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1. Introduction

Analysis over hypercomplex numbers develops fast and has important
applications in geometry and partial differential equations including that of
nonlinear (see [3-9, 23-28] and references therein). As a consequence it gives
new opportunities for integration of different types of partial differential
equations (PDEs). It is worth to mention that the quaternion skew field
H = A,, the octonion algebra O = 43 and Cayley-Dickson algebras A,

have found a lot of applications not only in mathematics, but also in
theoretical physics (see [3-8] and references therein).

This article is devoted to analytic approaches to solution of PDEs and
taking into account their symmetry properties. For this purpose the octonion
algebra is used. This is actual especially in recent period because of
increasing interest to non-commutative analysis and its applications. It is
worth to mention that each problem of PDE can be reformulated using the
octonion algebra. The approach over octonions enlarges a class of PDEs
which can be analytically integrated in comparison with approaches over the
real field and the complex field.

We exploit a new approach based on the non-commutative integration
over non-associative Cayley-Dickson algebras that to integrate definite types
of nonlinear PDEs. This work develops further results of the previous article
[23]. The obtained below results open new perspectives and permit to
integrate nonlinear PDEs with variable coefficients and analyze symmetries
of solutions as well.

In the following sections integration of nonlinear PDEs with the help of
the non-commutative integration over quaternions, octonions and Cayley-
Dickson algebras is studied. For this purpose formulas for calculations of
commutators of integral and partial differential operators are deduced. Trans-
formations of partial differential operators and solutions of partial differential
equations are investigated. An apparatus permitting to take into account
symmetry properties of PDOs is developed. Theorems providing solutions of
nonlinear PDEs are proved. Examples are given. Applications to PDEs used
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in hydrodynamics and other types PDEs are described. The results of this
paper can be applied to integration of some kinds of nonlinear Sobolev type
PDEs as well.

All main results of this paper are obtained for the first time. They can be
used for further investigations of PDEs and properties of their solutions. For

example, generalized PDEs including terms such as AP or VP for p > 0 or

even complex p can be investigated.
2. Integral Operators over Octonions
To avoid misunderstandings we first present our definitions and
notations.
1. Notations and definitions
By A, we denote the Cayley-Dickson algebra over the real field R with

2

generators i, ... sothat ip =1, ij = -1 foreach j =1, ijix = —ikij

lor
foreach j#k>12<reN.

Henceforward PDEs are considered on a domain U in A" satisfying
conditions 2.1(D1) and (D2) [23].
2. Operators

Let X and Y be two R linear normed spaces which are also left and right
A, modules, where 2 < r, such that

(D o<fax|y <|al|x]ly and | xa|y <|a|| x|y forall x e X and

ae A, and

@) [ x+ylx <l xllx +]Y[x forall x, y e X and

(3) x|y =|b||x[x =[xb|y foreach be R and x € X, where
for r = 2 and r = 3. Condition (1) takes the form
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() o<|ax|y =|al| x|y =[xa|y forall xe X and a € A,.

Such spaces X and Y will be called A, normed spaces.

An A, normed space complete relative to its norm will be called an A,
Banach space.

An R linear A, additive operator A is called invertible if it is densely

defined and one-to-one and has a dense range R(A).

Henceforward, if an expression of the form
(@) 2 [ = Ay T (x y)]ka(y)=u(x,y)

will appear on a domain U, which need to be inverted we consider the case
when

(RS) (I — Ay) is either right strongly A, linear, or right A, linear (see
their definitions in [23]) and | f € Xy for each k, or R linear and
k9(y) € R foreach k and every y € U, at each point x € U, since R is the

center of the Cayley-Dickson algebra .A,, where 2 <.

3. First order PDOs

We consider an arbitrary first order partial differential operator ¢ given
by the formula

r-1
(1) of =377 o 1j(0f /zej))w .

where f is a differentiable A, -valued function on the domain U satisfying

Conditions 1(D1, D2), 2 <, ig, ..., i . are the standard generators of the

g
Cayley-Dickson algebra A,,a* =2 := aoio—alil—-'-—az,r_liz,r_1 for each
a=agig +agiy +---+ay i in A, with ao,...,azr_leR,\yj are real

constants so that zj\y%>O,§:{0,1,...,2r—1}—){0,1,...,2r—1} is a
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surjective bijective mapping, i.e. & belongs to the symmetric group S2r (see
also Section 2 in [22]).
For an ordered product {1 f ---| f }q(k) of differentiable functions ¢ f we
put
r—

21,
() *ofyf kg = ijolj{lf (05T /0ze()) kT gV s

where a vector q(k) indicates on an order of the multiplication in the curled
brackets (see also Section 2 [17, 16]), so that

k
(3) G{l f Tk f }q(k) :ZS:]_SG{lf Ttk f}q(k)
4. Integral operators

We consider integral operators of the form:
(@) K(x, y) = F(x ¥)+ po | Flz yIN(x 2, )z

where o is an R-linear partial differential operator as in Section 3 and [ is

the non-commutative line integral (anti-derivative operator) over the Cayley-
Dickson algebra A, from [22] or Subsection 4.2.5 [18], where F and K are

continuous functions with values in the Cayley-Dickson algebra A, or more
generally in the real algebra Mat,,,(A,) of nxn matrices with entries in
Ay, pis a nonzero real parameter. For definiteness we take the right A,

linear anti-derivative operator .| g(z)dz.

Let a domain U be provided with a foliation by locally rectifiable paths
{y* o e A} (see also [22] or [18]).

5. Proposition

Let F e C™U?2, Mat,,,(A,)) and N e C™U3, Mat,,(A4,)) and
let
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@) lim 16X %68 2L F(z, y)N(x, 2, y) = 0

Z—>©

for each x, y in a domain U satisfying Conditions 1 (D1, D2) with o0 € U

and every non-negative integers 0 <k s, 1 € Z such that k+s+1<m.
Suppose also that Gj;’a%a@a?[F(z, y)N(X, z, y)]dz converges uniformly
by parameters x, y on each compact subset W c U c A? for each
|a|+|B|+|o®|<m, where o= (ag, .., o ) | o | =0g O

a?(‘:@‘“‘/axgo---ax;rzrl_l. Then the non-commutative line integral

Gj; F(z, y)N(x,z,y) from Section 4 satisfies the identities:
2) of GJ‘OOF(Z, YIN(x, z, y)dz
X

_2_m

=27 o[ "F(z YN 2, y)dz + Ag(F, N) (x, ),
3) oM GJOO F(z, y)N(x, z, y)dz

= ()" 267 of “F(z, yIN(, 2, y)dz + Bn(F, N) (x, y),
where
@

An(F, N)(x, y) = = 260 F(x, YIN(X, 2, Y)]| zx*+ 0xAn_1(F, N) (%, Y)

for m > 2,
(5)

Bn(F(z, y) N(x, 2, ¥))= (1" 267 (x, y)N(x, 2, ¥)+'0,Bp1(F(z, ¥), N(x, 2, Y))
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for m > 2, B, (F, N)(x, y) = By (F(z, y), N(X, Z, ¥))| ;,—x;
(6) AR, N)(x, y) = =F(x, y)N(x, x, y),
(7) Bi(F(z, y), N(x, z, y)) = =F(z, y)N(x, z, y),
oy IS an operator o acting by the variable x e U < A,.

Proof. Using the conditions of this proposition and the theorem about
differentiability of improper integrals by parameters (see, for example, Part
IV, Chapter 2, Section 4 in [12]) we get the equality

of 5ot YN 2, y)ldz = 850 of ~ aP[F(z yIN(x, 2, y)ldz

foreach |o|+|B|+|®|<m.

In virtue of Theorems 2.4.1 and 2.5.2 [22] or 4.2.5 and 4.2.23 and
Corollary 4.2.6 [18] there are satisfied the equalities

® ox of  9(2)dz = ~g(x) and

©) o [0z 1@z = 10~ 1(6)

for each continuous function g and a continuously differentiable function f,
where X is a marked point in U,

(10) 15, G'[OO F(z, y)N(x, z, y)dz

21
= 2o Hjl@F (@ y)/are)N(x 2 y)]v ) dz and
j=0

(11) 26, o F(z, yIN(x 2, y)z

0
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21
- chox{i}k[F(z, y)(@N(x, z, y)/@ze(j))lw j}dz and
j=0

(12) 2oy of " Flz, yIN(, 2, y)d2

21
= 2o HjIF@ )N 2 y)aze)lvjde
j=0

Therefore, from equalities (8, 9), 3(3) and 4(5) and Condition (1) we
infer that:

(13) oy of * F(z YIN(x, 2, y)dz

=26, CI:O F(z, y)N(x, z, y)dz — F(x, y)N(X, X, y),

since F(z, y)N(x,z,¥)x==F(x, y)N(x, X, y), that demonstrates Formula

(2) for m=1 and A = —F(x, y)N(X, X, y). Proceeding by induction for
p = 2, ..., m leads to the identities:

(14) of of “F(z yIN(x, 2, y)dz

= GX[ZGQ—l GJ':O F(z, y)N(X, z, y)dz} +oxAp_1(F, N)(x, Z, ¥)

:20)'? GJ.X F(z, y)N(x, z, y)dz

~ 2607 (2, YIN(X, 2, V]I 2x+ oxAp_1(F, N)(X, Y).

Thus (14) implies Formulas (2, 4, 6). Then with the help of Formulas (8, 9)
and Condition (1) we infer also that
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(15) 102 ij F(z, y)N(X, z, y)dz
= o, cfw F(z, Y)N(x, z, y)dz + F(z, y)N(x, z, y)| X

= —F(x, y)N(x, X, y)—zcz GJ.:) F(z, y)N(X, z, y)dz.

Thus, formulas (3) for m =1 and (7) are valid. Then we deduce Formulas
(3, 5) by inductionon p =2, ..., m:

(16) 1o? GIw F(z, y)N(x, z, y)dz
ot 1o, of "Gz NG, 2 )t

~top %o, of " Fla NG 7, et

- [P (2, YN, 2, Y]] 1o

~iop 2y 2o, of P2 YN, 2, )i |
- [P F (2 YN 2, V)] 2

~l 2|2 0,), [ TR NG 2 )t}

+['sP7%(%0,F(z, yYN(X, 2, Y)]| 12«

_[lcg_lF(Za YIN(X, 2, )] 7=«

= (_ZGZ)PC.[:O F(z, y)N(x, 2, y)dz + By(F(z, ¥), N(X, Z, ¥))| 7=«
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and
Bp(F(z, ¥), N(x, 2, y)) = ~(-%0,)P'F(z, y)N(x, z, y)

+'0,Bp 1(F(z, y), N(x, 2, y).
6. Corollary

If suppositions of Proposition 5 are satisfied, then
1)

Po(F, N)(X, ) = =0y [F(x, YIN(X, X, ¥)] = *ox[F(z, yIN(X, 2, Y)]| 1
(2) Ag(F, N)(%, ) = —o([F(x, YIN(x, X, Y)]
— ox(Poy[F(x, YIN(X, 2, Y)]| 12¢) = “05[F(x, YIN(X, Z, Y)]I ,

(3) An(F, N)(x, y)——Z S PN IRz, yIN(X 2, Y]l 2ok

(4) By(F(z, y), N(x, 2, y)) = -0, [F(z, y)N(x, z, )]
+%6,[F(z, Y)N(x, z, y)],
(5) B3(F(z, y), N(x, z, ¥)) = ~63[F(z, y)N(x, z, y)]

+16,( %0, [F(z, YIN(x, z, y))) - %2[F(z, y)N(x, z, y)],

(6) Bm(F(z, y), N(x, z, y))
- | DK 2K |F @ )Nk 2, ),

(7) Ao(F, N)(x, y) = Ba(F, N)(x, y) = =2 2o4[F(x, y)N(x, X, y)],

where oy N(X, X, ¥) = [6xN(X, z, ¥) + c,N(X, Z, Y)]| 72%

(8) Ag(F, N)(x, y) - B3(F, N)(x, y)—_(3 C5x"‘ Gx 202"‘
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226, 2o) [F(x YIN(X 2, Y)]| 1=
-(2 1C5x 2C5x + 2Gx 1Gx)[F(X: YIN(X, X, y)I.

Particularly, if either p is even and yg =0, or F € Mat,,,(R) and
N e Mat,n(Ar), then

(8) 2cP[F(z, Y)N(x, z, y)] = F(z, y)oEN(x, z, y) and

26P[F(z, y)N(x, 2, y)] = F(z, y)oPN(x, z, y).

Proof. From formulas 5(13-16) identities (1-8) follow by induction,
since

An(F, N)(x, ¥)=-[ 20X F(z, yIN(X, 2, )]l soxct xAn_1(F, N)(X, y)

=L 2T IR (2, YIN(X, 2, )] 1ox—oxd[ 20X 2F (2, YIN(X, 2, )]l 1)
— i {2} PR (2, YN 2, Y]l o} ==X 2 {[ PoxF (2, YIN(X, 2, Y)] 1)
~ R (X, YIN(X, X, y) and
Bn(F(z, y), N(X, 2, ¥)) = <(=0,)" *F(z, y)N(x, 2, y)
+16,Bn 1 (F(z, ) N(X 2, y) =+ =
~LSTHF(Z, YN, 2, y)] + 67 2P0, [F(z, yIN(X 2, Y))

o732z YIN(X 2, YD+ + (=)™ (P " HF(z, YN(x, 2, )]

Particularly when p is even and yg =0, p =2k, k e N we get that

R f(x) = A“(x)

for p times differentiable function F : U — A, where

2 2 .2 . .
Af =Zjbja f(x)/oxf,bj = |§_1(j) e R according to Subsection 2.2 [22] or
Formulas 4.2.4(7 -9) [18].
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On the other hand the operators 20)'? and 2P commute with the left
multiplication on F(z, y) e Maty.n(R), that is 2cP[F(z, y)K(x, z)] =
F(z,y)oPK(x,z) and 26P[F(z, y)K(x, 2)] = F(z, y)oPK(x, z) for
p = 2k, since R is the center of the Cayley-Dickson algebra A,.

3. Some Types of Integrable Nonlinear PDE

1. PDE

Partial differential operators L; are considered on domains D(L;)
contained in suitable spaces of differentiable functions, for example, in the
space C™(U, Mat,,(A,)) of infinitely differentiable by real variables
functions on an open domain U in A, and with values in Mat,,,(A),

because U has the real shadow Ug, where n € N.

Henceforth, if something other will not be specified, we shall take a
function N may be depending on F, K and satisfying the following
conditions:

(1) N(x, y) = EK(X, y) with an operator E in the form
(2) E = BSTy,
(3) [Lj, E] = 0 foreach j,

where B is a nonzero bounded right A, linear (or strongly right A, linear)
operator, S = S(X, y) € Aut(Mat,,,(A,)), so that B is independent of

x,yeU, geDiff ®(UZ), g=(9y, 95), 9 (UZ)=URg for I=1 and I=2,Ug
denotes the real shadow of the domain U, Aut(Mat,,,(.4,)) notates the

automorphism group of the algebra Mat,,.n (A, ),

(4) TgK(x, y) = K(g1(X, ¥), 92(X, ¥)).

Condition (3) is implied by the following:
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(5) [Lj, B] = 0 foreach ],

(6) Lj,x, y(TgK(x, y)) = Tq(Lj,x, yK(x, ¥)) and

(7) Ljx,y(S(x Y)K(X, ¥))=S(x, y)(Lj x, yK(x, y)) for each j and each
X, y €U, where L; , ,are PDOs considered below.

Evidently Conditions (6, 7) are fulfilled, when L; , y are polynomials

of cs')‘( and G|§,, all coefficients of L; are real and the following stronger

conditions are imposed:

(8) ok(TyK(x, y)) = Tg(ckK(x, y)) o5(TgK(x, y)) = Ty(c¥K(x, y))
and

9) o%(S(x, Y)K(x, ¥)) = S(x, ¥) (kK (x, ¥)), ¥(S(x, y)K(x, y)) =

S(x, y)(c§K(x, y)),
since S|jr=1I.

2. General approach to solutions of nonlinear vector partial differential
equations with the help of non-commutative integration over Cayley-
Dickson algebras

We consider an equation over the Cayley-Dickson algebra A, which is
presented in the form:

(1) K(x, y)=F(x,y)+p ij F(z, y)N(x, z, y)dz,

where K, F and N are continuous integrable functions of A, variables
X, y,zeU so that F, K and N have values in Mat,,,(A,), where n>1,
r>2, and K are related by 1(1, 2), p € R\{0} is a non-zero real constant.
These functions F, K and N may depend on additional parameters t, <, ---. It
is supposed that an operator
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(2) (I = A E)K(X, y) = F(x, y) isinvertible,

when N(x, z, y) = EyK(x, z) foreach x, y, z € U, so that (I —AXE)_1 is

continuous, where | denotes the unit operator,
(3) AKX Y) = Do Flz yK(x 2)dz

is an operator acting by variables x.

Then R-linear partial differential operators L, over the Cayley-Dickson

algebra A, are provided for k =1, ..., kp, where kg € N,
4) L f = ii(Le i f),
(@) Lef =21 )

where f is a differentiable function in the domain of each operator Ly, Ly
are components of the operators L so that each Ly ; is a PDO written in

real variables with real coefficients. Next the conditions are imposed on the
function F:

(5) LF =0

for k =1, ..., kg, or sometimes stronger conditions:
(6) Zje‘lﬁ ijlek, j(L,oF) + L, jF]1=0

for each k and 1<Il<m, where ¢, ; are constants cy jeAy,
¥ c{0,1,..,2" —1} foreach U; ¥, ={0,1,...,2" -1}, ¥,, N, = for each

n=1,1<m<2". Then with the help of Conditions either (5) or (6) we get the
PDEs either

(7) Lg[(1 —AxEy)K] =0 or

(8) Zje\},k ij{ck jLs.ol(1 —AKEy)K]+Ls j[(1 -ALE,)K]} =0 for each
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k =1 .., m, respectively, for s =1, ..., ki, where k; < ky. Hence

(9) (I = AEy) (LK) = Rg(K) for s =1, ..., ki, where

(10) Rs(f) = (1 - AxEy)(Lsf)_ Ls[(l - AxEy) f]-
The latter can be realized when
(11) Ry(K) = (I —AXEy)MS(K) for s =1, ..., kg,

where Mg (K) are operators or functionals acting on K. Therefore due to

Condition (2) the function K must satisfy the PDEs or the partial integro-
differential equations (PIDES)

(12) LLK = Mg(K)=0 for s =1, ..., k
which generally may be non-R-linear.

Henceforward, if something other will not be outlined, we consider the
variants:

(13) F, K, N e Mat,,,(A,) with 2 < r < 3 and B is the strongly right

A, -linear operator; or

(14) F e Mat,,n(R) and K, N € Mat,,,(A,) with 2 < r and B is the
right A, -linear operator (see also Section 1), where 1 < n € N.
3. Theorem

Suppose that conditions of Proposition 2.5 and 2.2(RS) are fulfilled over
the Cayley-Dickson algebra A, with 2 <r and on a domain U satisfying
Conditions 2.1(D1, D2) for the corresponding terms of operators Lg for all

s =1 ..., kg sothat

(1) the appearing in the terms M4(K) integrals uniformly converge by
parameters on compact sub-domains in U and

(2) lim,_,., 05502 [F(z, y)N(x, z, y)] = 0
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the limit converges uniformly by x, y e U\V for some compact subset V in
U and for each |o|+|B|+| @|<m, where 1<m=max{deg(Ls):s=1,..., kg }
and

(3) the operator (I — AXEy) is invertible, where F is in the domain of
PDOs Ly, ..., Ly, F(X, y) € Maty,h (A) and K(x, y) € Maty,,(Ay), neN.

Then there exists a solution K of PDEs or PIDEs 2(12) such that K is
given by Formulas 1(1, 2), 2(1) and either 2(5) or 2(6).

Proof. The anti-derivative operator g I Xxg(z)dz is compact from
0

cOv,A,) into c%Vv,A4,) for a compact domain V in A, where

CO(V,Ar) is the Banach space over 4, of all continuous functions
g:V — A, supplied with the supremum norm | g | := supyeyv| 9(X)|, oX;
is a marked point in V, gx € V. A function F satisfying the system of R
linear PDEs 2(5) or 2(6) is continuous.

Therefore, due to conditions (1-3) the anti-derivative operator
GJ.;OF(Z, y)N(x, z, y)dz is compact. Hence there exists 3 > 0 such that the
operator | — AyE, is invertible when | p| < 8, where p e R\{0}. Mention

that the operator Ty is strongly left and right A, -linear (see Section 1),

while S is the automorphism of the Cayley-Dickson algebra, that is
S[ab] = S[a]S[b] and S[a + b] = S[a] + S[b] foreach a, b € A,.

Since the operator (I — AyEy) is invertible and Conditions 2.2(RS) and
either 2(13) or 2(14) are satisfied, then equation 2(12) can be resolved:

@ > 6 Y)a(y) = (1= AEy ) hu(x, y),

since if A: X — X is a bounded R linear operator on a Banach space X
with the norm || A|| <1, then the inverse of | — A exists:
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(- A)_1 = 2:10:0 A", Applying Proposition 2.5 and Section 2 we get
the statement of this theorem.
4. Remark

If Condition 2.2(RS) is not fulfilled, the corresponding system of PDEs
in real components (AXEy)j,S’ k fs and | g5 can be considered.
5. Lemma

Let suppositions of Proposition 2.5 be satisfied and the operator A, be

given by Formula 2(3), let also E = E, may be depending on the parameter
y €U and let N(x, z, y) = E K(x, z) (see Formulas 1(1-4)). Suppose that

F(x, y) € Mat,n(R) and K(x, z) € Mat,,n(A,) for each X, y, z e U,
where r > 2. Then

(1) An(F, EyK) (X, y) = (I = A Ey) An(K, E,K)(x, y)
+ Py (K, EyK)(x, y),
(2) Bu(F, EyK)(x, y)=(I _AxEy)ém(Kv EyK) (X, y)
+ Qm(K, EyK) (X, ¥),

where

3 Am,x,y(K(Z’ y), EyK(X’ 2))| 7=x= Am(K' EyK)(X’ y)=
m-1

= > 63Ky mojoa(% Y)
j=0

1

m—
+pY.
j=1

-1
Zcile,m—j—l, j—ip-1(% Y)
h=0

m-1j-1 j1-1

j_
) _
7Y D D o2Kamo ot jo it j—jp (% Y) +

J=1 1=1i2=0
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+p™ 2K 10,...00% ¥),

(4)

Bn(K(z, y), EyK(x, 2)) = Y (- D) {Ted[K(z, y)od HEyK W, v))]
j=1

+ PAn_j, 2,y (K(z, ¥), EyK (X, 2) (G4 EyK W VD y=z, wero
(5) Bn(K, EyK) (%, ¥) = Byu(K(2, ¥), EyK(X, 2))] 1=,
6) A(K, EyK)(x, y) = =K (z, Y)(EyK(X, 2))] 1,
(1) Bu(K(z, y), EyK(x, 2)) = -K(z, y)(EyK(x, 2))
for each m > 2 in (3, 4), where Z’JT‘zlaj =0 forall | > m,
(8) Ky, j(x, ¥12) = K(x, Y)ok(EyK(x, 2),
9 Ky, ol (%0 ¥12) = K6 Y)[GWE K g 1010, (% 2],
(10) K, by, ty (% ¥) 3= K 1yt (X6 Y12) ] 2
(11) Pn(K(z, y) EyK(X, 2))| 1=x= Pn(K, EyK) (X, ¥)

m-1_ ; m-1—j-1 .
= Ax{zjzl [o% Ey 1Ky mojoa(X, y)+ pzjzlzhzl[ﬁil, EyIK2,m-j1, j-j-1(% ¥)

m-3\"M-1 -l Jm-a=1r o
+e m-3 E
p ijl j1=1 jm73:1[0x y]

Km-2,m=j-1 j= ;L oo, im_a— im_a-1(% ¥) }

(12) Qn(K, EK)(x, y|z)
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N i j-1
= Zj:l -1 Pm—j(K(na y), EyK(Z’ n))(oy EyK(W’ V))|T]=Z,V=Z,W=X’

(13) Qm(K, EK)(X, ¥) = Qu(K, EK)(X, y[2)| 7=x.

Proof. Formulas (6) and (7) follow immediately from that of 2.2(2, 3)
and 2.5(6, 7). Write A, foreach m > 2 in the form:

(14)
An(K, EyK) (% y) = =Y ol 2ol IF(z, y)(EyK (X, 2))]] 14},
j=1

where c° = 1. Using that F(z,y)=( ~-A;Ey)K(z,y) and F(z,y)e
Mat,.,(R) we get from (14):

(15)

A (FL By KX ) == ok M1 = AEy KX, Y)(0X By K (% 2)]l 1y -
j=1

In virtue of Proposition 2.5 we deduce from (12) that

(16)

An(F, EyK)(x, y) = (I AxEy){ZGilKLmj(xv y)}
=1

m-1
+pZA 4(K(z, y), EyKy m—j (X, 2))] 7=x+ A Z[Gx’ y]Klm j—1(%y)
i=2 j=1

m-1j-1
=—(I AxEy){ZGxKlm i _a(xoy)+ pz ZG>J< Ko,m—j-1, j- jl—l(x y)}

i=1j1=0
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L m1j-1
+sz[6>1<, Ey]Kl,m—j_j(X, y)+ prZ Z[G)J(l, Ey]KZ,m—j—l,j—jl_l(X, v)
= g
2m—l j-1
+ p AJ].(F(Z' y), EyKZ,m—j—l, J_Jl—l(x' Z))| Jex=
=l j=1

since [G)J;, Eyl+ Eyo){ = c)j(Ey for j>1,

AEyK(x, y)= pcj;}F(z, y)EyK(x, z)dz. Iterating relations (13) we infer

by induction Formulas (1, 3, 11). Then we have
(17)
m - - -
Bn(F(z, y). EyK(x, 2) = Y (- D) 1o 267 'F (2, y) (EyK(x, 2))
j=1
and for F(z, y) € Mat,,,(R) foreach z, y e U this reduces to:

(18)

m

Bn(F(z, y), EyK(x, 2)) = D" (- )V 7 IF(z, y) (ol H(EyK (%, 2)))
j=1

=Y (~)16P (1 - ALEYK(z, y)(od HEGKW, V)] vy, wex):
j=1

Therefore, in view of Proposition 2.5 and Formula (1) the identity

(19)

Bn(F (2, ), EyK(x 2)) = (1 - AEy) {Z(—l)i{lo;"-jﬂz, Y) (o] HEyK(w, 2)))
j=1
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+PAn_j 2 y(K(n, y), EyK(z, 1) (od E K(w, v)))}}| N=Zv=7, W=X

m-1

+ 2 (D) R j(K, y), EyK(Z, ) (0 EyK (W, V)| oz, vz, wex
j=1

is valid, since

AE K(z, y){od HE KW, V) vz, wex

=P of Fn ) (EyK(z m){od (ESK W, Vo] yop, o

6. Proposition

Suppose that

(1) a PDO L; is a polynomial Q;(cy, oy) of oy and oy for each
i =1 .., kg, coefficients of Qj are real and Condition 1(3) is fulfilled for
all j;

(2) L, x, yK(X ¥) = (AxEyLs x, y)K(X, y) = Rs(K)(x, y) for each
s=1 .. k; F(x,y) is in Maty,n(R) and K(x, y) e Mat,,,(A,) for

each X, y e U (see 2(3)), o and A are over the Cayley-Dickson algebra
A, 221, neN, 1<k < kp;

(3) Lj,x,yF(x, y) =0 forevery x, yeU and j =1 ..., ko.
Then there exists a polynomial Mg of K, E, ¢ and A such that
(4) Rs(K)(x, y) = (I = AxEy)M(K) (X, y) foreach s =1, .., k.

Proof. Proposition 2.5 and Corollary 2.6 imply that Rg(K)(x, y) can be

expressed as a polynomial of A, (F, EK), B, (F, EK), o and AEK, where
m e N.
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Take an algebra B over the real field generated by the operators
o, A E and I

B = algr(oy, Gy, 67, Ay, Ay, Ay, Ey(x, z), VX vy, zeU;l),

where | denotes the unit operator. In view of Proposition 3.1 [23], Theorems
2.4.1 and 2.5.2 [22] the algebra B is associative, since F(z, y) is in

Mat,,,(R) for each z, y € U, the algebra Mat,,,(R) is associative, also
E is given by 1(2, 4). Therefore, there exists the Lie algebra £(B) generated
from B with the help of commutators [H, G] = HG — GH of elements
H, G € B (see also about abstract algebras of operators and their Lie
algebras in [36]). Then Y = [Ls, E]£(B) is the (two-sided) ideal in £(B)
and hence there exist the quotient algebra L4 : £(B)/Ys and the quotient
morphism ng : £(B) — L.

Next consider the universal enveloping algebra &/ of the Lie algebra
L(B). In virtue of Proposition 2.1.1 [2] there exists a unique homomorphism
t from U into B. The algebra C* (U, Matp,,(.A,)) over the real field also
has the structure of the left module of the operator ring B and hence of
L(B) and U as well, where C*(U, Mat,,(.A,)) denotes the algebra of all

infinitely differentiable functions from Ug into Mat,,,(A,) (see Section

1). Since C*(U, Maty,(A,)) is dense in C'(U, Maty,,(A,)), then it is

On the other hand, [Ls, E]U = U, is the (two-sided) ideal in /.

Let P(x, y) denote the R-linear algebra generated by sums and products
of all terms QP so that P are polynomials of functions
K e C*(U, Mat,(A,)) and Q are acting on them polynomials of operators

o, A E (or B, S, Tg instead of E, since E = BSTg), where coefficients of

P and Q are chosen to be real, since coefficients of each polynomial Q; are
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real. Certainly the equality oT = Ta is valid for each T e Mat,,,(R) and
o € A, since R is the center of the Cayley-Dickson algebra A, 2 <r
and (aT); ; =aTj j=T; jo=(Ta); j foreach (i, j) matrix element (Ta); ;
of aT.

The polynomial Rg(K)(x, y) is calculated with the help of
Conditions (3), where s =1, ..., k; (see also Section 2). From formula (2) it

follows that the polynomial Rg(K)(x,y) belongs to (1 -AyEy)P(x,Y)
+Z'}il{ujc°°(u, Mat,.,(A,))} for each s=1, .., ky. Applying the
quotient mapping = ; for all i =1 ..., kp and using Proposition 2.3.3 [2] we
get Formula (4), since nj(uj) = 0 and Condition 1(3) is imposed for each

i=1 .. kg
7. Example

Take two partial differential operators

D) b =Ly = al-oc0) -oy) and

) Ly = L xy = ) &ok —(-oy)),

where a € R for each | when o is over A, with r > 2, the sum is finite
or infinite, 1 € N. The functions F(x, y) and K(x, y) of A, variables
X, y € U have values in Mat,,,(R) and Mat,,,(A,) respectively, where
n>1r>2 A domain Uin A, satisfies conditions 2.1 (D1, D2) with

o e U. Ona function F(x, y) are imposed two conditions:

(3) Ly, x yF(x, y)=0and

(4) L2,x,yF(Xa y) = 0.

Suppose that conditions of Proposition 2.5 are fulfilled and
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(5) K(x, y) = F(x ¥)+ po | Flz yIN(x 2)dz,

where p is a non-zero real parameter, N(x, z) = EK(x, z) for each
X, zeU, while E is a bounded right A, -linear operator satisfying
Conditions 1(2-4) and either 2(13) or 2(14).

Condition (3) is equivalent to

6) >, a(-ox) F(x, y) = D aoyF(x, y) and (4) to

(1) D a0xF(x y)= > ai(-1) oy F(x, y)=0

correspondingly. Acting on both sides of the equality (5) by the operator L;
and using (6) and Proposition 2.5 we get

®
Ly KO0 Y) = P (= 00! = (o)) [ "Rz yINGx, 2z
= P (=700 = %b). " F@ YN 2)ce
+ P (=1 (A(F; N)(x y) = Bi(F; N)(x, y) and hence

©) L xy KO ¥) = P 2L ss| F@ yIN(x 2)z

+ Py, (~Dla(A(F; N)(x )= Bi(Fi N)(x, y)).

Then from (5, 7) we infer that

(10) Ly, K% y) = P @il ~"ob) [ F(z yIN(x, )z
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2 | 2\ [~
= py aCox - (- %0))s ] F(z yIN( 2)0z
+ pzl a(A(F; N)(x, y) - Bi(F; N)(x, y)) and consequently,
(A1) Lo, yK (6 ¥) = P 2L w20 F(2 YIN(X, 2)d2

+ 0 a(AF; N)(x y) = Bi(F; N)(x y).

Then Equalities (9; 11) imply that

(12) (L, y £L x,y JKOG V)= Pl s 220 0 0)o | F(2 yIN(X, 2)c

+ Py A+ (D) (A N)(x y) = Bi(Fi N)(x, y)).

We take into account sufficiently small values of the parameter p, when
the operator | — AE is invertible, for example, || A E | <1, where

ALK (X, y)= pGJ';OF(z, y)K(x, z)dz. In the case F e Matp,,(R) and

K e Maty,n(A;) with o over A,, from (5, 12), Lemma 5 and Proposition
6 it follows that K satisfies the nonlinear PDE

(13)
L yK(% y) = pY, 1+ (D)) afA(K; EK)(x, ) - Bi(K; EK)(x, y)] =0,
where

(14) Ly = >, (214 (-D)ai(ox - oy),

A and By are given by formulas 5(3-7), since (a, b, ¢) =0 when
particularly a e Maty,,(R), where (e, b, c) = (eb)c —e(bc) denotes the

associator of the Cayley-Dickson matrices e, b, ¢ € Mat,,(A;), also since
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oa = ao foreach a € A,. A solution of (13) reduces to linear PDEs and is
prescribed by (3-5). Equivalently the function K satisfies also the PDEs

(15)
Ls x yKO4 ¥) = P~ (D™ ay[A (K EK) (%, y) - B(K; EK)(x, )] =0

for s=1 and s = 2. Instead of this system it is possible also to consider
separately PDOs L; and L, and the corresponding PDEs for F and K as

well. Thus with the help of Theorem 3 we get the following.
7.1. Theorem

Suppose that conditions of Theorem 3 and Example 7 are fulfilled, then a
solution of PDE (15) is given by (3, 5), where Ly is prescribed by Formula

(1), s =1
8. Example

Let PDOs be

QL= Li.x,y = Ox — Oy,
| jl |
() L j =L jixy = ZI (o + (- 1)J bIGy)’

where a, by € R for each | when o is over Ay, with m > 2, the sum is
finite or infinite, j =1 or j=2. It is also supposed that the functions
F(x,y) and K(x, y) of A, variables x, y eU have values in
Mat,,.,(R) and Mat,.,(Ay) correspondingly, where n>1 m=> 2. A
domain U in A, satisfies Conditions 2.1(D1, D2) with o« € U. Suppose
that

() Ly x, yF(x, y) =0 and consider the integral relation:

@) K(x y) = F(6 y)+ P [~ F(z yIN(x, 2)dz,

where N and K are related by Formulas 1(1, 2).
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X+Yy

Using condition (3) we can write F(x, y) = F( 5

j. Therefore we

deduce that
(5)

X + © _(7+
L2,j;x,yK(X, y) = Lo, j;x,yF(—Z y)"‘ pLz,j;X, yGIX F( > y)N(X, z)dz

X+ ' © _(z+
=Ly, j;x,yF(Tyj + PZ(awlx +(=1)/"p, 1GIZ)GJ.X F( 5 y)N(x, 7)dz
[

=L j:x,yF(XJZr y) + F’Z{[(al 26} + (-1 chz)cjj F(Z ; y)N(x, z)dz}
|

+a A (F; N)(x, y)+ (-1 By (F; N)(x, y)}

Imposing the condition

(6) Lo, yF(x, y) = 0, where

| I I
(M) Loyxy=Lloyxy+Llooxy= Z| (2aj0% +(1+(-1) )bjoy), we get
the nonlinear PDE with the help of Lemma 5 and Proposition 6
(8)

Lo, yK(6 y) = P {281 A (K N)(x, y) + @+ (Db By(K; N)(x, y)} =0,
|

since the center of the Cayley-Dickson algebra A, is the real field R and so
the commutator of bl and .| is zero, [bl, /]=0, also (bl)(FK)=
F(bIK)=bFK, when b is a real constant. Making the variable change
y — -y one gets the PDO oy + oy instead of oy -oy and the
corresponding changes in the PDO Lp,. Then Theorem 3 implies the

following.
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8.1. Theorem

Let conditions of Theorem 3 and Example 8 be fulfilled, then a solution
of PDE (8) is described by formulas (3), (4), (6), where PDOs L; and L,

are provided by expressions (1, 7).
9. Example

Consider now the generalization of PDOs from Section 5 with k > 2 :
L= I—1;x,y = G|>(< _Gly(/v

(2) L2,y=L2,j;X,y=ZI(a|c')‘(' +(~1) b|c5|§,|), where k is a natural
number, &, by € R for each | when the Dirac type operator c is over A,

with m > 2, the sum is finite or infinite, j =1 or j = 2. Other suppositions
are as in Section 8. Let

(3) Ly x yF(x y)=0and

@) K(x,y)=F(x, y)+ pcjj F(z, y)N(x, z)dz,

where N is expressed through K by 1(1, 2).

Then we deduce the identities:

() Lo, jix, yF(X ¥) = L jix, yF(X ¥) + ply, j:x, ycs_[:oF(Za y)N(x, z)dz
= Lo o yF O )+ P (@il + (DM 2ot [ TR, yIN(x 2)d2
| X
=Ly jix,yF(x ¥) + PZ {(m 26K 4 (- 1)I+DK, ZG'Z)GIOO F(z, y)N(x, z)dz}
I X

caAa(Fi N)(x y)+ (DM Ba(F: N)(x y)}.
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From the condition

(6) Lp.x, yF(x, y) = 0 with the PDO

kl kl kl
(7) I-2;x,y = L1y y T Lo o X,y = ZI (2aoy +(1+(-1) )bIGy)
we infer that a function K is a solution of the nonlinear PDE of the form:
(8)

Locw, yK(O6 ¥) = P {28 Ag (K; N)(x, y) + @+ (= D)bi By (K; N)(x, y)} = 0.
|

9.1. Theorem

Let conditions of Theorem 3 and Example 9 be satisfied, then a solution
of PDE (8) is provided by Formulas (3), (4), (6), where PDOs L; and L,
are given by (1, 7).

10. Example
Let now the pair of PDOs be

k k
(1) Ll = Ll;x,y = Oy +Gy,

@ Ly j=Lojixy = ZI (aoX + (- 1)|J'(k+1)b|0|§|)’

where Kk is a natural number, k > 2, K, F, U and o have the same meaning
as in Sections 1 and 2, a, by € R for each | when o are over A, with
m > 2, F € Maty,n(R) and K e Matp,n(A,), the sum is finite or infinite,
j =1or j= 2. Imposing the conditions

() Lyx, yF(x y)=0and
4) Ly. X7yF(x, y) = 0 with

(5) Lo:x. y = I—2,1;x,y + I—2,2;x,y = ZI (ZaIC’I)((I + 1+ (= 1)I(k+l))blcl§l)

and considering the integral transform
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(6) K(x, y) = F(x y)+ po | Flz y)N(x 2)dz,
where N is related with K by expressions 1(1, 2), we infer that

() Lo iy KO Y) = Lo, o yFOGY)* PLa, o [ F(z YIN(, 2)02
= Lo i yF 06 )+ P (ol + (<00 My 168 [ 7RGz, y)N(x, 2)d2
X
|
=Ly jix yF(x y) + pZ{[(aq 26K 4 (- 1) (D (kD) ZG'Z)GIOO F(z, y)N(X, z)dz}
I X

oA (Fs N)(x, )+ (-0 Ky B (F: ) (x y)}

Thus in virtue of Lemma 5 and Proposition 6:
(8)

Locx, yK (%, )= P {28 A (K; N)(% y)+ (D) + (=D By (K; N)(x, y)} =0.
|

10.1. Theorem

If conditions of Theorem 3 and Example 10 are satisfied, then a solution
of PDE (8) is given by Formulas (3, 4, 6), where PDOs L; and L, are as in

(1, 5).
10.2. Remark

Transformation groups related with the quaternion skew field are
described in [31]. Automorphisms and derivations of the quaternion skew
field and the octonion algebra are contained in [36], that of Lie algebras and
groups in [6].

11. Example

Consider now the term N in the integral operator
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)
F(Y) (@)K (X, ¥)) = K(x, y) + pcjj F(z, y)[f(2)(9(x)EK(x, 2))]dz

with multiplier functions f(z) and g(x) satisfying definite conditions (see
below), where F, K and N(x, z) = f(z)(g(x)EK(X, z)), p have the

meaning of the preceding paragraphs, E is an operator fulfilling Conditions
1(2, 3) and either 2(13) or 2(14) also. Suppose that

) o,f(z) = Z,— iy j0f (2)/0z¢(j) = M (2) and
(3) ox9(x) = Zj 1y j0g(X)/Oxe(j) = ng(x), where

A=) diyil; and
ZJ iVirj
uzzjijwjuj with 2;, pj € R for each j. We choose the functions

f(z):Clexp(ijjxjj and g(x)zczexp(zjxjpjj satisfying PDEs (2)

and (3) correspondingly, where C; and C, are real non-zero constants,

X, Zj ER,XZZjinj,X,ZEU. The first PDO we take as

k k
(4) Ll = Ll,x,y = Oy + SGy,
where k > 1, either s =1 or s = —1. Then the condition

(5) Ly x, yF(x, y) =0 isequivalent to

(6) oxF(x, ¥) = ~sc“F(x, y).

Therefore we get from Proposition 25 with N(x, z) =
f(z)(g(x)EK(x, z)) that
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(M) oYof "F(z y)[1(2)(@XEK(x, 2))]dz = (- 5)' "o
of “F(z. y)[1(@)(@REK(x 2)]dz
= ' (1) V2, +46, o[ (2 y)[F(2) (900EK(x, 2)]dz

+(=9) Bu(F(z, y); [f (@) (QOVEK(X, )] 7—x,

where F stands on the first place, f on the second, g on the third and (EK) on
the fourth place. Then from (2) and (7) it follows that

@ o] " F(z 12K (x, 2)]dz
= ' -0/ s, 4| TG () (9OEK(x, 2))ldz

+(=9)' Bu(F(z, ) [f(2) (GO)EK (X, )] 7=

Evaluation of the other integral with the help of Proposition 2.5 and Formula
(3) leads to:

© ofo| "Fz VIf @) (@0EK(x 2))]az

= [P0y + o, o[ " F@ )1 (2) (9K (x, 2))]dz
+ Aq(F(z, ¥) [F(2) (G0OEK (X, )] 1o
= [0 +uls[ " F(z IF(2) (@EK(x 2)]dz

+ Aa(F(z, y) [F(2)(9(X)EK(X, 2))D] z=x-

Thus in this particular case PDEs of Examples 7-10 change. For example,
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PDE 10(8) takes the form:

(10) ¥ 2ay(ox + W + @+ (-1 * Dy oy + MK(x, y)
|

——f(y)pg(x)Z{Zau%([f(y)(g(Z)K(z, )L [F(2) (9(X)EK(X, 2))])] 7=«
|

+ L+ (-1 C 0By ([ () (9(2)K (2, Y [F() (GOOEK (X, 2)D] 14} = O,
when F e Mat,,n(R) and K e Mat,,n(A,) with 2 < r and E is the right
linear operator over A, since the operator E satisfies Conditions 1(2, 3) and
either 2(13) or 2(14); the functions f(y) and g(x) have values in R\{0} for
each x, y e U, whilst R is the center of the Cayley-Dickson algebra.
Analogous changes will be in Examples 7-9.

12. Example

Let the non-commutative integral operator be

(1) K(x, y) = F(x, y) + ByK(x, y) with

2) BeK(x, ¥)= P | " F(z, yIN(K, 2, y)d

where F, K, N(x, z, y) are as in Proposition 2.5 and Theorem 3,
F e Matp.n(R), K and N are in Mat,,,(Ay,), while p is a sufficiently

small non-zero real parameter, N is an operator function right linear in K as
in Section 1. Put

() N(x,z,y) = EyK(x, z) forevery x,yandzin U,
where [Ey, Lj] =0 foreach j=1 .., ky and y € U, E = E;, may depend

on the variable y € U also, E is an operator satisfying Conditions 1(2, 3)
and either 2(13) or 2(14), m > 2. Choose two PDO

(4) Ll = Ll,x,y = Oy +Gy,
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|
(5) L2 = L2‘ Xy = (Zl a.|GXj + Scy,
where s € R, s is a non-zero real constant, a € R for each | when the

Dirac type operator o is over A, with m > 2. We impose the conditions:

(6) Ljx,yF(x, y)=0for j=1and j=2 forall x, y e U. Thenitis

possible to write F(z, y) = F(Z;Zyj Applying the PDO L, to both sides

of (1) and using (2), Proposition 2.5 and Conditions (3-6) we deduce that
()

L2,X,yK(X’ y) = p{z a'|GIX - SlGZ +S ZGY}GIX F(21 y)N(X! Z, y)dz
|

= p{z 3 %0\ +s%, +5 ch}cjx F(z, y)N(x, z, y)dz}

+1 P aA(F; N)(x y)}— psBy(F; N) (X, ¥).
|

For sufficiently small non-zero real values of p the operator | —B, is

invertible and hence Equality (7), Lemma 5 and Proposition 6 imply that K
satisfies the nonlinear partial integro-differential equation:

®) Ly, x, yK(x, y)—{pzalﬂi(K: N)(x, y)}— PsK(x; y) (X, X, ¥)
|

_ pscj.X K(z, y)oyN(x, z, y)dz = 0.

12.1. Theorem
A solution of PIDE (8) is described by (1, 2, 3, 6), where PDOs L; and
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L, are given by (4, 5), provided that conditions of Theorem 3 and Example
12 are satisfied.

13. Example

Suppose that functions K and F are related by equations 12(1, 2) and take
two PDOs

(1) Ly, x,y = ox —oy and
(2) I—Z,x,y = AX + SAy,

where the coefficient g is null in o and hence the Laplace operator is

expressed as A = —c2, while s € R\{0}. Now we take a function N in the
form

(3) N(x, z, y) = EK(x, ay + bz),

where a and b real parameters to be calculated below such that a? +b% >0,
b is non-zero. Then from the conditions

(4) Ljx,yF(x, y)=0for j=1and j =2,

Proposition 2.5 and Corollary 2.6 it follows that

(5) Lo, x, yK(x, y) = —p(cs)z( + saf,)GJ.X F(z, y)EK(X, ay + bz)dz

= p( ZAX - s(lcsy + ZGy)Z)GIx F(z, y)EK(x, ay + bz)dz

— pA(F(z, y), EK(x, ay + bz))| ;_x

and

(6) (1c5y + ch)zcro F(z, y)EK(x, ay + bz)dz
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2

=[l2 +ab s, 2

o, +ab 1%, %, +a%h? ZGE]GJwF(z, y)EK(x, ay +bz)dz
X
=[ab (Y5, + %6, )2 +(1-ab o2 + (a2 - ab‘l)zcsg](y".oO F(z, y)EK(x, ay +bz)dz
X
:(1—ab‘1)2 Zcfcj F(z, y)EK(x, ay +bz)dz
X

—ab Yo, (F(z, y)EK(x, ay +bz))]| joy+ (L—ab™)By(F, EK)(x, y)
= pl(1-ab)?b?By(c3K (x, ¥))

—ab™ o, (F(z, y)EK(x, ay +b2))]| ,x+ (1—ab ™) By(F, EK)(x, y),
since

oo Fz YNz y)dz =, " o3IF(z yIN(x. 2. y)ldz

=—0,[(F(z, y)EK(x, ay +bz))]| ;.
Then identities (5; 6) imply that
(7) L2,x,yK(Xn y):Bx[LZ,x,yK(Xn Y)]- pAy(F(z, y), EK(x, ay +bz))| ,_x
+ psab o, (F(z, y)EK(x, ay +b2))]| ,—x— ps(L—ab™")By(F, EK)(x, y)

when (b - a)2 =1 and b is non-zero, that is either a=b+1 or a=b -1.
In virtue of Lemma 5 and Proposition 6 this gives the nonlinear PDE for K.

(8) Ly, x, yK(X, ) + PAy(K(z, y), EK(x, ay +bz))| ;4
—ab~!ps[o, (K(z, y)EK(x, ay + bz))]| joxt+ (1 -

ab_l) pséz(K(z, y), EK(X, ay + bz))| ;4= 0.
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13.1. Theorem

A solution of PDE (8) is given by (3, 4) and 12(1, 2), where PDOs Ly
and L, are prescribed by (1, 2), whenever conditions of Theorem 3 and
Example 13 are satisfied.

14. Nonlinear PDE with parabolic terms

Let

(1) & = lel 8/t

be the first order PDO, where ty, ..., t, are real variables independent of
other variables

X, V,zeU,t=(,.,t,)eW,W:={teR":vk=1.,v0<
t, < Ty}, where Ty isaconstant, 0 < T, < o for each k.

Suppose that

(2) F and K are continuously differentiable functions by t, for each k so

that c,I::OF(Z, y)N(x, z, y)dz converges for some t € W and

(3) the integrals c,_[::)(atF(z, y))N(X, z, y)dz and

of F@ y)@N(x 2 y)e

converge uniformly on W in the parameter t.

In virtue of the theorem about differentiation of an improper integral by a
parameter the equality is valid:

@ &, F@ yIN(x 2, y)dz
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of @F@ YIN( 2 Y)dz +6[ F(z Y)@N(x, 2, y)dz

Using (4) the commutator (I —AyEy)((0 + Ls) )= (¢ + Ls)[(1 -
AXEy)f] can be calculated, when there is possible to evaluate the
commutator (I — AyE,)(Lsf) - Ls[(I — AyEy) f]=Rs(f) for suitable

functions fand a PDO Lg = Lg y y (see also Section 2).

14.1. Example
Let a PDO be

(D) Ly =0 + ) a(ox + (- 1) ay) and let
(2) N(x, z, y) = EyK(x, 2),

where ay e R forall 1 =0,1, 2, ..., so that conditions 1(2, 3) and 2(1, 5)
are fulfilled, F € Mat,,(R), K € Matp,n(A;), 2 <1, the first order PDO
o is over the Cayley-Dickson algebra A, (see Sections 1, 2 and 14). Then

(at £ a- 1)'*16” F(x, y) = —(Z, a|0|xj F(xy)

for all x, y € U. Therefore, we infer from Proposition 2.5 that

(3) LK(x y) = p[zat + D a(ox o ch TF(2 Y)EN(x, 2)dz
| X

- p[zat + D a(Poy (-1 Zc'z)J of " F(z y)EN(x 2)dz
I X

+pY & (A(F; N)(x ) - Bi(F; N)(x ¥)).
|

Hence we deduce a nonlinear PDE
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(4) LK(x, y) = pY_ a(A(K; EK)(x, y) - Bi(K; EK)(x, ¥)) = 0.
|

Its solution reduces to the linear problem 2(2, 5). We mention that PDE
(4) corresponds to some kinds of Sobolev type nonlinear PDEs.

14.2. Generalized approach

Let Ly, ..., Ly and Sy, ..., Sy be PDOs which are polynomials or series

of oy and o so that
@) [Lj, S;]=0

foreach j =1, ..., k, where x and y are in a domain U in the Cayley-Dickson
algebra Ay, 2 <r (see Subsection 2.3). Instead of the conditions LjF =0
it is possible to consider more generally

(2) LjF =Gj, where G;j are some functions known or defined by some
relations, while functions F, Gj and K may also depend on a parameter
t e W (see Section 14) so that F € Mat,n(R), G; for all j and K have

values in Maty,n(A,). It is also supposed that F and K are related by the
integral equation 2(1) and N(x, y, z) = E,K(x, z) and Conditions 1(2, 3)
are satisfied. In particular, if

(3) Gj = Lj(I + Sj)K, then asolution of the linear system of PIDEs
(4) LjF(x, y) = Lj(1 + S;)K(x, y) and
6) (I - AE)K(x, y) = F(x, y)
would also be a solution of nonlinear PIDEs
(6) SjLjK(x, y)+M;(K) =0,

where Mj corresponds to Lj foreach j =1, .., kg with1<ky <k asin

Section 2. Thus, this generalizes PIDEs 2(12).
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15. Theorem

Let {Lg:s=1 ..k} be a set of PDOs which are polynomials
Qs(10x, 20y) over A, or R. Let also G be the family of all operators
E = BSTy satisfying the condition [Ls, E]=0 for each s =1 .., ko,
where B e SLy(R), S € Aut(Matnn(Ar)), g € Diff “(U), Ty s
prescribed by Formula 1(4), ;o and ,c, are over the Cayley-Dickson
algebra A, r > 2. Then the family G forms the group and there exists an
embedding of G into SL,(R) x Aut(Matp,,,(A,))x Diff “(U).

Proof. The composition (set theoretic) in the family G of the
aforementioned operators is associative. Then the inverse E7l= Ty 1s-1g-1

of E = BST exists, since B, S and Ty are invertible for every B e SL,(R),

S € Aut(Mat,,,(A,)) and g e Diff*(U) so that Tg_l =Tg_1. On the

other hand, the identity EY[Ls, E]JE™! = [Lg, E™] is valid. Thus, the
equality [Lg, E] =0 implies that Ly and E~* commute, [Lg, E™}] =0, as
well. Therefore, from E € G the inclusion E-1 ¢ G follows. The identity
(L, E1E5] = [Ls, Eq]Ep + Eq[Lg, Ep] implies that E;E, € G whenever
Ei € G and E, € G.. Thus the family G has the group structure. There
exists the bijective correspondence between diffeomorphisms g e Diff “(U)
and operators Ty acting on functions defined on U with values in
Mat,,,(A,) according to Formula 1(4). Each element E in G is of the form
E =BSTy, where B eSLy(R) S e Aut(Maty,(A;)), g € Diff *(U),

consequently, an embedding ®:G < SL,,(R)x Aut(Mat,,, (A, ))x Diff “(U)
exists.
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4. Nonlinear PDEs Used in Hydrodynamics

1. Remark

In the previous article [23] vector hydrodynamical PDEs were
investigated. Using results of Sections 2 and 3 we generalize the approach
using transformations of functions by operators E of the form 3.1(2).

2. Example
Generalized Korteweg-de-Vries’ type PDE. Let

(1) N(x, z, y) = EK(x, z) as in 3.1(1) and let A, be given by 3.2 (3),
where E satisfies conditions 3.1(2, 4),

) Ly =10% - 20% and

(3) L, =30¢ + 10:)3( +3 20y 1cs§ +3 26%, 10y + 20:3,,
where 1yg =2y =0,

(4) LF =0 and Ly ;F =0 foreach j =0,.., 2"

Taking into account symmetry operators E and transforming correspond-
ing equations from example 4.2 [23] we get the equality

(5) (301 + 105 + 3 20y 10% + 3 265 104 + 263 )K(X, ¥)
+ 6(%Gx +12 Gy)[K(Xy ¥) (16xEK(%, )] = K(X, ¥){[167, 10x|EK(X, 2)[ ;=x}

—[1ox, 30x][K(x, Y)EK(x, x)] = 0
follows, when the operator (I — A, E) is invertible.

2.1. Theorem

If suppositions of Theorem 3.3 and Example 2 are satisfied. Then a
solution of PDE (5) with 1yg =2y = 0 over the Cayley-Dickson algebra

A, with 2 < r < 3 is given by Formulas (2-4) and 3.2(1), when p =1.
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2.2. Example

Korteweg-de-Vries’ type PDE. Continuing Example 2 mention that on
the diagonal x =y the operators are: Ly, x =0, Ly x x = 0/t + 8103.
Therefore, [Ly y x, E] = 0 is valid. Let E be independent of the parameter t,
then [6/dt, E] = 0, since t € R and R is the center of the Cayley-Dickson
algebra A,. To the term ;o> the cubic form (Im w) = - |w|2w
corresponds, since 1Wo =0, where Imw = (w—-w" )/2, w =
hWXqwp + - + izr,lxzr,lwzr,l, Xj € R for each j. That is for E = STy the
restriction is [| W|2W, E] =0, where n =1 and B =1. Geometrically in the

real shadow of Im(.A,) such E = E(x) permits any rotations along the axis
Jy parallel to w such that J,, crosses the origin of the coordinate system.
Evidently [w3, E] = 0 is satisfied if [w, E] = 0, that is [;5y, E(X)] = 0. In
the latter case and when n =1, 6 =50, yg =0 and 3oy = §/dty the

differentiation of 2(12) with the operator 15, and the restriction on the
diagonal x =y provides the PDE

(1) Vi(t, X) + 6 154 [V(t, X)EV(t, X)] + 155v(t, X) = 0

of Korteweg-de-Vries’ type, where v(t, X) = 2 104,K(X, x). Particularly

there are solutions having the symmetry property Ev(t, x) = v(t, x).

3. Example

Non-isothermal flow of a non-compressible Newtonian liquid with a
dissipative heating. Take the pair of PDOs

(1) L =0y +oyand
(2) Ly =10¢ + 0)2( +doyoy + Gf,,

where g € R is a real constant, and consider the integral equation 3.2(1)
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with N of the form 3.1(1), so that
(3) LF(x, y) =0 and
(4) Ly jF(x, y)=0 for each j, (see also (4.81) and (4.82) in [23]).

Therefore, in (4.83) [23] the term K changes into EK. Transforming the
corresponding equations from [23] with the help of the operator E we deduce
that

(5) (101 + 0% + 2 %0y Py + 05)K(X, ¥) = =2pK(X, y)[o,EK(x, X)],

where K depends on the parameter t.

Let g(x, t) = K(x, x), then on the diagonal x =y this implies the
PDE:

(6) (101 +03)g(x, 1) = —2pg(x, t)[c,Eg(x, 1)].

Therefore K(x, y) = K((“’X—Z_Wj and [Ly, E]K =0 is fulfilled if

E(x, y):E((\VLZ_W). For E independent of t the condition

[Lo x x» E(x, X)]=0 means that [L, 4 x, E(0)] = 0. Thus in the real
shadow of Im(A,) this E(0) induces any element of the orthogonal group
0(2" -1).

3.1. Theorem

Suppose that conditions of Theorem 3.3 and Example 3 are satisfied,
then PDE (5) over the Cayley-Dickson algebra A, with 2 <r <3 has a
solution given by Formulas (3, 4), 3.1(1) and 3.2(1), where PDOs L; and
L, are given by (1,2), F € Mat,,(R) and K € Mat,,,(A,), n e N for
r=2n=1forr=3.
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5. Conclusion

The results of this paper can be applied for analysis and solution of

nonlinear PDE mentioned in the introduction and for dynamical nonlinear
processes [14, 15] and air target range radar measurements [40].
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