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Abstract
In this paper we consider models built in [4] for short-term, mean-term and long-term morphodynamics of dunes and
megariples. We give an existence and uniqueness result for long term dynamics of dunes. This result is based on a
periodic-in-time-and-space solution existence result for degenerated parabolic equation that we set out. Finally the
mean-term and long-term models are homogenized.
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1 Introduction

In Faye, Frénod and Seck [4], based on works of Bagnold [2], Gadd, Lavelle and Swift [6], Idier[7], Astruc and
Hulcher [8], Meyer-Peter and Muller [12] and Van Rijn [14], we set out that a relevant model for short term dynamics
of dunes, i.e. for their dynamics over several months, in coastal ocean waters submitted to tide is

∂ zε

∂ t
− a

ε
∇ ·

(
(1−bεm)ga(|u|)∇zε)= c

ε
∇ ·

(
(1−bεm)gc(|u|)

u
|u|

)
, (1.1)

where a > 0, b and c are constants and where zε = zε(t,x), is the dimensionless seabed altitude at t and in x. For a
given constant T, t ∈ [0,T ), stands for the dimensionless time and x = (x1,x2) ∈ T2, T2 being the two dimensional
torus R2/Z2, is the dimensionless position variable.
Operators ∇ and ∇· refer to gradient and divergence. Functions ga and gc are regular and strictly increasing functions
on R+ and satisfy ga ≥ gc ≥ 0, gc(0) = g′c(0) = 0,

∃d ≥ 0, supu∈R+ |ga(u)|+ supu∈R+ |g′a(u)| ≤ d, supu∈R+ |gc(u)|+ supu∈R+ |g′c(u)| ≤ d,
∃Uthr ≥ 0, ∃Gthr > 0, such that u ≥Uthr =⇒ ga(u)≥ Gthr.

(1.2)

∗Corresponding author. ibrahima.faye@uadb.edu.sn, Tel:+221775148387.
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Fields u : [0,T )×T2 → R2 and m : [0,T )×T2 → R are dimensionless water velocity and height. They are given by

u(t,x) = U (t,
t
ε
,x), m(t,x) = M (t,

t
ε
,x), (1.3)

where

U = U (t,θ ,x) and M = M (t,θ ,x) are regular functions on R+×R×T2,
θ 7−→ (U ,M ) is periodic of period 1,

|U |, |∂U

∂ t
|, |∂U

∂θ
|, |∇ ·U |, |M |, |∂M

∂ t
|, |∂M

∂θ
|, |∇M | are bounded by d,

∀(t,θ ,x) ∈ R+×R×T2, |U (t,θ ,x)| ≤Uthr =⇒
∂U

∂ t
(t,θ ,x) = 0,

∂M

∂ t
(t,θ ,x) = 0, ∇M (t,θ ,x) = 0 and ∇ ·U (t,θ ,x) = 0,

∃θα < θω ∈ [0,1] such that θ ∈ [θα ,θω ] =⇒ |U (t,θ ,x)| ≥Uthr.

(1.4)

A relevant model for mean term, i.e. when dune dynamics is observed over a few years, is

∂ zε

∂ t
− a

ε
∇ ·

(
(1−b

√
εm)ga(|u|)∇zε)= c

ε
∇ ·

(
(1−b

√
εm)gc(|u|)

u
|u|

)
, (1.5)

with a > 0, b and c are constants, with condition (1.2) on ga and gc and with u and m given by

u(t,x) = Ũ (t,
t√
ε
,

t
ε
,x), m(t,x) = M (t,

t√
ε
,

t
ε
,x), (1.6)

For mathematical reasons, we assumed

Ũ (t,τ,θ ,x) = U (t,θ ,x)+
√

ε U1(t,τ,θ ,x), (1.7)

where U = U (t,θ ,x) and U1 = U1(t,τ,θ ,x) are regular. We also assumed that M = M (t,τ,θ ,x) is regular and

θ 7−→ (U ,U1,M ) is periodic of period 1,
τ 7−→ (U1,M ) is periodic of period 1,

|U |, |∂U

∂ t
|, |∂U

∂θ
|, |∇ ·U |, |U1|, |

∂U1

∂ t
|, |∂U1

∂τ
|, |∂U1

∂θ
|, |∇ ·U1|,

|M |, |∂M

∂ t
|, |∂M

∂θ
|, |∂M

∂τ
|, |∇M | are bounded by d,

∀ε ∈ (0,1), ∀(t,τ,θ ,x) ∈ R+×R×R×T2, |Ũ (t,τ,θ ,x)| ≤Uthr =⇒
∂ Ũ

∂ t
(t,τ,θ ,x) = 0,

∂ Ũ

∂τ
(t,τ,θ ,x) = 0, ∇ · Ũ (t,τ,θ ,x) = 0,

∂M

∂ t
(t,τ,θ ,x) = 0,

∂M

∂τ
(t,τ,θ ,x) = 0 and ∇M (t,τ,θ ,x) = 0,

∀ε ∈ (0,1), ∃θα < θω ∈ [0,1] not depending on ε such that θ ∈ [θα ,θω ] =⇒ |Ũ (t,τ,θ ,x)| ≥Uthr.

(1.8)

It follows from (1.7) that Ũ (t, t√
ε ,

t
ε ,x) Three-Scale converges to U (t,θ ,x) (see subsection 2.2 for the definition of

Three-Scale convergence).
A relevant model for long-term dune dynamics is the following equation

∂ zε

∂ t
− a

ε2 ∇ · ((1−bεm)ga(|u|)∇zε) =
c
ε2 ∇ ·

(
(1−bεm)gc(|u|)

u
|u|

)
, (1.9)

where a > 0, b and c are constants, where ga and gc satisfy assumption (1.2), and where zε is defined on the same
space as before. It is also relevant to assume

u(t,x) = U (t,
t
ε
,x) = U0(

t
ε
)+ ε U1(

t
ε
,x)+ ε2U2(t,

t
ε
,x), (1.10)

m(t,x) = M (t,
t
ε
,x) = M1(

t
ε
,x)+ ε2M2(t,

t
ε
,x), (1.11)
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where U0 = U0(θ), U1 = U1(θ ,x), U2 = U2(t,θ ,x), M1 = M1(θ ,x) and M2 = M2(t,θ ,x) are regular and

θ 7−→ (U0,U1,U2,M1,M2) is periodic of period 1,

|U0|, |
∂U0

∂θ
|, |U1|, |

∂U1

∂θ
|, |∇ ·U1|, |U2|, |

∂U2

∂ t
|, |∂U2

∂θ
|, |∇ ·U2|, |M1|, |

∂M1

∂θ
|,

|∇M1|, |M2|, |
∂M2

∂ t
|, |∂M2

∂θ
|, |∇M2| are bounded by d,

∀θ ∈ R, |U0(θ)| ≤ Uthr =⇒ U1(θ ,x) = U2(t,θ ,x) = 0 and M1(θ ,x) = M2(t,θ ,x) = 0,
∀ε ∈ (0,1),∀θ ∈ R, |U0(θ)|>Uthr =⇒

∀(t,x) ∈ [0,T )×T2, |U0(θ)+ εU1(θ ,x)+ ε2U2(t,θ ,x)|>Uthr,
∀ε ∈ (0,1),∃θα < θω ∈ [0,1] not depending on ε such that θ ∈ R, θ ∈ [θα ,θω ]

=⇒ |U0(θ)+ εU1(θ ,x)+ ε2U2(t,θ ,x)| ≥Uthr,

{θ̄ ∈ [0,1] such that
∂U0

∂θ
(θ̄) = 0} is a non empty finite union of intervals

(that can be reduced to points).

(1.12)

Remark 1.1. In formula (1.12), we make an assumption stronger than in the previous cases (for the needs of the
proof). This assumption implies that if |U (t,θ ,x)| ≤ Uthr then U (t,θ ,x) = U0(θ) does not depend on t and x and
M (t,θ ,x) = 0.

It follows from (1.10) that u(t,x) = U (t, t
ε ,x) Two-Scale converges to U0(θ) (see subsection 2.2 for the definition of

Two-scale convergence).
Equations (1.1), (1.5) or (1.9) need to be provided with an initial condition

zε
|t=0 = z0, (1.13)

giving the shape of the seabed at the initial time.
In [4], we then gave an existence and uniqueness result for short-term model (1.1) if assumptions (1.2), (1.3) and (1.4)
are satisfied and for the mean term one (1.5), if assumptions (1.2), (1.6), (1.7) and (1.8) are satisfied. Those results
were built on a periodic-in-time-and-space solution existence result for degenerated parabolic equation. Under the
same assumptions, the asymptotic behaviour of zε , as ε → 0, solution of short term model (1.1) was also given by
homogenization methods. Futhermore if moreover Uthr = 0, a corrector result was set out, which gives a rigorous
version of asymptotic expansion of the sequence zε :

zε(t,x) = U(t,
t
ε
,x) + εU1(t,

t
ε
,x)+ . . . , (1.14)

where U and U1 are solutions to
∂U
∂θ

−∇ ·
(
Ã ∇U

)
= ∇ · C̃ , (1.15)

∂U1

∂θ
−∇ ·

(
Ã ∇U1

)
= ∇ · C̃1 +

∂U
∂ t

+∇ · (Ã1∇U), (1.16)

where Ã and C̃ are given by

Ã (t,θ ,x) = aga(|U (t,θ ,x)|) and C̃ (t,θ ,x) = cgc(|U (t,θ ,x)|) U (t,θ ,x)
|U (t,θ ,x)|

, (1.17)

and Ã1 and C̃1 are given by

Ã1(t,θ ,x) =−abM (t,θ ,x)ga(|U (t,θ ,x)|),

and C̃1(t,θ ,x) =−cbM (t,θ ,x)gc(|U (t,θ ,x)|) U (t,θ ,x)
|U (t,θ ,x)|

. (1.18)

In [4], we did not state neither any existence result for long term model (1.9) nor any asymptotic behaviour result for
mean term and long term models. Stating those results is the subject of the present paper. We will now state those
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main results.
The paper is oragnized as follows: in section 2 we are going to remind the main results of the paper and we recall in
the last subsection the notion of two scale convergence. In section 3, we establish the existence and uniqueness results
for long term dynamimics of dunes. The section 4 concerns the homogenization results of long term model and the
last section is devoted to the homegenization and corrector results to the mean term model.

2 Results and preliminaries

2.1 Results
The first one concerns existence and uniqueness for the long-term model.

Theorem 2.1. For any T > 0, any a > 0, any real constants b and c and any ε ∈ (0,1), under assumptions (1.2),
(1.10), (1.11) and (1.12), if

z0 ∈ H1(T2), (2.19)

there exists a unique function zε ∈ L∞([0,T ),L2(T2)) with
√

(1−bεm)ga(|u|)∇zε ∈ L2((0,T ), L2(T2)), solution to
equation (1.9) provided with initial condition (1.13).
Moreover, for any t ∈ [0,T ], zε satisfies

∥zε∥L∞([0,T ),L2(T2)) ≤ γ̃, (2.20)

for a constant γ̃ not depending on ε and

d
(∫

T2
zε(t,x)dx

)
dt

= 0. (2.21)

In formulas of this theorem, ∇zε is understood in the distribution sense, and for zε , being solution to (1.9) and (1.13)
is understood in the following sense

−
∫ T

0

∫
T2

zε ∂φ
∂ t

dxdt +
a
ε2

∫ T

0

∫
T2

(
(1−bε m

)
ga(|u|)∇zε ∇φ dxdt =

∫
T2

z0(x)φ(0,x)dx

+
c
ε2

∫ T

0

∫
T2

∇ ·
((

1−bε m)gc(|u|)
u
|u|

)
φ dxdt

for every φ ∈ D([0,T )×T2). (2.22)

The proof of Theorem 2.1 is done in section 3, except equality (2.21) which is directly gotten by integrating (1.9) with
respect to x over T2.
We now give a result concerning the asymptotic behaviour as ε → 0 of the long term model.
We notice that, because of hypothesis (1.12), when |U0| ≤Uthr, we have U (t,θ ,x) = U0(θ) and M (t,θ ,x) = 0.
Moreover we denote

Θ = [0,T )×{θ ∈ R, ga(|U0(θ)|) = 0}×T2, (2.23)

and
Θthr = {(t,θ ,x) ∈ [0,T )×R×T2, |U0(θ)|<Uthr}. (2.24)

We now give our first asymptotic result.

Theorem 2.2. For any T > 0, under the same assumptions as in Theorem 2.1, the sequence of solutions (zε) to
equation (1.9) given by Theorem 2.1 Two-Scale converges to the profile U ∈ L∞([0,T ),L∞

# (R,L2(T2))) which is given
by

U =
∫
T2

z0 dx. (2.25)
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Above and in the sequel, for all p ≥ 1 and q ≥ 1, we denote by

Lp
#(R,L

q(T2)) =
{

f : R−→ Lq(T2) mesurable and periodic of period 1 in θ such that

θ 7→ ∥ f (θ)∥Lq(T2) ∈ Lp([0,1])
}
. (2.26)

Now we turn to mean term model for which we set out the asymptotic behaviour.

Theorem 2.3. Under assumptions (1.2), (1.6), (1.7) and (1.8), for any T, not depending on ε, the sequence (zε)
of solutions to (1.5) built in [4] provided with initial condition (1.13) Three-Scale converges to the profile U ∈
L∞([0,T ),L∞

# (R,L∞
# (R,L2(T2)))) solution to

∂U
∂θ

−∇ · (Ã ∇U) = ∇ · C̃ , (2.27)

where Ã and C̃ are given by

Ã (t,τ,θ ,x) = aga(|U (t,θ ,x)|) and C̃ (t,τ,θ ,x) = cgc(|U (t,θ ,x)|) U (t,θ ,x)
|U (t,θ ,x)|

, (2.28)

with U given in (1.7).

Finally, a corrector result for the mean-term model is given under restrictive assumptions.

Theorem 2.4. Under assumptions (1.2), (1.6), (1.7), (1.8) and if moreover Uthr = 0, considering function zε ∈
L∞([0,T ),L2(T2)), solution to (1.5) with initial condition (1.13) and function Uε ∈ L∞([0,T ),L2(T2)) defined by

Uε(t,x) =U(t,
t√
ε
,

t
ε
,x), (2.29)

where U is the solution to (2.27), the following estimate is satisfied:∥∥∥ zε −Uε
√

ε

∥∥∥
L∞([0,T ),L2(T2))

≤ α , (2.30)

where α is a constant not depending on ε.
Furthermore,

zε −Uε
√

ε
Three-Scale converges to a profile U 1

2
∈ L∞([0,T )×R,L∞

# (R,L2(T2))), (2.31)

which is the unique solution to

∂U 1
2

∂θ
−∇ ·

(
Ã ∇U 1

2

)
= ∇ · C̃1 +∇ ·

(
Ã1∇U

)
− ∂U

∂τ
(2.32)

where Ã and C̃ are given by (2.28) and where Ã1 and C̃1 are given by

Ã1(t,τ,θ ,x) =−abM (t,τ,θ ,x)ga(|U (t,θ ,x)|),

and C̃1(t,τ,θ ,x) =−cbM (t,τ,θ ,x)gc(|U (t,θ ,x)|) U (t,θ ,x)
|U (t,θ ,x)|

, (2.33)

with U given in (1.7).
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2.2 On Two-Scale and Three-Scale convergence
In this subsection we are going to recall the notion of Two-Scale and Three-Scale convergence.

Definition 2.1. A sequence of functions (zε) in L∞([0,T ),L2(T2)) is said to Two-Scale converge to U ∈L∞([0,T ),L∞
# (R,L2(T2)))

if for every ψ ∈ C ([0,T ),C#(R,C (T2))) we have

lim
ε→0

∫
T2

∫ T

0
zε(t,x)ψ(t,

t
ε
,x)dt dx =

∫
T2

∫ T

0

∫ 1

0
U(t,θ ,x)ψ(t,θ ,x)dθ dt dx. (2.34)

A sequence of functions (uε) in L∞([0,T ),L2(T2)) is said to Three-Scale converge to U ∈L∞([0,T ), L∞
# (R,L∞

# (R,L2(T2))))
if for every ψ ∈ C ([0,T ),C#(R,C#(R,C (T2)))) we have

lim
ε→0

∫
T2

∫ T

0
uε(t,x)ψ(t,

t√
ε
,

t
ε
,x)dt dx =

∫
T2

∫ T

0

∫
[0,1]2

U(t,τ,θ ,x)ψ(t,τ,θ ,x)dτ dθ dt dx. (2.35)

In [1] and [13], the following theorem is also given.

Theorem 2.5. If a sequence (zε) is bounded in L∞([0,T ),L2(T2)), there exists a subsequence still denoted (zε) and
a function U ∈ L∞([0,T ),L∞

# (R,L2(T2)))[resp. L∞([0,T ), L∞
# (R,L∞

# (R,L2(T2))))] such that

uε −→U Two-Scale [resp. Three-Scale]. (2.36)

3 Existence and estimates, proof of Theorem 2.1

Setting

A ε(t,x) = Ãε(t,
t
ε
,x), (3.37)

and
C ε(t,x) = C̃ε(t,

t
ε
,x), (3.38)

where
Ãε(t,θ ,x) = a(1−bεM (t,θ ,x))ga(|U (t,θ ,x)|), (3.39)

and

C̃ε(t,θ ,x) = c(1−bεM (t,θ ,x))gc(|U (t,θ ,x)|) U (t,θ ,x)
|U (t,θ ,x)|

, (3.40)

where U is given in (1.10) and M is given in (1.11), equation (1.9) with initial condition (1.13) can be set in the
form 

∂ zε

∂ t
− 1

ε2 ∇ · (A ε ∇zε) =
1
ε2 ∇ ·C ε ,

zε
|t=0 = z0,

(3.41)

or more precisely

−
∫ T

0

∫
T2

zε ∂φ
∂ t

dxdt +
1
ε2

∫ T

0

∫
T2

A ε ∇zε ·∇φ dxdt =
∫
T2

z0 φ(0, ·)dx+
1
ε2

∫ T

0

∫
T2

(
∇ ·C ε)φ dxdt

for every φ ∈ D([0,T )×T2). (3.42)

Because of assumption (1.10) and under assumptions (1.2) and (1.12), Ãε and C̃ε given by (3.39) and (3.40) satisfy
the following hypotheses:

θ 7−→ (Ãε , C̃ε) is periodic of period 1,
x 7−→ (Ãε , C̃ε) is defined on T2,

|Ãε | ≤ γ, |C̃ε | ≤ γ,

∣∣∣∣∣∂ Ãε
∂ t

∣∣∣∣∣≤ ε2γ,

∣∣∣∣∣∂ C̃ε
∂ t

∣∣∣∣∣≤ ε2γ,

∣∣∣∣∣∂∇Ãε
∂ t

∣∣∣∣∣≤ ε2γ,∣∣∣∣∣∂ Ãε
∂θ

∣∣∣∣∣≤ γ,

∣∣∣∣∣∂ C̃ε
∂θ

∣∣∣∣∣≤ γ, |∇Ãε | ≤ εγ , |∇ · C̃ε | ≤ εγ ,

∣∣∣∣∣∂∇ · C̃ε
∂ t

∣∣∣∣∣≤ ε2γ,

(3.43)
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∃ G̃thr > 0, θα < θω ∈ [0,1] not depending on ε such that θ ∈ [θα ,θω ] =⇒ Ãε(t,θ ,x)≥ G̃thr,

Ãε(t,θ ,x)≤ G̃thr =⇒


∂ Ãε
∂ t

(t,θ ,x) = 0, ∇Ãε(t,θ ,x) = 0,

∂ C̃ε
∂ t

(t,θ ,x) = 0, ∇ · C̃ε(t,θ ,x) = 0,

(3.44)

and 
|C̃ε | ≤ γ|Ãε |, |C̃ε |2 ≤ γ|Ãε |, |∇Ãε | ≤ εγ |Ãε |,

∣∣∣∂ Ãε
∂ t

∣∣∣≤ ε2γ |Ãε |,∣∣∣∂ (∇Ãε)

∂ t

∣∣∣2 ≤ ε2γ|Ãε |,
∣∣∣∇ · C̃ε

∣∣∣≤ εγ |Ãε |,
∣∣∣∂ C̃ε

∂ t

∣∣∣≤ ε2γ|Ãε |,
∣∣∣∂ C̃ε

∂ t

∣∣∣2 ≤ ε2γ2|Ãε |,
(3.45)

for a constant γ depending only on a, b, c and d.
The proofs of inequalities in (3.43) and (3.45) are all done following identical techniques. We are going to establish
some of them. For instance, we estabilish, easily:∣∣∣Ãε(t,θ ,x)

∣∣∣= ∣∣a(1−bεM (t,θ ,x))ga(|U (t,θ ,x)|)
∣∣≤ |a||ga(|U (t,θ ,x)|)| ≤ ad,

∣∣∣∂ Ãε
∂ t

∣∣∣= ∣∣∣−abε2ε
∂M2(t,θ ,x)

∂ t
ga(|U (t,θ ,x)|)+a(1−bεM (t,θ ,x))ε2 ∂U2(t,θ ,x)

∂ t
g′a(|U (t,θ ,x)|)

∣∣∣
≤ ε2(abεd2 +ad2) = ε2γ,∣∣∣∂ Ãε

∂θ

∣∣∣= ∣∣∣−abε(
∂M1

∂θ
(θ ,x)+ ε

∂M2

∂θ
(t,θ ,x))ga(|U (t,θ ,x)|)

+a(1−bεM (t,θ ,x))
∂U

∂θ
(t,θ ,x)g′a(|U (t,θ ,x)|)

∣∣∣≤ γ.

We have also ∣∣∣∇ · C̃ε

∣∣∣= ∣∣∣ ∂
∂x1

(
c(1−bεM (t,θ ,x))gc(|U (t,θ ,x)|) U1(t,θ ,x)

|U (t,θ ,x)|

)
+

∂
∂x2

(
c(1−bεM (t,θ ,x))gc(|U (t,θ ,x)|) U2(t,θ ,x)

|U (t,θ ,x)|

)∣∣∣
≤ γ1

[∣∣∣ ∂
∂x1

(
c(1−bεM )gc(|U |)

)
+

∂
∂x2

(
c(1−bεM )gc(|U |)

)∣∣∣]
= γ1

∣∣∣−cbε
∂M

∂x1
gc(|U |)+ c(1−bε M )g′c(|U |)∂ |U |

∂x1
− cbε

∂M

∂x2
gc(|U |)+ c(1−bε M )g′c(|U |)∂ |U |

∂x2︸ ︷︷ ︸
≤γ2|∇A ε |

∣∣∣,
and using the fact that |∇Ãε | ≤ εγ3|Ãε |, we get∣∣∣∇ · C̃ε

∣∣∣≤ γ1γ2γ3ε|Ãε |= εγ |Ãε |.

The other inequalities are obtained in a similar way.
In this section we focus on existence and uniqueness of time-space periodic parabolic equations. From this, we then
get existence of solution to equation (3.41). Existence of zε over a time interval depending on ε, is a straightforward
consequence of adaptations of results from LadyzensKaja, Solonnikov and Ural’ Ceva [9] or Lions [10]. Our aim is
to prove that zε solution to (3.41) is bounded indepently of ε. We are going to introduce the following regularized
equations.

∂S ν

∂θ
− 1

ε
∇ ·

(( ˜Aε(t, ·, ·)+ν
)
∇S ν

)
=

1
ε

∇ · C̃ε(t, ·, ·), (3.46)

and

µS ν
µ +

∂S ν
µ

∂θ
− 1

ε
∇ ·

(( ˜Aε(t, ·, ·)+ν
)
∇S ν

µ

)
=

1
ε

∇ · C̃ε(t, ·, ·), (3.47)
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where µ and ν are positive parameters.
We first prove existence of solutions S ν

µ of (3.47) and we give estimates of S ν
µ .

Theorem 3.1. Under assumptions (3.43), (3.44) and (3.45), for any µ > 0 and any ν > 0, there exists a unique
S ν

µ = S ν
µ (t,θ ,x) ∈ C 0 ∩ L2(R×T2), periodic of period 1 with respect to θ , solution to (3.47) and regular with

respect to the parameter t. Moreover, the following estimates are satisfied

sup
θ∈R

∣∣∣∣∫T2
S ν

µ (θ ,x)dx
∣∣∣∣= 0, (3.48)

∥∇S ν
µ ∥L2

#(R,L2(T2)) ≤
γ
ν
, (3.49)

∥∆S ν
µ ∥L2

#(R,L2(T2)) ≤
√

2
εγ
ν

√
γ2

ν2 +1, (3.50)

∥∥∥∥∂S ν
µ

∂θ

∥∥∥∥
L2

#(R,L2(T2))

≤ γ√
εν

√
(

γ
2ν

+1), (3.51)

∥∇S ν
µ ∥L∞

# (R,L2(T2)) ≤
√

γ2

ν2 +
2εγ2

ν
(

γ2

ν2 +1), (3.52)

∥S ν
µ ∥L∞

# (R,L2(T2)) ≤
√

γ2

ν2 +
2εγ2

ν
(

γ2

ν2 +1), (3.53)∥∥∥∥∂S ν
µ

∂ t

∥∥∥∥
L∞

# (R,L2(T2))

≤ ε3 γ
ν
(1+

γ
ν
). (3.54)

Proof. . (of Theorem 3.1). The proof of this theorem is very similar to the one of Theorem 3.3 of Faye, Frénod and
Seck [4]. The big difference is the presence of 1

ε − factors in (3.47). Hence we only sketch the most similar arguments
and focus on the management of those 1

ε −factors.
In a first place, to prove existence of S ν

µ , we consider for ξ ∈ L2(T2), the solution ξ ν
µ to µξ ν

µ +
∂ξ ν

µ

∂θ
− 1

ε
∇ ·

(
(Ãε +ν)∇ξ ν

µ

)
=

1
ε

∇ · C̃ε ,

ξ ν
µ|θ=0 = ξ ,

(3.55)

where Ãε + ν > 0; whose existence and uniqueness on a finite interval is a direct consequence of Ladyzenkaja,
Solonnikov and Ural’Ceva [9] or Lions [10]. We can prove that the application � : L2(T2)→ L2(T2), ξ 7−→ ξ ν

µ (1, ·)
is a strict contraction; then there exists ξ ∈ L2(T2) such that �ξ = ξ . We conclude that the solution S ν

µ of (3.47) is
the solution ξ ν

µ solution of (3.55) associated with the initial condition ξ such that �ξ = ξ . Then we prove existence
and uniqueness of S ν

µ .

Integrating equation (3.47) over T2 gives

µ
∫
T2

S ν
µ dx+

∫
T2

∂S ν
µ

∂θ
dx− 1

ε

∫
T2

∇ ·
(
( ˜Aε +ν)∇S ν

µ

)
dx =

1
ε

∫
T2

∇ · C̃ε dx, (3.56)

then

µ
∫
T2

S ν
µ dx+

d(
∫
T2 S ν

µ dx)
dθ

= 0,

which gives ∫
T2

S ν
µ (θ ,x)dx =

∫
T2

S ν
µ (θ̃ ,x)e−µ(θ−θ̃)dx.
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Since S ν
µ is periodic of period 1 with respect to θ ,

∫
T2 S ν

µ (θ ,x)dx is also periodic of period 1. Then (3.48) is true.
Multiplying equation (3.47) by S ν

µ , integrating over T2 and from 0 to 1 with respect to θ gives

µ∥S ν
µ ∥2

L2
#(R,L2(T2))

+
1
2

∫ 1

0

d∥S ν
µ ∥2

2

dθ
dθ +

1
ε

∫ 1

0

∫
T2
( ˜Aε +ν)|∇S ν

µ |2dxdθ ≤ γ
ε

∫ 1

0

∫
T2

|∇S ν
µ |dxdθ .

Since ˜Aε +ν ≥ ν and taking into account that the above first term is positive and the second one equals zero, we have

ν
ε

∫ 1

0

∫
T2

|∇S ν
µ |2dxdθ ≤ γ

ε
∥∇S ν

µ ∥L2
#(R,L2(T2)),

then
∥∇S ν

µ ∥2
L2

#(R,L2(T2))
≤ γ

ν
∥∇S ν

µ ∥L2
#(R,L2(T2)),

which gives (3.49).

Multiplying (3.47) by
∂S ν

µ
∂θ , integrating over T2 and integrating from 0 to 1 with respect to θ gives∥∥∥∂S ν
µ

∂θ

∥∥∥2

L2
#(R,L2(T2))

=
1

2ε

∫ 1

0

∫
T2

∂ ˜Aε
∂θ

|∇S ν
µ |2dxdθ +

1
ε

∫ 1

0

∫
T2

∂ C̃ε
∂θ

∇S ν
µ dxdθ (3.57)

≤ γ
ε

(1
2
∥∇S ν

µ ∥2
L2

#(R,L2(T2))
+∥∇S ν

µ ∥L2
#(R,L2(T2))

)
, (3.58)

which gives (3.51).
Multiplying (3.47) by −∆S ν

µ , and integrating over T2 gives

µ
∫
T2

|∇S ν
µ |2dx+

∫
T2

∇S ν
µ ·∇

(∂S ν
µ

∂θ
)
dx+

1
ε

∫
T2

∇ ˜Aε ·∇S ν
µ ∆S ν

µ dx+

1
ε

∫
T2
( ˜Aε +ν)|∆S ν

µ |2dx =−1
ε

∫
T2

∇ · C̃ε ∆S ν
µ dx,

or

µ∥∇S ν
µ ∥2

2 +
1
2

d∥∇S ν
µ ∥2

2

dθ
+

1
ε

∫
T2
( ˜Aε +ν)|∆S ν

µ |2dx =

−1
ε

∫
T2

∇ ˜Aε ·∇S ν
µ ∆S ν

µ dx− 1
ε

∫
T2

∇ · C̃ε ∆S ν
µ dx.

Since for any real number U and V

|UV | ≤
˜Aε +ν
4ε

U2 +
ε

˜Aε +ν
V 2, (3.59)

using this formula with U = ∆S ν
µ , V =

∇ ˜Aε ·∇S ν
µ

ε , we have

1
ε

∫
T2

∇ ˜Aε ·∇S ν
µ ∆S ν

µ dx ≤
∫
T2

˜Aε +ν
4ε

|∆S ν
µ |2dx+

∫
T2

1
ε( ˜Aε +ν)

|∇ ˜Aε ·∇S ν
µ |2dx.

Taking U = ∆S ν
µ , V = ∇·C̃ε

ε and using again (3.59) we obtain

1
ε

∫
T2

∇ · C̃ε ∆S ν
µ ≤

∫
T2

˜Aε +ν
4ε

|∆S ν
µ |2dx+

∫
T2

1
ε( ˜Aε +ν)

|∇ · C̃ε |2dx.

These two results give

µ∥∇S ν
µ ∥2

2 +
1
2

d∥∇S ν
µ ∥2

2

dθ
+

1
ε

∫
T2
( ˜Aε +ν)|∆S ν

µ |2dx ≤
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∫
T2

˜Aε +ν
2ε

|∆S ν
µ |2dx+

1
ε

∫
T2

1
( ˜Aε +ν)

(
|∇ ˜Aε ·∇S ν

µ |2 + |∇ · C̃ε |2
)

dx, (3.60)

or, using (3.43),

µ∥∇S ν
µ ∥2

2 +
1
2

d∥∇S ν
µ ∥2

2

dθ
+

∫
T2

( ˜Aε +ν)
2ε

|∆S ν
µ |2dx ≤ ε2γ2

νε

(∫
T2

|∇S ν
µ |2dx+1

)
, (3.61)

and integrating from 0 to 1 with respect to θ , we have

µ∥∇S ν
µ ∥L2

#(R,L2(T2))+
∫ 1

0

∫
T2

( ˜Aε +ν)
2ε

|∆S ν
µ |2dxdθ ≤ εγ2

ν

(∫ 1

0

∫
T2

|∇S ν
µ |2dxdθ +1

)
.

From this last inequality, we deduce

ν
2ε

∥∆S ν
µ ∥2

L2
#(R,L2(T2))

≤ εγ2

ν
( γ2

ν2 +1
)
,

then

∥∆S ν
µ ∥2

L2
#(R,L2(T2))

≤ 2ε2γ2

ν2

( γ2

ν2 +1
)
,

which gives (3.50).
As ∥∇S ν

µ ∥L2
#(R,L2(T2)) is bounded by γ

ν (see (3.49)), we can deduce that there exists a θ0 ∈ [0,1] such that

∥∇S ν
µ (θ0, ·)∥2 ≤

γ
ν
. (3.62)

From (3.61) we have
d∥∇S ν

µ ∥2
2

dθ
≤ 2εγ2

ν
(∫

T2
|∇S ν

µ |2dx+1
)
. (3.63)

Integrating (3.63) from θ0 to an other θ1 ∈ [0,1] gives

∥∇S ν
µ (θ1, ·)∥2

2 −∥∇S ν
µ (θ0, ·)∥2

2 ≤
2εγ2

ν

∫ θ1

θ0

(∫
T2

|∇S ν
µ |2dx+1

)
dθ

≤ 2εγ2

ν

(
∥∇S ν

µ ∥2
L2

#(R,L2(T2))
+1

)
, (3.64)

giving the sought bound on ∥∇S ν
µ (θ1, ·)∥L∞

# (R,L2(T2)) for any θ1 or, in other words (3.52).
Using Fourier expansion argument, because of (3.48), we have

∥S ν
µ (θ , ·)∥2

2 ≤ ∥∇S ν
µ (θ , ·)∥2

2 ≤
γ2

ν2 +2
εγ2

ν
(

γ2

ν2 +1), (3.65)

and then (3.53).
We have that

∂S ν
µ

∂ t is solution to

µ
∂S ν

µ

∂ t
+

∂
( ∂S ν

µ
∂ t

)
∂θ

− 1
ε

∇ ·
(( ˜Aε +ν

)
∇
(∂S ν

µ

∂ t

))
=

1
ε

∇ ·
(∂ C̃ε

∂ t

)
+

1
ε

∇ ·
(∂ ˜Aε

∂ t
∇S ν

µ

)
, (3.66)

from which we deduce

µ
∥∥∥∂S ν

µ

∂ t

∥∥∥2

2
+

1
2

d
∥∥∥ ∂S ν

µ
∂ t

∥∥∥2

2
dθ

+
1
ε

∫
T2

( ˜Aε +ν
)∣∣∣∇(∂S ν

µ

∂ t

)∣∣∣2dx =−1
ε

∫
T2

Čε ·∇
(∂S ν

µ

∂ t

)
dx, (3.67)
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where

Čε =
∂ C̃ε
∂ t

+
∂ ˜Aε
∂ t

∇S ν
µ , ∇ · Čε = ∇ ·

(∂ C̃ε
∂ t

+
∂ ˜Aε
∂ t

∇S ν
µ

)
. (3.68)

From (3.43), (3.49) and (3.50), we have∥∥∥Čε

∥∥∥2

L2
#(R,L2(T2))

≤ ε2γ(1+
γ
ν
),
∥∥∥∇ · Čε

∥∥∥
L2

#(R,L2(T2))
≤ ε2γ

(
1+

γ
ν
+ ε

√
ε

γ
ν

√
γ
ν
+1

)
. (3.69)

Integrating (3.67) from 0 to 1 with respect to the variable θ , we obtain

ν
ε

∥∥∥∇
∂S ν

µ

∂ t

∥∥∥2

L2
#(R,L2(T2))

≤ ε2γ(1+
γ
ν
)
∥∥∥∇

∂S ν
µ

∂ t

∥∥∥
L2

#(R,L2(T2))
,

then ∥∥∥∇
∂S ν

µ

∂ t

∥∥∥
L2

#(R,L2(T2))
≤ ε3 γ

ν
(1+

γ
ν
).

Using the Fourier expansion of S ν
µ , we have for a given θ0∥∥∥∇

∂S ν
µ

∂ t
(θ0, ·)

∥∥∥
2
≤ ε3 γ

ν
(1+

γ
ν
).

Thus, as previously, we get∥∥∥∇
∂S ν

µ

∂ t

∥∥∥
L∞

# (R,L2(T2))
≤ ε3 γ

ν
(1+

γ
ν
),

∥∥∥∂S ν
µ

∂ t

∥∥∥
L∞

# (R,L2(T2))
≤ ε3 γ

ν
(1+

γ
ν
).

Since the estimates of Theorem 3.1 do not depend on µ , making the process µ → 0 allows us to deduce the following
theorem.

Theorem 3.2. Under assumptions (3.43),(3.44) and (3.45), for any ν > 0, there exists a unique S ν = S ν(t,θ ,x) ∈
L2(R×T2), periodic of period 1 with respect to θ solution to (3.46) and submitted to the constraint

sup
θ∈R

∣∣∣∫
T2

S ν(θ ,x)dx
∣∣∣= 0. (3.70)

Moreover, the following estimates are satisfied∥∥∥∂S ν

∂θ

∥∥∥
L2

#(R,L2(T2))
≤ γ√

εν

√
(

γ
2ν

+1), ∥∇S ν∥L∞
# (R,L2(T2)) ≤

√
γ2

ν2 +
2εγ2

ν
(

γ2

ν2 +1), (3.71)

∥S ν∥L∞
# (R,L2(T2)) ≤

√
γ2

ν2 +
2εγ2

ν
(

γ2

ν2 +1),
∥∥∥∂S ν

∂ t

∥∥∥
L∞

# (R,L2(T2))
≤ ε3 γ

ν
(1+

γ
ν
). (3.72)

Proof. (of Theorem 3.2). As estimates of Theorem 3.1 do not depend on µ , to proof existence of S ν , it suffices to
make µ tend to 0 in (3.47).

Uniqueness is insured by (3.70), once noticed that, if S ν and S̃ ν are two solutions of (3.46), with constraint
(3.70), S ν − S̃ ν is solution to

∂ (S ν − S̃ ν)

∂θ
− 1

ε
∇ · ((Ãε +ν)∇(S ν − S̃ ν)) = 0, (3.73)

from which we can deduce that
ν∥∇(S ν − S̃ ν)∥2

L2
#(R,L2(T2))

= 0, (3.74)
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and because of (3.70), and its consequence:

∥S ν − S̃ ν∥L2
#(R,L2(T2)) ≤ ∥∇(S ν − S̃ ν)∥L2

#(R,L2(T2)), (3.75)

that
S̃ ν = S ν . (3.76)

Now we get estimates on S ν which do not depend on ν .

Theorem 3.3. Under the assumptions (3.43),(3.44) and (3.45), the solution S ν , of (3.46) given by Theorem 3.2
satisfies the following properties ∥∥∥√Ãε |∇S ν |

∥∥∥
L2

#(R,L2(T2))
≤ γ, (3.77)

(∫ θω

θα

∫
T2

|∇S ν |2dxdθ
)1/2

≤ γ√
G̃thr

, (3.78)

∥∥∥∇S ν(θ0, ·)
∥∥∥

2
≤ γ√

G̃thr

, for a given θ0 ∈ [θα ,θω ], (3.79)

∥S ν∥2
L∞

# (R,L2(T2)) ≤
γ√
G̃thr

+2εγ3, (3.80)

∥∥∥∥∂S ν

∂ t

∥∥∥∥2

L∞
# (R,L2(T2))

≤ ε
(γ + εγ3√

G̃thr

+(γ2 + ε2γ4)
)
. (3.81)

Proof. (of Theorem 3.3) Multiplying (3.46) by S ν and integrating over T2 yields

1
2

d
dθ

∫
T2

|S ν |2dx+
1
ε

∫
T2
(Ãε +ν)|∇S ν |2dx =−1

ε

∫
T2

C̃ε ·∇S ν dx. (3.82)

Integrating (3.82) in θ over [0,1] gives

1
ε

∫ 1

0

∫
T2
(Ãε +ν)|∇S ν |2dx ≤ γ

ε

∫ 1

0

∫
T2

√
Ãε |∇S ν |dx, (3.83)

then we obtain (3.77).
Assuming (3.44), we have√

G̃thr

(∫ θω

θα

∫
T2

|∇S ν |2dxdθ
)1/2

≤
(∫ θω

θα

∫
T2

Ãε |∇S ν |2dxdθ
) 1

2 ≤
∥∥∥√Ãε |∇S ν |

∥∥∥
L2

#(R,L2(T2))
. (3.84)

From (3.77) and this last inequality we get (3.78). Then, there exists a θ0 ∈ [θα ,θω ] such that S ν satisfies (3.79).
Using the Fourier expansion of S ν and the relation (3.70) we get∥∥∥S ν(θ0, ·)

∥∥∥
2
≤
∥∥∥∇S ν(θ0, ·)

∥∥∥
2
≤ γ√

G̃thr
. (3.85)

Multiplying (3.46) by S ν , integrating over T2 we obtain

1
2

d∥S ν(θ , ·)∥2
2

dθ
+

1
ε

∫
T2
(Ãε +ν)|∇S ν(θ , ·)|2dx =

1
ε

∫
T2

|∇ · C̃εS
ν(θ , ·)|dx
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Applying formula (3.59) with V = |∇·C̃ε |
ε and U = |S ν |, we get

1
2

d∥S ν(θ , ·)∥2
2

dθ
+

1
ε

∫
T2
(Ãε +ν)|∇S ν(θ , ·)|2dx ≤

∫
T2

[ (Ãε +ν)
4ε

|S ν(θ , ·)|2 + 1

ε(Ãε +ν)
|∇ · C̃ε |2

]
dx,

which gives

1
2

d∥S ν(θ , ·)∥2
2

dθ
+

1
ε

∫
T2
(Ãε +ν)

(
|∇S ν(θ , ·)|2 − |S ν(θ , ·)|2

4

)
dx ≤

∫
T2

1

ε(Ãε +ν)
|∇ · C̃ε |2 dx. (3.86)

Using Fourier expansion of S ν(θ , ·), one can prove that the second term of the left hand side of (3.86) is positive,
then we have

d∥S ν(θ , ·)∥2
2

dθ
≤ 2

∫
T2

1

ε(Ãε +ν)
|∇ · C̃ε |2 dx. (3.87)

Using (3.43), (3.45) and integrating (3.87) from θ0 to θ ∈ [0,1], we obtain

∥S ν(θ , ·)∥2
2 ≤ ∥S ν(θ0, ·)∥2

2 +2εγ3, (3.88)

then inequality (3.80) is satisfied.
Using inequality (3.77) and from hypothesis (3.45) we get∥∥∥∂ (∇Ãε)

∂ t
∇S ν

∥∥∥
L2

#(R,L2(T2))
≤ ε2γ

∥∥∥√Ãε ∇S ν
∥∥∥

L2
#(R,L2(T2))

≤ ε2γ2. (3.89)

Multiplying (3.46) by −∆S ν and integrating in x ∈ T2 we get

1
2

d
dθ

∥∇S ν∥2
2 +

1
ε

∫
T2

(
Ãε +ν

)
|∆S ν |2dx+

1
ε

∫
T2

∇Ãε ·∇S ν ∆S ν dx =−1
ε

∫
T2

∇ · C̃ε ·∆S ν dx. (3.90)

Using (3.59) with U = |∆S ν | and V = ∇Ãε ·∇S ν

ε and with U = |∆S ν | and V = ∇·C̃ε
ε , the equality (3.90) becomes

1
2

d
dθ

∥∇S ν∥2
2 +

1
2ε

∫
T2
(Ãε +ν)|∆S ν |2dx ≤ 1

ε

∫
T2

[ |∇Ãε |2

Ãε +ν
|∇S ν |2 + |∇C̃ε |2

Ãε +ν

]
dx, (3.91)

which, integrating from 0 to 1 yields∫ 1

0

∫
T2

Ãε |∆S ν |2dxdθ ≤ 2εγ2
(∫ 1

0

∫
T2

|Ãε ||∇S ν |2dxdθ + γ
)

≤ 2εγ2(γ2 + γ). (3.92)

As ∣∣∣∂ Ãε
∂ t

∣∣∣ ≤ ε2γ|Ãε |, (3.93)

we obtain ∥∥∥
√

∂ Ãε
∂ t

∆S ν
∥∥∥

L2
#(R,L2(T2))

≤ ε
√

2εγ2
√

1+ γ . (3.94)

Now we set out the equation to which ∂S ν

∂ t is solution. We have

∂
∂θ

(∂S ν

∂ t

)
=

∂
∂ t

(∂S ν

∂θ

)
=

1
ε

(
∇ · ∂ Ãε

∂ t
∇S ν +(Ãε +ν)∇

∂S ν

∂ t

)
+

1
ε

∇ · ∂ Ãε
∂ t

,

then ∂S ν

∂ t is solution to

∂
∂θ

(∂S ν

∂ t

)
− 1

ε
∇ ·

(
(Ãε +ν)∇

(∂S ν

∂ t

))
=

1
ε

∇ ·
(∂ Ãε

∂ t
∇S ν

)
+

1
ε

∇ · ∂ C̃ε
∂ t

. (3.95)
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Multiplying (3.95) by ∂S ν

∂ t and integrating in x ∈ T2, we get

1
2

d
dθ

∥∥∥∂S ν

∂ t

∥∥∥2

2
+

1
ε

∫
T2
(Ãε +ν)

∣∣∣∇∂S ν

∂ t

∣∣∣2dx ≤ 1
ε

∫
T2

∣∣∣∂ Ãε
∂ t

∣∣∣|∇S ν |
∣∣∣∇∂S ν

∂ t

∣∣∣dx+
1
ε

∫
T2

∣∣∣∂ C̃ε
∂ t

∣∣∣∣∣∣∇∂S ν

∂ t

∣∣∣dx. (3.96)

Using the fact that
∣∣∣ ∂ C̃ε

∂ t

∣∣∣2 ≤ ε2γ2
∣∣Ãε

∣∣, the second term of the right hand side of (3.96) satisfies

∫
T2

∣∣∣∣∂ C̃ε
∂ t

∣∣∣∣ ∣∣∣∣∇∂S ν

∂ t

∣∣∣∣dx ≤ εγ
∫
T2

√
Ãε

∣∣∣∣∇∂S ν

∂ t

∣∣∣∣dx ≤ εγ
∥∥∥∥√Ãε

∣∣∣∣∇∂S ν

∂ t

∣∣∣∣∥∥∥∥
2
. (3.97)

In the same way, using (3.45) we deduce the following estimate for the first term of the right hand side of (3.96)

∫
T2

∣∣∣∣∣∂ Ã ε
∂ t

∣∣∣∣∣ |∇S ν |
∣∣∣∣∇∂S ν

∂ t

∣∣∣∣dx ≤

∥∥∥∥∥∥
√∣∣∣∣∂ Ãε

∂ t

∣∣∣∣ |∇S ν |

∥∥∥∥∥∥
2

∥∥∥∥∥∥
√∣∣∣∣∂ Ãε

∂ t

∣∣∣∣∣∣∣∇∂S ν

∂ t

∣∣∣
∥∥∥∥∥∥

2

≤ ε2γ2
∥∥∥∥√Ãε |∇S ν |

∥∥∥∥
2

∥∥∥∥√Ãε

∣∣∣∣∇∂S ν

∂ t

∣∣∣∣∥∥∥∥
2
. (3.98)

Using inequalities (3.97), (3.98) and (3.77) and integrating (3.96) in θ over [0,1], we have∥∥∥∥∥
√
(Ãε +ν)

∣∣∣∣∇∂S ν

∂ t

∣∣∣∣
∥∥∥∥∥

2

L2
#(R,L2(T2))

≤ εγ

∥∥∥∥∥
√

Ãε

∣∣∣∣∇∂S ν

∂ t

∣∣∣∣
∥∥∥∥∥

L2
#(R,L2(T2))

+ε2γ3

∥∥∥∥∥
√

Ãε

∣∣∣∣∇∂S ν

∂ t

∣∣∣∣
∥∥∥∥∥

L2
#(R,L2(T2))

. (3.99)

From this last inequality, we deduce ∥∥∥∥√Ãε

∣∣∣∣∇∂S ν

∂ t

∣∣∣∣∥∥∥∥
L2

#(R,L2(T2))

≤ ε(γ + εγ3), (3.100)

and then ∫ θω

θα

∥∥∥∥∇
∂S ν

∂ t

∥∥∥∥
2

dθ ≤ ε
γ + εγ3√

G̃thr

. (3.101)

From (3.101), we deduce that there exists a θ0 ∈ [θα ,θω ] such that∥∥∥∥∇
∂S ν

∂ t
(θ0, ·)

∥∥∥∥
2
≤ ε

γ + εγ3√
G̃thr

, (3.102)

and, since the mean value of ∂S ν

∂ t (θ0, ·) is zero,∥∥∥∥∂S ν

∂ t
(θ0, ·)

∥∥∥∥
2
≤ ε

γ + εγ3√
G̃thr

. (3.103)

To end the proof of the theorem it remains to show that ∂S ν

∂ t is bounded independently of ν in L∞
# (R,L2(T2)). For

this we will estimate the right hand side of (3.96) by applying formula (3.59) with V = 1
ε |

∂ C̃ε
∂ t | and U = |∇ ∂S ν

∂ t | to

treat the second term of the right hand side of (3.96) and with V = 1
ε |

∂ Ãε
∂ t ||∇S ν | and U = |∇ ∂S ν

∂ t | to treat the first. It
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gives:

1
2

∂
(∥∥∥∂S ν

∂ t

∥∥∥2

2

)
∂θ

+
∫
T2

Ãε +ν
2ε

∣∣∣∣∇∂S ν

∂ t

∣∣∣∣2 dx

≤
∫
T2

∣∣∣∂ C̃ε
∂ t

∣∣∣2
ε(Ãε +ν)

dx+
∫
T2

∣∣∣∂ Ãε
∂ t

∣∣∣2|∇S ν |2

ε(Ãε +ν)
dx ≤ εγ2 + ε3γ2

∫
T2

Ãε |∇S ν |2dx, (3.104)

where we used hypothesis (3.45) to get the last inequality. Integrating this last formula in θ over [θ0,σ ] for any
σ > θ0, we obtain, always remembering (3.77),∥∥∥∥∂S ν

∂ t
(σ , ·)

∥∥∥∥2

2
≤
∥∥∥∥∂S ν

∂ t
(θ0, ·)

∥∥∥∥2

2
+ ε(γ2 + ε2γ4). (3.105)

From inequality (3.105) we obtain directly the inequality of (3.81), using the periodicity of S ν .

Estimates (3.80) and (3.81) given in Theorem 3.3 do not depend on ν . Making ν → 0, allows us to deduce that, up to
a subsequence S ν −→ S ∈ L∞

# (R,L2(T2)) weak−∗. Concerning the limit S we have the following theorem.

Theorem 3.4. Under assumptions (3.43), (3.44), (3.45), there exists a unique function S =S (t,θ ,x)∈L∞
# (R,L2(T2)),

periodic of period 1 with respect to θ , solution to

∂S

∂θ
− 1

ε
∇ · (Ãε(t, ·, ·)∇S ) =

1
ε

∇ · C̃ε(t, ·, ·), (3.106)

and satisfying, for any t,θ ∈ R+×R ∫
T2

S (t,θ ,x)dx = 0. (3.107)

and ∥∥∥√Ãε |∇S|
∥∥∥

L2
#(R,L2(T2))

≤ γ , (3.108)

Moreover it satisfies:
∥S ∥2

L∞
# (R,L2(T2)) ≤

γ√
G̃thr

+2εγ3, (3.109)

∥∥∥∂S

∂ t

∥∥∥2

L∞
# (R,L2(T2))

≤ ε
(γ + εγ3√

G̃thr

+(γ2 + ε2γ4)
)
. (3.110)

Proof. . (of Theorem 3.4). Uniqueness of S is not gotten via the above evoked process ν −→ 0, but directly comes
from (3.106). Assuming that there are two solutions S1 and S2 to (3.106), we easily deduce that

d
(
∥S1 −S2∥2

2

)
dθ

+
1
ε

∫
T2

Ãε |∇(S1 −S2)|2 dx = 0, (3.111)

which gives, because of the non-negativity of Ãε ,

d
(
∥S1 −S2∥2

2

)
dθ

≤ 0. (3.112)

From (3.111) we deduce that either
Ãε |∇(S1 −S2)|2 ≡ 0, (3.113)
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or, for any θ ∈ R,
∥S1(θ +1, ·)−S2(θ +1, ·)∥2

2 < ∥S1(θ , ·)−S2(θ , ·)∥2
2 . (3.114)

As (3.114) is not possible because of the periodicity of S1 and S2, we deduce that (3.113) is true. Using this last
information, we deduce, for instance

∇(S1 −S2)(θω , ·)≡ 0, (3.115)

yielding, because of property (3.107),

∥(S1 −S2)(θω , ·)∥2
2 ≤ ∥∇(S1 −S2)(θω , ·)∥2

2 . (3.116)

Injecting (3.113) in (3.111) yields
d
(
∥S1 −S2∥2

2

)
dθ

= 0, (3.117)

and then
∥(S1 −S2)(θ , ·)∥2

2 = 0, (3.118)

for any θ ≥ θω and consequently or any θ ∈ R. This ends the proof of Theorem 3.4.

With this theorem on hand we can get the following result concerning zε solution of equation (3.41).

Theorem 3.5. Under properties (3.43), (3.44), (3.45), for any T, not depending on ε and z0 ∈ H1(T2), equation
(3.41), with coefficients given by (3.37) coupled with (3.39) and (3.38) coupled with (3.40) has a unique solution
zε ∈ L∞([0,T ];L2(T2)), with √

A ε ∇zε ∈ L2((0,T ),L2(T2)) (3.119)

and
∂ zε

∂ t
∈ L2((0,T );L2(T2)). (3.120)

This solution satisfies:
∥zε∥L∞([0,T ),L2(T2)) ≤ γ̃ (3.121)

where γ̃ is a constant which do not depend on ε.

Proof. (of Theorem 2.1). Theorem 2.1 is a direct consequence of Theorem 3.5.

Proof. . (of Theorem 3.5). Existence of zε , solution to (3.41), on a time interval of length ε is a straightforward
adaptation of results of Ladyzenskaja, Sollonnikov and Ural’ Ceva [9] or Lions [10].
Then, let us consider the function Zε = Zε(t,x) = S (t, t

ε ,x) where S is solution to (3.107). We obtain

∂Zε

∂ t
=

∂S
∂ t

(t,
t
ε
,x)+

1
ε

∂S
∂θ

(t,
t
ε
,x). (3.122)

Using equation (3.106) and (3.37), (3.38) we deduce that Zε is solution to

∂Zε

∂ t
− 1

ε2 ∇ ·
(
A ε ∇Zε

)
=

1
ε2 ∇ ·C ε +

∂S
∂ t

(3.123)

then we deduce that  ∂ (zε −Zε)

∂ t
− 1

ε2 ∇ ·
(
A ε ∇(zε −Zε)

)
=

∂S
∂ t

(zε −Zε)|t=0 = z0 −S (0,0,x).
(3.124)

Multiplying (3.124) by zε −Zε and integrating over T2, we have

1
2

d∥zε −Zε∥2
2

dt
+

1
ε2

∫
T2

A ε |∇(zε −Zε)|2dx =
∫
T2

∂S

∂ t
(zε −Zε)dx (3.125)
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which gives using (3.110)

d∥zε −Zε∥2
2

dt
≤ 2

√√√√ε
(γ + εγ3√

G̃thr

+(γ2 + ε2γ4)
)
∥zε −Zε∥2. (3.126)

Then we have

∥zε(t, ·)−Zε(t, ·)∥2
2 ≤ 2∥z0 −S (0,0,x)∥2

√√√√ε
(γ + εγ3√

G̃thr

+(γ2 + ε2γ4)
)

T. (3.127)

As ∥S ∥L∞
# (R,L2(T2)) ≤

γ√
G̃thr

when ε → 0, then (3.121) is true.

Now, integrating (3.125) from 0 to T we get

1
2
∥zε −Zε∥2

2(T )−
1
2
∥zε −Zε∥2

2(0)+
1
ε2

∫ T

0
∥
√

A ε ∇(zε −Zε)∥2
2dt ≤

∫ T

0

∥∥∥∂S
∂ t

∥∥∥
2

dt ·
∫ T

0
∥zε −Zε∥2 dt (3.128)

which using (3.110) and (3.127) yields
√

A ε ∇(zε −Zε) ∈ L2((0,T ),L2(T2)).

Consequently, because of (3.108) and the definition of Zε from S, we obtain (3.119). Beside this, (3.120) is a straight
forwardly obtained from (3.110).
To prove uniqueness of zε given by the theorem, we consider zε

1 and zε
2 two solutions of (3.41). Their difference is

then solution to 
∂ (zε

1 − zε
2)

∂ t
− 1

ε2 ∇ · (A ε ∇(zε
1 − zε

2)) = 0,

(zε
1 − zε

2)|t=0 = 0,
(3.129)

or having a look for weak formulation (3.42)

−
∫ T

0

∫
T2
(zε

1 − zε
2)

∂φ
∂ t

dxdt +
1
ε2

∫ T

0

∫
T2

Aε ∇(zε
1 − zε

2) ·∇φ dxdt = 0

for any φ ∈ D([0,T )×T2). (3.130)

It obvious that (3.130) makes sense and is true for φ ∈ L2((0,T );L2(T2)) such that
∂φ
∂ t

∈ L2((0,T );L2(T2)) and
√

A ε φ ∈ L2((0,T );L2(T2)). Hence in (3.130) we can chose φ = zε
1 − zε

2. Making this
gives

d∥zε
1 − zε

2∥2
2

dt
≤ 0, (3.131)

and since zε
1|t=0 = zε

2|t=0, we finally obtain that zε
1 = zε

2 yielding uniqueness.

4 Homogenization of equation (1.9), proof of Theorem 2.2

We consider equation (3.41) where A ε and C ε are defined by formulas (3.37) coupled with (3.39) and (3.38) cou-
pled with (3.40). Our aim consists in deducing the equations satisfied by the limit of zε solution to (3.41) as ε −→ 0.

It is obvious that

A ε(t,x) Two-Scale converges to Ã (t,θ ,x) ∈ L∞([0,T ),L∞
# (R,L2(T2)))

and C ε(t,x) Two-Scale converges to C̃ (t,θ ,x), (4.132)

with

Ã (t,θ ,x) = aga(|U0(θ)|) and C̃ (t,θ ,x) = cgc(|U0(θ)|)
U0(θ)
|U0(θ)|

; (4.133)
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U0 is given in (1.10).
Θ and Θthr defined by (2.23) and (2.24) have the following form:

Θ = [0,T )×{θ ∈ R : Ã (·,θ , ·) = 0}×T2, (4.134)

and
Θthr = {(t,θ ,x) ∈ [0,T )×R×T2 such that Ã (t,θ ,x)< G̃thr}. (4.135)

Moreover, we notice that
Ã (t,θ ,x) = 0 if and only if (t,θ ,x) ∈ Θ. (4.136)

We have the following theorem.

Theorem 4.1. Under assumptions (3.43), (3.44), (3.45), (4.132), (4.133) and (4.136), for any T, not depending on ε,
the sequence (zε) of solutions to (3.41), with coefficients given by (3.37) coupled with (3.39) and (3.38) coupled with
(3.40), Two-Scale converges to the profile U ∈ L∞([0,T ),L∞

# (R,L2(T2))) solution to

−∇ · (Ã ∇U) = 0 on
(
[0,T )×R×T2

)
\Θ, (4.137)

∂U
∂θ

= 0 on Θthr, (4.138)∫ 1

0

∫
T2

Udθ dx =
∫
T2

z0dx and
∫
T2

∂U
∂θ

dx = 0, (4.139)

where Ã is given by (4.133); Θ and Θthr are given by (4.134) and (4.135).

Proof. (of Theorem 2.2) Theorem 2.2 is a direct consequence of Theorem 4.1. Indeed, function U =
∫
T2

z0dx is the

unique function satisfying (4.137)-(4.139).

Proof. (of Theorem 4.1) Multiplying (3.41) by ψε(t,x) = ψ(t, t
ε ,x) regular with compact support in [0,T )×T2 and

1-periodic in θ , we obtain

−
∫
T2

z0(x)ψ(0,0,x)dx−
∫
T2

∫ T

0

∂ψε

∂ t
zε dt dx+

1
ε2

∫
T2

∫ T

0
A ε ∇zε ∇ψε dt dx =

1
ε2

∫
T2

∫ T

0

(
∇ ·C ε

)
ψε dx. (4.140)

Using the Green formula and
∂ψε

∂ t
=

(
∂ψ
∂ t

)ε
+

1
ε

(
∂ψ
∂θ

)ε
, (4.141)

where (
∂ψ
∂ t

)ε
(t,x) =

∂ψ
∂ t

(t,
t
ε
,x) and

(
∂ψ
∂θ

)ε
(t,x) =

∂ψ
∂θ

(t,
t
ε
,x), (4.142)

we obtain ∫
T2

∫ T

0

((∂ψ
∂ t

)ε
+

1
ε

(∂ψ
∂θ

)ε)
zε dt dx+

1
ε2

∫
T2

∫ T

0
zε ∇ ·

(
A ε ∇ψε

)
dt dx

+
1
ε2

∫
T2

∫ T

0

(
∇ ·C ε

)
ψε dt dx =−

∫
T2

z0(x)ψ(0,0,x)dx (4.143)

Multiplying by ε2 and using the Two-Scale convergence due to Nguetseng [13], Allaire [1], Frénod, Raviart and
Sonnendrucker [5], as zε is bounded in L∞([0,T ),L2(T2)), there exists a profile U(t,θ ,x), periodic of period 1 with
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respect to θ , such that for all ψ(t,θ ,x), regular with compact support with respect to (t,x) and periodic of period 1
with respect to θ , we have

−
∫
T2

∫ T

0

∫ 1

0
U∇ ·

(
˜A ∇ψ

)
dθ dt dx =

∫
T2

∫ T

0

∫ 1

0

(
∇ · C̃

)
ψ dθ dt dx, (4.144)

then
−∇ ·

(
˜A ∇U

)
= ∇ · C̃ , (4.145)

with ˜A and C̃ given by (4.133). As C̃ does not depend on x, we have

−∇ ·
(

˜A ∇U
)
= 0 (4.146)

which gives (4.137).
Since Ã and C̃ vanish on Θ, (4.146) contains no information on Θ. Hence we write (4.137), and we look for an
information concerning U on Θ. Using test function ψε = ψ( t

ε ) depending only on θ , regular with compact support
on Θthr in (4.143), and the fact that Ãε does not depend on t and x in Θthr, we get∫

T2

∫ T

0

(1
ε

(∂ψ
∂θ

)ε)
zε dt dx+

1
ε2

∫
T2

∫ T

0
zεÃε

(
∆ψ

)ε dt dx =−
∫
T2

z0(x)ψ(0,0,x)dx. (4.147)

As ψ depends only on θ , we have
(
∆ψ

)ε
= 0 and then multpliying by ε in (4.147), we get∫

T2

∫ T

0

(∂ψ
∂θ

)ε
zε dt dx =−ε

∫
T2

z0(x)ψ(0,0,x)dx. (4.148)

Passing to the limit as ε → 0 in (4.148) and using Two-Scale convergence, we get∫
T2

∫ T

0

∫ 1

0

∂ψ
∂θ

U dθ dt dx = 0, (4.149)

which gives
∂U
∂θ

= 0 on Θthr. (4.150)

Taking test function ψ depending only on t we obtain∫ 1

0

∫
T2

U(t,θ ,x)dθ dx =
∫
T2

z0(x)dx. (4.151)

Finally, to prove uniqueness of U, we consider two solutions U1 and U2 of (4.137)-(4.138)-(4.139). Their difference
is then solution to

∇ ·
(
Ã ∇

(
U1 −U2

))
= 0 on

(
[0,T )×R×T2

)
\Θ, (4.152)

∂
(
U1 −U2

)
∂θ

= 0 on Θthr, (4.153)∫ 1

0

∫
T2

(
U1 −U2

)
dθ dx = 0. (4.154)

Equations (4.152) and (4.154) give U1 −U2 = 0 on
(
[0,T )×R×T2

)
\Θ and (4.153) and (4.154) give that U1 −U2 =

0 on Θthr. Since
((

[0,T )×R×T2
)
\Θ

)
∪Θthr = [0,T )×R×T2, this gives uniqueness and ends the proof of the

theorem.
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5 Homogenization and corrector result of equation (1.5), proof of Theorem 2.3 and 2.4

Making the same as in the beginning of section 3, setting:

A ε(t,x) = Ãε(t,
t√
ε
,

t
ε
,x), (5.155)

and
C ε(t,x) = C̃ε(t,

t√
ε
,

t
ε
,x), (5.156)

where
Ãε(t,τ,θ ,x) = a(1−b

√
εM (t,τ,θ ,x))ga(|Ũ (t,τ,θ ,x)|), (5.157)

and

C̃ε(t,τ,θ ,x) = c(1−b
√

εM (t,τ,θ ,x))gc(|Ũ (t,τ ,θ ,x)|) Ũ (t,τ,θ ,x)
|Ũ (t,τ,θ ,x)|

, (5.158)

equation (1.5) with initial condition (1.13) can be set in the form
∂ zε

∂ t
− 1

ε
∇ · (A ε ∇zε) =

1
ε

∇ ·C ε ,

zε
|t=0 = z0.

(5.159)

Under assumptions (1.2) and (1.8), Ãε and C̃ε given by (5.157) and (5.158) satisfy the following hypotheses:

τ 7−→ (Ãε , C̃ε) is periodic of period 1,
θ 7−→ (Ãε , C̃ε) is periodic of period 1,

x 7−→ (Ãε , C̃ε) defined on T2,

|Ãε | ≤ γ , |C̃ε | ≤ γ,

∣∣∣∣∣∂ Ãε
∂ t

∣∣∣∣∣≤ γ,

∣∣∣∣∣∂ C̃ε
∂ t

∣∣∣∣∣≤ γ,

∣∣∣∣∣∂∇Ãε
∂ t

∣∣∣∣∣≤ γ,∣∣∣∣∣∂ Ãε
∂θ

∣∣∣∣∣≤ γ,

∣∣∣∣∣∂ C̃ε
∂θ

∣∣∣∣∣≤ γ, |∇Ãε | ≤ γ, |∇ · C̃ε | ≤ γ ,

∣∣∣∣∣∂∇ · C̃ε
∂ t

∣∣∣∣∣≤ γ,

(5.160)


∃ G̃thr, θα < θω ∈ [0,1] not depending on ε such that θ ∈ [θα ,θω ] =⇒ Ãε(t,τ,θ ,x)≥ G̃thr,

Ãε(t,τ,θ ,x)≤ G̃thr =⇒


∂ Ãε
∂ t

(t,τ,θ ,x) =
∂ Ãε
∂τ

(t,τ,θ ,x) = 0, ∇Ãε(t,τ ,θ ,x) = 0,

∂ C̃ε
∂ t

(t,τ,θ ,x) =
∂ C̃ε
∂τ

(t,τ,θ ,x) = 0, ∇ · C̃ε(t,τ,θ ,x) = 0,

(5.161)


|C̃ε | ≤ γ|Ãε |, |C̃ε |2 ≤ γ|Ãε |, |∇Ãε | ≤ γ|Ãε |,

∣∣∣∂ Ãε
∂ t

∣∣∣≤ γ|Ãε |,∣∣∣∂ (∇Ãε)

∂ t

∣∣∣2 ≤ γ|Ãε |,
∣∣∣∇ · C̃ε

∣∣∣≤ γ|Ãε |,
∣∣∣∂ C̃ε

∂ t

∣∣∣≤ γ|Ãε |,
∣∣∣∂ C̃ε

∂ t

∣∣∣2 ≤ γ2|Ãε |,∣∣∣∂ Ãε
∂τ

∣∣∣2 ≤ εγ |Ãε |,
∣∣∣∂∇Ãε

∂τ

∣∣∣2 ≤ εγ |Ãε |.

(5.162)

For (5.159), if hypotheses (5.160), (5.161) and (5.162) are satisfied, an existence and uniqueness result is given in [4].

5.1 Homogenization
Let us consider equation (5.159) with A ε and C ε given by (5.155) and (5.156);

θ 7−→ Ãε , C̃ε is periodic of period 1,

τ 7−→ Ãε , C̃ε is periodic of period 1, (5.163)
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A ε(t,x) Three-Scale converges to Ã (t,τ,θ ,x) ∈ L∞([0,T )×R,L∞
# (R,L2(T2)))

and C ε(t,x) Three-Scale converges to C̃ (t,τ,θ ,x), (5.164)

with

Ã (t,τ,θ ,x) = aga(|U (t,θ ,x)|) and C̃ (t,τ,θ ,x) = cgc(|U (t,θ ,x)|) U (t,θ ,x)
|U (t,θ ,x)|

; (5.165)

U is given in (1.7).

Theorem 5.1. Under assumptions (5.160), (5.161), (5.162),(5.163), (5.164) and (5.165), for any T, not depending
on ε, the sequence (zε) of solutions to (5.159), with coefficients given by (5.155) coupled with (5.157) and (5.156)
coupled with (5.158), Three-Scale converges to the profile U ∈ L∞([0,T )×R,L∞

# (R,L2(T2))) solution to

∂U
∂θ

−∇ · (Ã ∇U) = ∇ · C̃ , (5.166)

where Ã and C̃ are given by (5.165).

Proof. (of Theorem 2.3) Theorem 2.3 is a direct consequence of Theorem 5.1.

Proof. (of Theorem 5.1) Considering test functions ψε(t,x) = ψ(t, t√
ε ,

t
ε ,x) for all ψ(t,τ,θ ,x) regular with compact

support on [0,T )×T2 and periodic of period 1 with respect to τ and θ .

∂ψε

∂ t
=
(∂ψ

∂ t

)ε
+

1√
ε
(∂ψ

∂τ
)ε

+
1
ε
(∂ψ

∂θ
)ε
, (5.167)

where(∂ψ
∂ t

)ε
(t,x) =

∂ψ
∂ t

(t,
t√
ε
,

t
ε
,x),

(∂ψ
∂τ

)ε
=

∂ψ
∂τ

(t,
t√
ε
,

t
ε
,x),

(∂ψ
∂θ

)ε
=

∂ψ
∂θ

(t,
t√
ε
,

t
ε
,x). (5.168)

Multiplying (5.159) by ψε(t, t√
ε ,

t
ε ,x) and integrating on [0,T )×T2, we get

−
∫
T2

z0(x)ψ(0,0,0,x)dx−
∫
T2

∫ T

0

∂ψε

∂ t
zε dt dx− 1

ε

∫
T2

∫ T

0
zε ∇ ·

(
A ε ∇ψε

)
dt dx

=
1
ε

∫
T2

(∫ T

0
∇ ·C ε)ψε dt dx.

Replacing ∂ψε

∂ t by the relation (5.167), we have∫
T2

∫ T

0
zε
[(∂ψ

∂ t

)ε
+

1√
ε
(∂ψ

∂τ
)ε

+
1
ε
(∂ψ

∂θ
)ε
]
dt dx+

1
ε

∫
T2

∫ T

0
zε ∇ ·

(
A ε ∇ψε

)
dt dx

+
1
ε

∫
T2

∫ T

0

(
∇ ·C ε)ψε dt dx =−

∫
T2

z0(x)ψ(0,0,0,x)dx.

Multiplying by ε we have∫
T2

∫ T

0
zε
[
ε
(∂ψ

∂ t

)ε
+
√

ε
(∂ψ

∂τ
)ε

+
(∂ψ

∂θ
)ε

+∇ ·
(
A ε ∇ψε

)]
dt dx+∫

T2

∫ T

0

(
∇ ·C ε)ψε dt dx =−ε

∫
T2

z0(x)ψ(0,0,0,x)dx.

The functions
( ∂ψ

∂ t

)ε
,
( ∂ψ

∂τ
)ε and

( ∂ψ
∂θ

)ε are periodic with respect to the two variables τ , θ . Here we used the Three-
Scale convergence (see [11]).
Taking the limit as ε → 0, using the Three-Scale convergence, we have∫

T2

∫ T

0

∫
[0,1]2

(
U

∂ψ
∂θ

+U∇ ·
( ˜A ∇ψ

))
dτ dθ dt dx =

∫
T2

∫ T

0

∫
[0,1]2

C̃ ·∇ψ dτ dθ dt dx.
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Then, the limit U of zε solution to (3.41) satisfies the following equation

∂U
∂θ

−∇ ·
(

˜A ∇U
)
= ∇ · C̃ . (5.169)

There is indeed existence and uniqueness of the equation (5.169) according to the application of the Theorem 3.15 of
[4]; thus (5.169) is the homogenized equation. In (5.169), τ and t are only parameters.

5.2 A corrector result
Considering equation (5.159) with coefficients (5.155) and (5.156) and hypothesis (5.164) leads to

A ε(t,x) = Ã ε(t,x)+
√

εÃ ε
1 (t,x), (5.170)

C ε(t,x) = C̃ ε(t,x)+
√

εC̃ ε
1 (t,x), (5.171)

where
Ã ε(t,x) = Ã (t,

t√
ε
,

t
ε
,x), C̃ ε(t,x) = C̃ (t,

t√
ε
,

t
ε
,x) (5.172)

Ã ε
1 (t,x) = Ã1(t,

t√
ε
,

t
ε
,x), C̃ ε

1 (t,x) = C̃1(t,
t√
ε
,

t
ε
,x). (5.173)

with
Ã (t,τ,θ ,x) = aga(|U (t,θ ,x)|), Ã1(t,τ,θ ,x) =−abM (t,τ ,θ ,x)ga(|U (t,θ ,x)|) (5.174)

C̃ (t,τ,θ ,x) = cgc(|U (t,θ ,x)|) U (t,θ ,x)
|U (t,θ ,x)|

, C̃1(t,τ,θ ,x) =−bcM (t,τ,θ ,x)gc(|U (t,θ ,x)|) U (t,θ ,x)
|U (t,θ ,x)|

. (5.175)

Because of hypotheses (5.160), (5.161) and (5.162), Ã , Ã1, Ã ε , Ã ε
1 , C̃ , C̃1, C̃ ε , and C̃ ε

1 are regular and bounded
coefficients.

Theorem 5.2. Under assumptions (5.160), (5.161), (5.162),(5.163), (5.164) and (5.165), and if moreover Uthr > 0,
considering function zε ∈ L∞([0,T ),L2(T2)), solution to (5.159) and function Uε ∈ L∞([0,T ),L∞

# (R,L2(T2))) defined
by Uε(t,x) =U(t, t√

ε ,
t
ε ,x), where U is the solution to (5.166), the following estimate is satisfied:

∥∥∥ zε −Uε
√

ε

∥∥∥
L∞([0,T ),L2(T2))

≤ α , (5.176)

where α is a constant not depending on ε.
Furthermore

zε −Uε
√

ε
Three-Scale converges to a profile U 1

2
∈ L∞([0,T )×R,L∞

# (R,L2(T2))), (5.177)

which is the unique solution to

∂U 1
2

∂θ
−∇ ·

(
Ã ∇U 1

2

)
= ∇ · C̃ 1 +∇ ·

(
Ã1∇U

)
− ∂U

∂τ
. (5.178)

Proof. (of Theorem2.4) Theorem 2.4 is a direct consequence of Theorem 5.2.

Proof. (of Theorem 5.2) Using the relations (5.170)and (5.171), equation (5.159) becomes

∂ zε

∂ t
− 1

ε
∇ ·

(
Ã ε ∇zε

)
=

1
ε

(
∇ · C̃ ε +

√
ε∇ · C̃ ε

1 +
√

ε∇ ·
(
Ã ε

1 ∇zε
))

. (5.179)
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As U is solution to (5.166) and taking into account that

∂Uε

∂ t
=
(∂U

∂ t

)ε
+

1√
ε

(∂U
∂τ

)ε
+

1
ε

(∂U
∂θ

)ε
, (5.180)

we obtain the following equation

∂Uε

∂ t
− 1

ε
∇ ·

(
Ã ε ∇Uε

)
=

1
ε

(
∇ · C̃ ε +

√
ε
(∂U

∂τ

)ε
+ ε

(∂U
∂ t

)ε)
. (5.181)

Considering equation (5.179) and (5.181), zε −Uε is solution to

∂ ( zε−Uε
√

ε )

∂ t
− 1

ε
∇ ·

((
Ã ε +

√
εÃ ε

1
)
∇(

zε −Uε
√

ε
)
)
=

1
ε

(
∇ · C̃ ε

1 +∇ ·
(
Ã ε

1 ∇Uε
)

−
√

ε
(∂U

∂ t

)ε
−
(∂U

∂τ

)ε)
. (5.182)

Using the fact that U solution to (5.166) belongs to L∞([0,T )×R,L∞
# (R,L2(T2))), Uε is solution to (5.181) and

a results of Ladyzenskaja, Solonnikov and Ural’Ceva [9], all the terms
(

∂U
∂τ

)ε
,
(

∂U
∂ t

)ε
are bounded. The terms

Ã ε
1 , and C̃ ε

1 are also bounded by hypotheses and then so are ∇ · C̃ ε
1 and ∇ ·

(
Ã1∇Uε

)
. Using the same arguments

as in the proof of Theorem 1.1 in [4] we obtain that zε−Uε
√

ε converges to a profile U 1
2
∈ L∞([0,T ]×R,L∞

# (R,L2(T2)))

solution to (5.178).

References

[1] G. Allaire, Homogenization and Two-Scale convergence, SIAM J. Math. Anal, 23 (1992) 1482-1518.
https://doi.org/10.1137/0523084

[2] R. A. Bagnold, The movement of desert sand, Proceedings of the Royal Society of London A, 157 (1936) 594-
620.
https://doi.org/10.1098/rspa.1936.0218

[3] C. J. van Dujin, Y. Fan, L. A. Peletier, I. S. Pop, Travelling wave solutions for degenerate pseudo-parabolic
equation modelling two-phase flow in porous media, CASA report (2010).
https://pure.tue.nl/ws/files/3232282/658084.pdf

[4] I. Faye, E. Frénod, D. Seck, Singularly perturbed degenerated parabolic equations and application to seabed
morphodynamics in tided environment, Discrete and Continuous Dynamical Systems, 29 (3) (2011) 1001-1030.
https://doi.org/10.3934/dcds.2011.29.1001
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