl,Γd)

≤ CγtCγT ‖Hd × e2‖H(curl,Ω)‖E
ε‖H(curl,Ω)

(99)

where Eε
T = e2× (Eε×e2) and the continuous dependence of the trace norm with C =

Cγt CγT
C0
‖Hd‖H(curl,Ω)

gives:

‖Eε‖2Xε(Ω) ≤ C‖Eε‖H(curl,Ω) ≤ C‖Eε‖Xε(Ω). (100)

�
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4. Homogenization

With the aim to obtain a convergence result for the problem (65), (68) and (69), we propose an
approach based on two-scale convergence. This concept was introduced by G. Nguetseng [15], [16]
and specified by G. Allaire [2], [3] which studied properties of the two-scale convergence. M. Neuss-
Radu in [14] presented an extension of two-scale convergence method to the periodic surfaces. Many
authors applied two-scale convergence approach D. Cionarescu and P. Donato [7], N. Crouseilles, E.
Frénod, S. Hirstoaga and A. Mouton [9], Y. Amirat, K. Hamdache and A. Ziani [1] and also A. Back,
E. Frénod [5]. This mathematical concept were applied to homogenize the time-harmonic Maxwell
equations S. Ouchetto, O. Zouhdi and A. Bossavit [18], H.E. Pak[19].

In our model, the parallel carbon cylinders are periodically distributed in direction x and z, as the
material is homogenous in the y direction, we can consider that the material is periodic with a three
directional cell of periodicity. In other words, introducingZ = [−1

2 ,
1
2 ]× [−1, 0]2, function Σε given by

(63) is naturally periodic with respect to (ξ, ζ) with period [−1
2 ,

1
2 ] × [−1, 0] but it is also periodic with

respect to y with periodZ.
Now, we review some basis definitions and results about two-scale convergence.

4.1. Two-scale convergence

We first define the function spaces H#(curl,Z) = {u ∈ H(curl,R3) : u isZ-periodic}
H#(div,Z) = {u ∈ H(div,R3) : u isZ-periodic}

(101)

and where H(curl,R3) and H(div,R3) are defined by (74) with Ωε replaced by R3. We introduce

L2
#(Z) = {u ∈ L2(R3), u isZ-periodic}, (102)

and

H1
#(Z) = {u ∈ H1(R3), u isZ-periodic}, (103)

where H1(R3) is the usual Sobolev space on R3. First, denoting by C0
#(Z) the space of functions in

C0(R3) and Z-periodic, C0
0(R3) the space of continuous functions over R3 with compact support, we

have the following definitions:

Definition 4.1. A sequence uε(x) in L2(Ω) two-scale converges to u0(x, y) ∈
L2(Ω,L2

#(Z)) if for every V(x, y) ∈ C0
0(Ω,C0

#(Z))

lim
ε→0

∫
Ω

uε(x) · V(x, x/ε) dx =

∫
Ω

∫
Z

u0(x, y) · V(x, y) dxdy. (104)

Proposition 4.2. If uε(x) two-scale converges to u0(x, y) ∈ L2(Ω,L2
#(Z)), we have for all v(x) ∈ C0(Ω)

and all w(y) ∈ L2
#(Z)

lim
ε→0

∫
Ω

uε(x) · v(x)w(
x
ε

) dx =

∫
Ω

∫
Z

u0(x, y) · v(x)w(y) dxdy. (105)
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Theorem 4.3. (Nguetseng). Let uε(x) ∈ L2(Ω). Suppose there exists a constant c > 0 such that for all
ε

‖uε‖L2(Ω) ≤ c.

Then there exists a subsequence of ε (still denoted ε) and u0(x, y) ∈ L2(Ω,L2
#(Z)) such that:

uε(x)� u0(x, y). (106)

Proposition 4.4. Let uε(x) be a sequence of functions in L2(Ω), which two-scale converges to a limit

u0(x, y) ∈ L2(Ω,L2
#(Z)). Then uε(x) converges also to u(x) =

∫
Z

u0(x, y)dy in L2(Ω) weakly. Further-

more, we have

lim
ε→0
‖uε‖L2(Ω) ≥ ‖u0‖L2(Ω×Y) ≥ ‖u‖L2(Ω). (107)

Remark 4.5. : - For any smooth function u(x, y), being Z-periodic in y, the associated sequence
uε(x) = u(x, x

ε
) two-scale converges to u(x, y).

- Any sequence uε that converges strongly in L2(Ω) to a limit u(x), two-scale converges to the same
limit u(x).

- If uε admits an asymptotic expansion of the type uε(x) = u0(x, x/ε) + εu1(x, x/ε) + ε2u2(x, x/ε) + ...

, where the functions ui(x, y) are smooth andZ-periodic in y, two-scale convergence allows to identify
the first term of the expansion u0(x, y) with the two-scale limit of uε and the two-scale limit of uε(x)−u0(x, x

ε )
ε

with u1(x, y) see (Frénod, Raviart and Sonnendrucker [?]).

Proposition 4.6. Let uε(x) in L2(Ω). Suppose there exists a constant c > 0 such that for all ε

‖uε‖L2(Ω) ≤ c.

Up to a subsequence, uε(x) two-scale converges to u0(x, y) ∈ L2(Ω,L2
#(Z)) such that:

u0(x, y) = u(x) + ũ0(x, y), (108)

where ũ0(x, y) ∈ L2(Ω,L2
#(Z)) satisfies ∫

Z

ũ0(x, y) dy = 0, (109)

and u(x) =

∫
Z

u0(x, y) dy is a weak limit in L2(Ω).

Proof. uε(x) is bounded in L2(Ω), then by application of Theorem 4.3, we get the first part of the
proposition. Furthermore by defining ũ0 as

ũ0(x, y) = u0(x, y) −
∫
Z

u0(x, y)dy, (110)

we obtain the decomposition of u0. �

Defining ∇x = ( ∂
∂x ; ∂

∂y ; ∂
∂z ), ∇y = ( ∂

∂ξ
; ∂
∂ν

; ∂
∂ζ

), we have
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Proposition 4.7. Let uε(x) be bounded in H(curl,Ω). Then, up to a subsequence, there exists a function
u1 ∈ L2(Ω,H#(curl,Z)) such that

∇×uε(x)� ∇x × u0(x, y) + ∇y × u1(x, y), (111)

where u0 is given by Proposition 4.6.

Proof. From Theorem 4.3, since uε and ∇×uε are bounded in L2(Ω) then, up to a subsequence, they
two-scale converge to u0(x, y) ∈ L2(Ω,L2

#(Z)) and η0(x, y) ∈ L2(Ω,L2
#(Z)). So we have for all

V(x, y) ∈ C0
0(Ω; C0

#(Z)):

lim
ε→0

∫
Ω

uε(x) · V(x, x/ε) dx =

∫
Ω

∫
Z

u0(x, y) · V(x, y)dxdy, (112)

lim
ε→0

∫
Ω

∇×uε(x) · V(x, x/ε) dx =

∫
Ω

∫
Z

η0(x, y) · V(x, y)dxdy. (113)

Next, by integration by parts, we have:∫
Ω

∇×uε(x) · V(x, x/ε) dx =

∫
Ω

uε(x) · (∇x × V(x, x/ε) +
1
ε
∇y × V(x, x/ε)) dx. (114)

If we choose a test function V ∈ C0
0(Ω,C0

#(Z)) such that ∇y×V = 0, passing to the limit in the left-hand
side (113) we get∫

Ω

∇x × uε(x) · V(x, x/ε) dx→
∫

Ω

∫
Z

u0(x, y) · ∇x × V(x, y) dxdy

=

∫
Ω

∫
Z

∇x × u0(x, y) · V(x, y) dxdy.
(115)

This means that with the difference between (113) and (115):∫
Ω

∫
Z

[η0(x, y) − ∇x × u0(x, y)] · V(x, y) dxdy = 0, (116)

for all functions V ∈ C1
0(Ω) with ∇y × V = 0. It follows that function η0(x, y) − ∇x × u0(x, y) is

orthogonal to functions with zero rotational in L2(Ω,H#(curl),Z). This implies that there exists a
function u1 ∈ L2(Ω,H#(curl,Z)) such that

∇y × u1(x, y) = η0(x, y) − ∇x × u0(x, y). (117)

Thus

∇×uε(x)� ∇x × u0(x, y) + ∇y × u1(x, y). (118)

�
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Proposition 4.8. Let uε be a bounded sequence in H(curl,Ω). Then a subsequence uε can be extrated
from ε such that, letting ε→ 0

uε(x)� u(x) + ∇yΦ(x, y). (119)

where Φ ∈ L2(Ω,H1
#(Z)) is a scalar-valued function and where u ∈ L2(Ω). And we have

∇×uε(x) ⇀ ∇x × u(x) weakly in L2(Ω). (120)

where u(x) is given by Proposition 4.6.

Proof. Proof of (119), for any V(x, y) ∈ C1
0(Ω,C1

#(Z)), we have∫
Ω

∇×uε(x) · V(x,
x
ε

) dx =

∫
Ω

uε(x){∇x × V(x,
x
ε

) +
1
ε
∇y × V(x,

x
ε

)} dx. (121)

Multiplying by ε we have

ε

∫
Ω

∇×uε(x) · V(x,
x
ε

) dx =

∫
Ω

uε(x){ε∇x × V(x,
x
ε

) + ∇y × V(x,
x
ε

)} dx. (122)

Taking the two-scale limit as ε→ 0 we obtain

0 =

∫
Ω

∫
Z

u0(x, y) · ∇y × V(x, y) dxdy, (123)

which implies that ∇y × u0(x, y) = 0. Thus u0(x, y) is a gradient with respect to the variable y for
some scalar function Φ(x, y). And according to Proposition (4.6) u0(x, y) can be written as u0(x, y) =

u(x) + ∇yΦ(x, y), where u(x) =
∫
Z

u0(x, y)dy for some scalar function Φ(x, y).

Next, we choose a test function V(x) ∈ L2(Ω). Integration by parts yields:

lim
ε→0

∫
Ω

∇×uε(x) · V(x) dx = lim
ε→0

∫
Ω

uε(x) · ∇×V(x) dx

=

∫
Ω

∫
Z

u0(x, y) dy · ∇×V(x) dx

=

∫
Ω

∇×u(x) · V(x) dx.

(124)

�

These results are important properties of the two-scales convergence. We note that the usual con-
cepts of convergence do not preserve information concerning the micro-scale of the function. However,
the two-scale convergence preserves information on the micro-scale.
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4.2. Homogenized problem

We will explore in this section the behavior of electromagnetic field Eε using the two-scale conver-
gence to determine the homogenized problem. We place in the context of the case 6 with δ > L and
ω = 106rad.s−1, then we have η = 5 and Σεa = ε, Σεr = ε4, Σεc = 1 which gives the following equation:

∇×∇×Eε − ω2ε5k(ε)Eε + iω[(1εC(
x
ε

) + ε41εR(
x
ε

))1{y<0} + ε1{y>0}]Eε = 0, (125)

where for a given setA, 1A stands for the characteristic function ofA and where 1ε
A

(x) = 1A( x
ε
), hence

1εC and 1εR are the characteristic functions of the sets filled by carbon fibers and by resin. And where
k(ε) = (εc1εC(x) + εr1εR(x))1{y<0} + 1{y>0}.

Remark 4.9. We recall that εc and εr are respectively the relative permittivity of the carbon fibers and
the resin. You should not confused with the microscopic scale ε.

On this purpose, we have the following Theorem:

Theorem 4.10. Under assumptions of Theorem 3.4, sequence Eε solution of (87) or (86) or ((65), (68),
(69), (71)) converges to E(x) ∈ L2(Ω) which is the unique solution of the homogenized problem:

θ1∇x × ∇x × E(x) + iωθ2E(x) = 0 in Ω,

θ1∇x × E(x) × e2 = −iωHd × e2 on Γd,

∇x × E(x) × e2 = 0 on ΓL.

(126)

with θ1 =
∫
Z

Id − ∇yχ(y) dy and θ2 =
∫
Z

1C(y)(Id − ∇yχ(y)) dy.
And where the scalar function χ is the unique solution, up to an additive constant in the Hilbert

space ofZ periodic functions H1
#(Z), of the following boundary value problem

4y(χ(y)) = 0 inZ\∂ΩC,

[
∂χ

∂n
] = −n j on ∂ΩC,

[χ] = 0 on ∂ΩC.

(127)

where [ f ] is the jump across the surface of ∂ΩC, n j, j = {1, 2, 3} is the projection on the axis e j of the
normal of ∂ΩC.

Proof. Step 1: Two-scale convergence. Due to the estimate (98), Eε is bounded in L2(Ω). Hence, up
to a subsequence, Eε two-scale converges to E0(x, y) belonging to L2(Ω,L2

#(Z)). That means for any
V(x, y) ∈ C1

0(Ω,C1
#(Z)), we have:

lim
ε→0

∫
Ω

Eε(x) · V(x,
x
ε

) dx =

∫
Ω

∫
Z

E0(x, y) · V(x, y) dydx. (128)

Step 2: Deduction of the constraint equation. We multiply the equation (125) by oscillating test
function Vε(x) = V(x, x

ε
) where V(x, y) ∈ C1

0(Ω,C1
#(Z)):∫

Ω

∇×Eε(x) · (∇x × Vε(x,
x
ε

) +
1
ε
∇y × Vε(x,

x
ε

)) + [−ω2ε5k(ε)

+ iω(
(
1εC(

x
ε

) + ε41εR(
x
ε

)
)
1{y<0} + ε1{y>0})]Eε · Vε(x,

x
ε

) dx

= −iω
∫

Γd

Hd × e2 · (e2 × V(x, 1, z, ξ,
1
ε
, ζ)) × e2 dσ.

(129)
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Integrating by parts, we get:∫
Ω

Eε(x) · (∇x × ∇x × Vε(x,
x
ε

) +
1
ε
∇y × ∇x × Vε(x,

x
ε

)

+
1
ε
∇x × ∇y × Vε(x,

x
ε

) +
1
ε2∇y × ∇y × Vε(x,

x
ε

)) + [−ω2ε5k(ε)

+ iω
(
1εC(

x
ε

) + ε41εR(
x
ε

)
)
1{y<0} + ε1{y>0}]Eε(x) · Vε(x,

x
ε

) dx

= −iω
∫

Γd

Hd × e2 · (e2 × V(x, 1, z, ξ,
1
ε
, ζ)) × e2 dσ.

(130)

Now we multiply (130) by ε2 and we pass to the two-scale limit, applying Theorem 4.3 we obtain:∫
Ω

∫
Z

E0(x, y)
(
∇y × ∇y × V(x, y)

)
dydx = 0. (131)

We deduce the constraint equation for the profile E0:

∇y × ∇y × E0(x, y) = 0. (132)

Step 3. Looking for the solutions to the constraint equation. Multiplying Equation (132) by E0

and integrating by parts overZ leads to∫
Z

∇y × ∇y × E0(x, y)E0(x, y) dy =

∫
Z

|∇y × E0(x, y)|2 dy = 0. (133)

We deduce that equation (133) is equivalent to

∇y × E0(x, y) = 0, (134)

Moreover a solution of (134) is also solution of (132). So (132) and (134) are equivalent.

Hence, from Proposition (119) we conclude that E0(x, y) can be decomposed as

E0(x, y) = E(x) + ∇yΦ0(x, y). (135)

Step 4. Equations for E(x) and Φ0(x, y). The divergence equation of (125) is multiplied with
V(x, x

ε
) = εv(x)ψ( x

ε
), where v ∈ C1

0(Ω) and ψ ∈ H1
#(Z). Theorem 4.3 and integration by parts yields for

all ψ ∈ H1
#(Z) and v ∈ C1

0(Ω)

lim
ε→0

∫
Ω

∇·{−ω2ε5k(ε)Eε(x) + iω[(1εC(
x
ε

) + ε41εR(
x
ε

))1{y<0} + ε1{y>0}]Eε(x)}εv(x)ψ(
x
ε

) dx

= − lim
ε→0

∫
Ω

{−ω2ε5k(ε)Eε(x) + iω[1εC(
x
ε

) + ε41εR(
x
ε

))1{y<0}

+ ε1{y>0}]Eε} · (εv(x)ψ(
x
ε

) + v(x)∇yψ(
x
ε

)) dx

= −

∫
Ω

∫
Z

v(x)∇yψ(y) · [iω1C(y)E0(x, y)] dydx = 0.

(136)
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from which it follows that

∇y · [iω1C(y)E0(x, y)] = 0. (137)

with E0 given by the decomposition (119). So we obtain the local equation

∇y · [iω1C(y){E(x) + ∇yΦ0(x, y)}] dy = 0. (138)

The potential Φ0 may be written on the form

Φ0(x, y) =

3∑
j=1

χ j(y)e j · E(x) = χ(y) · E(x), (139)

From (135) and (139), we get:
E0(x, y) = (Id + ∇yχ(y))E(x). (140)

Inserting E0 in (138) we obtain

∇y · [iω1C(y)(Id + ∇yχ(y)] = 0. (141)

Now, we build oscillating test functions satisfying constraint (135) and use them in weak formulation
(130). We define test function V(x, y) = α(x) + ∇yβ(x, y), V(x, y) ∈ C1

0(Ω,C1
#(Z)) and we inject in

(130) test function Vε = V(x, x
ε
), which gives:∫

Ω

Eε(x) ·
(
∇x × ∇x × V(x,

x
ε

) +
2
ε
∇x × ∇y × V(x,

x
ε

)

+
1
ε2∇y × ∇y × V(x,

x
ε

)
)

+ [−ω2ε5k(ε) + iω(
(
1εC(

x
ε

)

+ ε41εR(
x
ε

)
)
1{y<0} + ε1{y>0})]Eε(x) · V(x,

x
ε

) dx

= −iω
∫

Γd

Hd × e2 · (e2 × V‡(x, 1, z, ξ, ζ)) × e2 dσ,

(142)

with V(x, 1, z, ξ, ν, ζ) = V‡(x, 1, z, ξ, ζ) the restriction on V which does not depend on ν. The term
containing the constraint, the third one, disappears. Passing to the limit ε → 0 and replacing the
expression of V by the term α(x) + ∇yβ(x, y), we have

∇x × ∇y × V(x, y) = ∇x × ∇y × [α(x) + ∇yβ(x, y)]
= ∇x × ∇y × (α(x)) + ∇x × ∇y × (∇yβ(x, y))
= ∇x × ∇y × (∇yβ(x, y)).

(143)

Since ∇y × (∇y) = 0, the term 2
ε
∇x × ∇y × ∇yβ(x, y)) vanishes. Therefore, (142) becomes:∫

Ω

∫
Z

E0(x, y) · ∇x × ∇x × (α(x) + ∇yβ(x, y))

+ iω1C(y)E0(x, y) · (α(x) + ∇yβ(x, y) dydx

= −iω
∫

Γd

Hd × e2 · (e2 × (α(x, 1, z) + ∇yβ(x, 1, z, ξ, ζ))) × e2 dσ.

(144)
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Now in (144) we replace expression E0 giving by (140). We obtain∫
Ω

∫
Z

(Id + ∇yχ(y))E(x) ·
(
∇x × ∇x × (α(x) + ∇yβ(x, y))

+ iω1C(y)(Id + ∇yχ(y))E(x)) · (α(x) + ∇yβ(x, y)) dydx

= −iω
∫

Γd

Hd × e2 · (e2 × (α(x, 1, z) + ∇yβ(x, 1, z, ξ, ζ))) × e2 dσ.

(145)

Taking α(x) = 0 in (145), we obtain∫
Ω

∫
Z

(Id+∇yχ(y))∇x × ∇x × E(x)∇yβ(x, y)

+ iω1C(y)(Id + ∇yχ(y))E(x) · ∇yβ(x, y)dydx = 0.
(146)

Integrating by parts∫
Ω

∫
Z

−∇y · {(Id − ∇yχ(y))∇x × ∇x × E(x)}β(x, y)

− iω∇y · {1C(y)(Id − ∇yχ(y))E(x)}β(x, y) dydx = 0.
(147)

And since ∇y · {1C(y)(Id + ∇yχ(y))E(x)} = 0 we obtain∫
Ω

∫
Z

−∇y · {(Id + ∇yχ(y))∇x × ∇x × E(x)}β(x, y) dydx = 0. (148)

which gives the cell problem

∇y · [Id + ∇yχ(y)] = 0. (149)

From (141) and (149), the scalar function χ is the unique solution, thanks to Lax-Milgram Lemma, up
to an additive constant in the Hilbert space of Z periodic function H1

#(Z) of the following boundary
value problem 

4y(χ(y)) = 0 inZ\∂ΩC,

[
∂χ

∂n
] = −n j on ∂ΩC,

[χ] = 0 on ∂ΩC.

(150)

where [ f ] is the jump across the surface of ∂ΩC, n j, j = {1, 2, 3} is the projection on the axis e j of the
normal of ∂ΩC.

Remark 4.11. (150) can be seen as an electrostatic problem. Solving (141) and (149) reduces to look
for a potential induced by surface density of charges. Then χ is this potential induced by the charges
on the interface of carbon fiber.

Setting β(x, y) = 0 in (145) and integrating by parts, we get∫
Ω

∫
Z

(Id + ∇yχ(y))∇x × ∇x × E(x) · α(x)

+ iω1C(y)(Id + ∇yχ(y))E(x)α(x) dydx

= −iω
∫

Γd

Hd × e2 · (e2 × α(x, 1, z)) × e2 dσ.

(151)
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which gives the following well posed problem for E(x)
θ1∇x × ∇x × E(x) + iωθ2E(x) = 0 in Ω,

θ1∇x × E(x) × e2 = −iωHd × e2 on Γd,

∇x × E(x) × e2 = 0 on ΓL.

(152)

with θ1 =
∫
Z

Id + ∇yχ(y) dy and θ2 =
∫
Z

1C(y)(Id + ∇yχ(y)) dy.
This concludes the proof of Theorem (126). �

5. Conclusion

We presented in this paper the homogenization of time harmonic Maxwell equation by the method
of two-scale convergence. We started by studying the time harmonic Maxwell equations with coef-
ficients depending of ε. We remind that λ is the wave length, δ is the skin length, L is thickness of
the medium and e the size of the basic cell and then ε = e

L is the small parameter. We find for low
frequencies the macroscopic homogenized Maxwell equations depending on the volume fraction of the
carbon fibers and we find also the microscopic equation.

6. Annexes

A. Presentation of all cases of tables 1, 2, 3 and 4

- The case 1 corresponds to the air not ionized, a resin not doped and σ is the effective electric
conductivity in the direction of the carbon fibers. We have for the effective electric conductivity σ =

σc ∼ 40000S .m−1, the resin conductivity is about σr ∼ 10−10S .m−1 and the conductivity in the air is
about 10−14S .m−1. So when we want to calculate the ratio in (41)-(43) depending on ε we get: σr

σ
∼ ε7

and σa
σ
∼ ε9.

- In case 2, the air is not ionized, the resin is doped and σ is the effective conductivity is in direction
of carbon fibers. We have like the case 1 σ = σc ∼ 40000S .m−1. The resin conductivity is about
σr ∼ 10−3S .m−1 and the conductivity in the air is about 10−14S .m−1. So σr

σ
∼ ε4 and σa

σ
∼ ε9.

- In case 3, the air is not ionized, the resin is not doped and σ is the effective conductivity is
orthogonal to the fibers. σ = σr ∼ 10−10S .m−1. The carbon fiber conductivity is about σc ∼ 104S .m−1

and the conductivity in the air is about 10−14S .m−1. σc
σ
∼ 1

ε7 and σa
σ
∼ ε2.

- Case 4 corresponds to the air non ionized, the resin doped and σ is the effective conductivity
orthogonal to the fibers. The effective electric conductivity is σ = σr ∼ 10−3S .m−1. The carbon fiber
conductivity is about σc ∼ 40000S .m−1 and the conductivity in the air is about 10−14S .m−1. σc

σ
∼ 1

ε4

and σa
σ
∼ ε6.

- In case 5, the air is ionized, the resin is not doped and σ is the effective conductivity is in the
direction of the carbon fibers. This one is equal σ = σc ∼ 40000S .m−1, the resin conductivity is about
σr ∼ 10−10S .m−1 and the conductivity in the air is now about 4242S .m−1. σr

σ
∼ ε7 and σa

σ
∼ ε.

- Case 6 corresponds to the air ionized, the resin doped and σ is the effective conductivity in di-
rection of the carbon fibers. This one is equal σ = σc ∼ 40000S .m−1, the resin conductivity is about
σr ∼ 103S .m−1 and the conductivity in the air is now about 4242S .m−1. σr

σ
∼ ε4 and σa

σ
∼ ε.
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- Case 7 corresponds to the air ionized, the resin not doped and σ is the effective conductivity
orthogonal to the fibers. The effective conductivity is σ = σr ∼ 10−10S .m−1, the carbon fibers conduc-
tivity is about σc ∼ 40000S .m−1 and the conductivity in the air is now about 4242S .m−1. σc

σ
∼ 1

ε7 and
σa
σ
∼ 1

ε6 .
- Case 8 corresponds to the air ionized, the resin doped andσ is the effective conductivity orthogonal

to the fibers. The effective conductivity is σ = σr ∼ 10−3S .m−1, the carbon fibers conductivity is about
σc ∼ 40000S .m−1 and the conductivity in the air is now about 4242S .m−1. σc

σ
∼ 1

ε4 and σa
σ
∼ 1

ε2 .

B. Structure of the equations depending of ε

For ω = 100rad.s−1, we have

Case 1

η = 9 and Σεa = ε11, Σεr = ε9, Σεc = ε2. (153)

Case 2

η = 9 and Σεa = ε11, Σεr = ε6, Σεc = ε2. (154)

Case 3

η = 9 and Σεa = ε12, Σεr = ε10, Σεc = ε3. (155)

Case 4

η = 9 and Σεa = ε13, Σεr = ε7, Σεc = ε3. (156)

Case 5

η = 9 and Σεa = ε3, Σεr = ε9, Σεc = ε2. (157)

Case 6

η = 9 and Σεa = ε3, Σεr = ε6, Σεc = ε2. (158)

Case 7

η = 9 and Σεa = ε5, Σεr = ε10, Σεc = ε3. (159)

Case 8

η = 9 and Σεa = ε5, Σεr = ε7, Σεc = ε3. (160)

For ω = 106rad.s−1

Case 1

η = 5 and Σεa = ε9, Σεr = ε7, Σεc = 1. (161)
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Case 2

η = 5 and Σεa = ε9, Σεr = ε4, Σεc = 1. (162)

Case 3

η = 5 and Σεa = ε10, Σεr = ε8, Σεc = ε. (163)

Case 4

η = 5 and Σεa = ε11, Σεr = ε5, Σεc = 1. (164)

Case 5

η = 5 and Σεa = ε, Σεr = ε7, Σεc = 1. (165)

Case 6

η = 5 and Σεa = ε, Σεr = ε4, Σεc = 1. (166)

Case 7

η = 5 and Σεa = ε3, Σεr = ε8, Σεc = ε. (167)

Case 8

η = 5 and Σεa = ε3, Σεr = ε5, Σεc = 1. (168)

For ω = 1010rad.s−1

Case 1

η = 1 and Σεa = ε7, Σεr = ε5, Σεc = 1
ε2 . (169)

Case 2

η = 1 and Σεa = ε7, Σεr = ε2, Σεc = 1
ε2 . (170)

Case 3

η = 1 and Σεa = ε8, Σεr = ε6, Σεc = 1
ε
. (171)

Case 4

η = 1 and Σεa = ε9, Σεr = ε3, Σεc = 1
ε
. (172)

Case 5

η = 1 and Σεa = 1
ε
, Σεr = ε5, Σεc = 1

ε2 . (173)
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Case 6

η = 1 and Σεa = 1
ε
, Σεr = ε2, Σεc = 1

ε2 . (174)

Case 7

η = 1 and Σεa = 1
ε
, Σεr = ε6, Σεc = 1

ε
. (175)

Case 8

η = 1 and Σεa = ε, Σεr = ε3, Σεc = 1
ε
. (176)

For ω = 1012rad.s−1

Case 1

η = 0 and Σεa = ε6, Σεr = ε4, Σεc = 1
ε3 . (177)

Case 2

η = 0 and Σεa = ε6, Σεr = ε, Σεc = 1
ε3 . (178)

Case 3

η = 0 and Σεa = ε5, Σεr = ε3, Σεc = 1
ε4 . (179)

Case 4

η = 0 and Σεa = ε7, Σεr = ε, Σεc = 1
ε3 . (180)

Case 5

η = 0 and Σεa = 1
ε2 , Σεr = ε4, Σεc = 1

ε3 . (181)

Case 6

η = 0 and Σεa = 1
ε2 , Σεr = ε, Σεc = 1

ε3 . (182)

Case 7

η = 0 and Σεa = 1
ε2 , Σεr = ε3, Σεc = 1

ε4 . (183)

Case 8

η = 0 and Σεa = 1
ε
, Σεr = ε, Σεc = 1

ε3 . (184)
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C. The transmission Maxwell problem

Taking a test function V ∈ C1(Ω) with compact support in Ωε
c, in weak formulation (85) associated

with the problem ((65), (68), (69)). Since∫
Ω

∇×Eε
|Ωε

c
· ∇×V dx = 〈∇×∇×Eε

|Ωε
c
,V〉Ωε

c , (185)

we deduce the third equation in (86). Similarly, taking V ∈ C1(Ω) with compact support respectively
in Ωε

r and Ωε
a, we obtain the first and the second equation in (86). Now, since E|Ωε

a ∈ H(curl,Ωε
a) and

E|Ωε
r ∈ H(curl,Ωε

r ), let V ∈ C1
0(Ωε

a
⋃

Ωε
r ) integrating by parts we get∫

Ωε
a
⋃

Ωε
r

E · ∇×V dx =

∫
Ωε

a

E|Ωε
a · ∇×V dx +

∫
Ωε

r

E|Ωε
r · ∇×V dx

=

∫
Ωε

a

∇×E|Ωε
a · V dx +

∫
Ωε

r

∇×E|Ωε
r · V dx

+

∫
Γra

(E|Ωε
a × e2 − E|Ωε

r × n|Ωε
r ) · V ds.

(186)

Since on every point of Γra e2 = −n|Ωε
r the assumed continuity require

E|Ωε
a × e2 = E|Ωε

r × n|Ωε
r , (187)

we obtain the fourth relation in (86). With the same argument on Γεcr, we obtain the last relation in (86).
This shows that (85) implies (86). And, if Eε is solution to (86) following that for any regular set Ω̂ in
Ω the Stokes’s formula gives, for more details see p 57, 58 of P. Monk’s book [?]:

∀ E,V ∈ H(curl, Ω̂)
∫

Ω̂

∇×E · V − E · ∇×V dx = 〈E × n
Ω̂
,VT 〉∂Ω̂ (188)

H(curl, Ω̂) has the same definition as H(curl,Ω) with Ω replaced by Ω̂ and where VT = (n × V) × n,
and n

Ω̂
is the unit outward normal of ∂Ω̂. For all V ∈ H(curl,Ω), V|Ωε

r ∈ H(curl,Ωε
r ), V|Ωε

a ∈ H(curl,Ωε
a)

and V|Ωε
c ∈ H(curl,Ωε

c). Hence, fixing any E′ ∈ H(curl,Ω) according to the second equation in (86), we
have ∇×Eε

|Ωε
r
∈ H(curl,Ωε

r ) then applying (188) in Ωε
r with E = ∇×Eε

|Ωε
r

and V we get∫
Ωε

r

∇×Eε
|Ωε

r
· ∇×V dx =

∫
Ωε

r

∇×∇×Eε
|Ωε

r
· V dx + 〈∇×Eε

|Ωε
r
× n|Ωε

r ,VT 〉Γra

+ 〈∇×Eε
|Ωε

c
× n|Ωε

c ,VT 〉Γεcr .

(189)

Doing the same for Ωε
c, we have∫

Ωε
c

∇×Eε
|Ωε

c
· ∇×V dx =

∫
Ωε

c

∇×∇×Eε
|Ωε

c
· V dx + 〈∇×Eε

|Ωε
c
× nε

|Ωε
c
,VT 〉Γεcr . (190)

Finally for Ωε
a, we have∫

Ωε
a

∇×Eε
|Ωε

a
· ∇×V dx =

∫
Ωε

a

∇×∇×Eε
|Ωε

a
· V dx + 〈∇×Eε

|Ωε
a
× e2,VT 〉Γd

− 〈∇×Eε
|Ωε

a
× e2,VT 〉Γεra .

(191)
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Summing the relations above since in every point of Γra n|Ωε
r = −e2 and in every point of Γεcr n|Ωε

c =

−n|Ωε
r , it comes ∫

Ω

∇×Eε · ∇×V dx =

∫
Ω

∇×∇×Eε · V dx+ < [∇×Eε × n],VT >Γra

+ 〈[∇×Eε × n],VT 〉Γcr − iω
∫

Γd

Hd × nε · VT dσ.
(192)

According to (85) and the first, second and third equations in (86) we have

〈∇×Eε
|Ωε

c
× n|Ωε

c ,VT 〉Γεcr − 〈∇×Eε
|Ωε

r
× n|Ωε

r ,VT 〉Γεcr

+ 〈∇×Eε
|Ωε

r
× n|Ωε

r ,VT 〉Γra + 〈∇×Eε
|Ωε

a
× e2,VT 〉Γra = 0,

(193)

for all V ∈ H(curl,Ω) which causes the last two equalities in (86) and concludes the first part of the
proof.

Reciprocally, integrating by parts (86) we have:

∀ V ∈ Xε(Ω),
∫

Ω

∇×Eε · ∇×V dx +

∫
Ωε

a

(−ω2εη + iωΣεa)Eε · V dx

= −iω
∫

Γd

Hd × nε · VT dσ,
(194)

and

∀ V ∈ Xε(Ω),
∫

Ω

∇×Eε · ∇×V dx +

∫
Ωε

r

(−ω2εηεr + i ωΣεr )Eε · V dx = 0, (195)

and

∀ V ∈ Xε(Ω),
∫

Ω

∇×Eε · ∇×V dx +

∫
Ωε

c

(−ω2εηεc + i ωΣεc)Eε · V dx = 0. (196)

By adding these three integrals, we get the variational formulation (85) associated with the problem
((65), (68), (69)).
Taking the divergence of the first three equations of (86) we get (71).
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