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Abstract. In the previous papers of Frénod & Ménard & Safa [2] and Frénod & Safa [3] we
used the continuous-in-time financial model developed by Frénod & Chakkour [1], that describes
working of loan and repayment, in an optimal control theory framework to effectively conduct
project objectives. The goal was to determine the optimal loan scheme taking into account the
objectives of the project, the income and the spending. In this article, we enrich this continuous-
in-time financial model to take into account possibility of saving. Then we propose two new
optimization problems involving this model. The first one consists in finding a loan scheme
minimizing the cost of the loan for a project, together with the time to achieve its objectives.
The second problem consists, from given loan, saving and withdrawal schemes, to find optimal
variants of them.
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1 Introduction

Financial modeling is needed to logically organize cash flows and solve many financial prob-
lem. The commercial loans, unlike the individual loans, do not necessarily require monthly
installments, giving to businesses an opportunity to decide the most advantageous schedule for
repayment. From a mathematical point of view it is of interest to model the dynamics of such
a situation and find the optimal loan repayment schedule.

There are several references in the literature dealing with continuous-in-time financial model.
Among them we find: R. Merton [6] which provides an overview and synthesis of finance theory
from the perspective of continuous-in-time analysis. In [7], S. Sundaresan surveys and assesses
the development of continuous-in-time methods in finance during the period between 1970 and
2000. In addition, many studies have used control engineering methods and techniques in
finance. For example Keel [5] explored and extended optimal portfolio construction techniques
currently found in the literature. Grigorieva & Khailov [4] built a controlled system of differential
equations modeling a firm that takes a loan in order to expand its production activities.

In the second section of this paper we present the continuous-in-time financial model de-
tailed in Frénod & Chakkour [1] which is not designed for the financial market but for the
public institutions. This model describes, when a project involves a loan in order to achieve its
objective, the way that the amounts concerned by the loan will be borrowed providing that the
spending balances the income. In Frénod & Ménard & Safa [2] and Frénod & Safa [3] we have
used this model in an optimal control theory framework in order to find the best strategy to
achieve the goals of the project, minimizing the interest payment.

In Section 4, we enrich this continuous-in-time financial model to take into account the
possibility of saving. Then we propose two new optimization problems involving this model.
The first one which is introduced in Section 3 consists in finding a loan scheme minimizing
the cost of the loan for a project, together with the time to achieve its objectives. The second
optimization problem which is introduced in Section 3 consists, from given loan, saving and
withdrawal schemes, to find optimal variants of them.

2 Continuous-in-time financial model

In this section we extend the continuous-in-time financial model described in Frénod & Chakkour
[1], Frénod & Ménard & Safa [2] and Frénod & Safa [3] in order to take into account the
possibility of saving. The time domain is interval [0,Θ], where Θ > 0 is the lifetime of the
project. We consider that beyond Θ the spending associated with the project is completely
done, the loan associated with the project is completely paid off and the project is finished.

2.1 Variables of the model

To characterize the budget of a project, we introduce the loan density κE and the repayment
density ρR which is connected, as explained in Frénod & Chakkour [1], to the loan density by
a convolution operator:

ρR(t) = (κE ∗ γ)(t), (1)

where γ is the repayment pattern. Since the whole amount associated with the loan has to be
repaid, γ has to satisfies: ∫ +∞

−∞
γ(t)dt = 1. (2)
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We introduce the saving density κS which represents the amount saved in the bank when there
is an excess in the budget. We also introduce the density of withdrawal ρW which can be used
in case of a deficit. We denote by KSD the current saving field, whose evolution is governed by
the following differential equation:

dKSD(t)
dt

= κS(t)− ρW (t) + ρJ(t), (3)

where ρJ is the interest earning density related to the current saving field by the next relation:

ρJ(t) = αWKSD(t), (4)

where αW is the interest rate of saving. Equation (3) indicates that the variation of the current
saving field is the difference between the saving density and the interest earning density on
the one hand, and the withdrawal density on the other hand. In this equation the interests
which are acquired are immediately added to the capital. We denote by KRD the current debt.
Because the current debt variation is the difference between the loan and the repayment, its
evolution is governed by the following differential equation:

dKRD
dt

(t) = κE(t)− ρR(t)− ρIR(t), (5)

where ρIR(t) is the density of repayment of the current debt at the beginning of the period. It
is called initial debt repayment scheme. Initial condition for equation (5) is given by:

KRD(0) =
∫ +∞

0
ρIR(t)dt. (6)

We denote by ρI(t) the density of interest payment defined by:

ρI(t) = αEKRD(t), (7)

where αE is the interest rate of the loan. The algebraic spending density is denoted σ(t), it
takes into account the spending and the income and it is given by:

σ(t) = β(t) + σg(t), (8)

where β(t) ≥ 0 is the isolated spending density. It is the density of spending that are intended
for the project only. Function σg(t) is the current spending density. We assume that β(t) ≥ 0
because only spending are concerned.

The fact that the initial time of the project is 0 and the lifetime is Θ translates as:

supp (κE) ⊂ [0,Θ], supp (κS) ⊂ [0,Θ], supp (ρW ) ⊂ [0,Θ], (9a)
supp (κE) + supp (γ) ⊂ [0,Θ], supp (ρIR) ⊂ [0,Θ], (9b)

where, for any function f , supp (f) is the support of f .

2.2 Objectives of the project

Integrating (3) over [0, t], after using (4), we obtain the following relation:

KSD(t) = KSD(0)eαW t +
∫ t

0

(
κS − ρW

)
(s)eαW (t−s)ds, ∀t ∈ [0,Θ]. (10)
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Integrating (5) over [0, t], we obtain using (1) the following relation:

KRD(t) = KRD(0) +
∫ t

0
(κE − κE ∗ γ)(s)ds−

∫ t

0
ρIR(s)ds, (11)

and using (6), we obtain:

KRD(t) =
∫ t

0
(κE − κE ∗ γ)(s)ds+

∫ ∞
t

ρIR(s)ds. (12)

We want the spending density to balance the income density. In our model we have the
following densities: σ which, depending on its sign, stands alternately for income or spending,
κE and ρW which are income densities and ρR, κS , ρI , ρ̃

I
R which are spending densities. Hence

the balance relation reads:

−σ(t) + κE(t)− ρR(t)− ρI(t)− ρIR(t)− κS(t) + ρW (t) = 0. (13)

Using (12) and (7), we deduce from (13) the following relation:

σ(t) = κE(t)− (κE ∗ γ)(t)− αEKRD(t)− ρIR(t)− κS(t) + ρW (t)

= (L[κE ])(t)− αE
∫ ∞
t

ρIR(s)ds− ρIR(t)− κS(t) + ρW (t), (14)

where the operator L is defined by:

(L[κE ])(t) .= κE(t)− (κE ∗ γ)(t)− αE
∫ t

0
(κE − κE ∗ γ)(s)ds, (15)

is the algebraic income density associated to the loan and the saving. In other words, it is
the difference between the income density induced by the loan and the withdrawal, and the
spending density associated with the repayment, the saving and the interest payment. Using
(8) we then have:

β(t) = (L[κE ])(t)− αE
∫ ∞
t

ρIR(s)ds− ρIR(t)− σg(t)− κS(t) + ρW (t). (16)

The isolated spending density β(t) is the difference between the algebraic income density as-
sociated with the loan and the spending densities related to the following: current spending,
initial debt repayment and payment of the interests of this latter.

We define an objective as a couple collection (ci,Θi), i ∈ {1, . . . , N}, where ci is the amount
which has to be spent for the project at the time Θi ∈]0,Θ[. We suppose that 0 < Θ1 < Θ2 <
. . . < ΘN < Θ, and to be consistent we need 0 ≤ c1 ≤ c2 ≤ . . . ≤ cN . We say that the objective
is reached if: ∫ Θi

0
β(t)dt ≥ ci, ∀i = 1, . . . , N. (17)

The above equation indicating that at any Θi the amount allocated to the project is at least
the amount needed for the project.

Using this model we will establish the strategy, i.e. find the loan which allows the objectives
(ci,Θi) to be reached. Furthermore, this loan have to satisfy some conditions. Typically, it has
to minimize the cost of the loan. This strategy can be written as an optimal control problem
which is developed in the next sections.
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3 First optimization problem (O1)

3.1 Continuous-in-time financial model without saving

The first optimisation problem will involve the continuous-in-time financial model described in
Section 4, without saving. In this case both κS and ρW are zeros. We set only one objective
c > 0 for the project and we look for the best strategy of borrowing to cover expenses related to
this objective. The time to achieve the objective, denoted by θ, is not fixed but it is part of the
parameters to be determined in the context of defining the best strategy. In other words, we seek
the optimal loan density κopt

E (t) together with the optimal time to achieve the objective of the
project θopt. The goal is then to minimize the cost function associated with this optimization
problem which is defined by:

CE(κE , θ) = A

∫ Θ

0
κE(t)dt

c
+B

θ

Θ , (18)

where A > 0 and B > 0 are two adjustment parameters. They allow to give more weight to
minimizing the cost of the loan when A is large and B is small, or to minimizing the time
achieved of the project objective when B is large and A is small. In equation (18) we have
divided by c and Θ in order to make the cost function CE(κE , θ) dimensionless. The constraints
for this optimization problem are:

κE(t) ≥ 0, β(t) ≥ 0,
∫ θ

0
β(t)dt ≥ c . (19)

By replacing β(t) by its value defined in (16), the optimization problem is then written as:

CE(κopt
E , θopt) = min

κE ,θ

A
∫ Θ

0
κE(t)dt

c
+B

θ

Θ

 , (20a)

under constraints:

κE(t) ≥ 0, (20b)
(L[κE ])(t) ≥ µ(t), (20c)∫ θ

0
(L[κE ])(t)dt ≥

∫ θ

0
µ(t)dt+ c, (20d)

where
µ(t) = σg(t) + α

∫ ∞
t

ρIR(s)ds+ ρIR(t). (21)

After defining:

κ̂θE(t) = A

c
κE(t) +B

θ

Θ2 , (22)

the optimization problem (20) is finally written as:

CE(κopt
E , θopt) = min

κE ,θ

∫ Θ

0
κ̂θE(t)dt, (23a)
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subject to:

κ̂θE(t) ≥ B θ

Θ2 , (23b)

(L[κ̂θE ])(t)−B(L
[
θ

Θ2

]
)(t) ≥ A

c
µ(t), (23c)∫ θ

0
(L[κ̂θE ])(t)dt−B

∫ θ

0
(L
[
θ

Θ2

]
)(t) ≥ A

c

∫ θ

0
µ(t)dt+ c. (23d)

This optimization problem is denoted (O1) and will be solved in two stages. In the first stage
we set an objectif (c, θs) with c > 0 and θs ∈ [0,Θ] and we search κopt

E (θs) solution of the
following optimization problem:

CE [κopt
E (θs), θs] = min

κE

∫ Θ

0
κ̂θs
E (t)dt, (24a)

subject to:

κ̂θs
E (t) ≥ B θs

Θ2 , (24b)

(L[κ̂θs
E ])(t)−B(L

[
θs
Θ2

]
)(t) ≥ A

c
µ(t), (24c)∫ θs

0
(L[κ̂θs

E ])(t)dt−B
∫ θs

0
(L
[
θs
Θ2

]
)(t) ≥ A

c

∫ θs

0
µ(t)dt+ c. (24d)

In the second stage we search among θs ∈ [0,Θ] and κopt
E (θs) obtained from the first stage,

the couple (κopt
E , θopt) which minimizes the cost function of the optimization problem (24). For

this, we solve the following optimization problem:

θopt = argmin
θs

∫ Θ

0
(κopt
E (θs))(t)dt. (25)

which has at least one solution. In cases where multiple solutions exist, we take the solution
that corresponds to the smallest θs.

3.2 Discretization of optimization problem (O1)

The way to discretize problem (24) consists in introducing on [0,Θ] n points (ti)i=1...,n such
that ti = (i− 1)h, where h = Θ

n−1 . We assume that for any j = 1, . . . , N , there exists a ti such
that Θj = ti. At the operational level, if this condition is not verified, we substitute Θj by the
closest ti. Then we define n intervals (Ii)i=1,...,n, such that

⋃n
i=1 Ii = [0,Θ], defined by:

Ii =
[
(i− 3

2)h, (i− 1
2)h

]
, for i = 2, . . . , n− 1, I1 =

[
0, h2

]
, In =

[
(n− 3

2)h, (n− 1)h
]
.

We consider then the space S made of functions that are defined on [0,Θ] and constant on each
Ii, for i = 1, . . . , n. We introduce the approximation operator Π defined by:

Π : L2[0,Θ] −→ S

f(t) 7−→ f̄(t) =
n∑
i=1

fi1Ii(t),
(26)
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where fi = 1
|Ii|

∫
Ii

f(t)dt is the mean value of the function f on interval Ii. We denote f̃ =

(f1, . . . , fn)T and we will use these notations afterward for the quantities of the model. We have:

∫ ti

0
f̄(t)dt = h

2 f1 + h
i−1∑
j=2

fj + h

2 fi, i = 2, . . . , n, (27a)

∫ Θ

ti

f̄(t)dt = h

2 fi + h
n−1∑
j=i+1

fj + h

2 fn, i = 1, . . . , n− 1. (27b)

With this discret space on hands, we consider the discret optimization problem that consists in
finding κ̄E(t) solution of (24), with γ replaced by γ̄, ρIR by ρ̄IK and σg by σ̄g.

It is straightforward to show that, after setting θs, solving the optimization problem (24)
is equivalent to solve the next one:

CE [κopt
E (θs), θs] = min

κ̄E(θs)∈Ū
CE [κ̄E(θs), θs], (28)

where Ū is the set of function κ̄E(θs) ∈ S satisfying:

(κ̄E(θs))(t) ≥ B
θs
Θ2 , (29a)(

L[κ̄E(θs)]
)
(t) ≥ B(L

[
θs
Θ2

]
)(t) + A

c
µ̄(t), (29b)∫ ti

0
(L[κ̄E(θs)])(t)dt ≥ u(ti) + A

c

∫ ti

0
µ̄(t)dt, ∀i = 1, . . . , n, (29c)

with

µ̄(t) = σ̄g(t) + α

∫ Θ

t
ρ̄IK(s)ds+ ρ̄IK(t), (30)

and where u is a function that is equal to ci in each interval [Θi,Θi+1], i.e:

u(t) =
N−1∑
i=1

ci1[Θi,Θi+1](t) + cN1[ΘN ,Θ](t). (31)

Because of the piecewise constante nature of κ̄E(θs), we have:

(κ̄E(θs))(t)− (κ̄E(θs) ∗ γ̄)(t) = (In − C)κ̃E(θs), (32)

where matrix C ∈ Rn×n, resulting from the convolution, is defined by:

Ci+1,j+1 = hγ((i− j ≡ n) + 1), i, j ∈ {0, . . . , n− 1},

and κ̃E(θs) =
(
(κ̄E(θs))(t1), . . . , (κ̄E(θs))(tn)

)T ∈ Rn. Using (32) and (27a), operator L defined
by (15) when applied to κ̄E(θs) yields operator L acting on κ̃E , defined by:

L(κ̄E(θs))(t) = Lκ̃E(θs), (33a)

its expression is:

L = (In − C)− αM(In − C) = (In − αM)(In − C) ∈ Rn×n, (33b)
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with, by using (27a):

M = h

2


0 0 0 0
1 1 0 0
1 2 1 0
... . . . 0
1 2 . . . 2 1

 ∈ Rn×n,

is the matrix resulting from the approximation of the integral in the formula (15). The con-
straints given by (29) may then be written as:

κ̃E(θs) ≥ B
θs
Θ21n, (34a)

Lκ̃E(θs) ≥ BL
θs
Θ21n + A

c
µ̃, (34b)

MLκ̃E(θs) ≥ ν +M
[
BL

θs
Θ21n + A

c
µ̃
]
, (34c)

where 1n = (1, . . . , 1)T ∈ Rn, µ̃ =
(
µ̄(t1), . . . , µ̄(tn)

)T ∈ Rn, and ν is the discretization of (31)
given by:

ν =

u(t1)
...

u(tn)

 ∈ Rn. (35)

The discretization of the optimization problem (24) is finally written as the following one.

CE [κopt
E (θs), θs] = min

κ̃E(θs)
1T
nκ̃E(θs), (36a)

subject to:

κ̃E(θs) ≥ B
θs
Θ21n, (36b)

Lκ̃E(θs) ≥ BL
θs
Θ21n + A

c
µ̃, (36c)

MLκ̃E(θs) ≥ ν +M
[
BL

θs
Θ21n + A

c
µ̃
]
, (36d)

Problem (36) is a linear optimization problem which is solved for each θs ∈ {θ1, · · · , θm}, m > 1,
where 0 < θ1 < θ2 < · · · < θm < Θ, to obtain κ̃E(θs). Then, among all θs, we take θopt solution
of the following optimization problem:

θopt = min
θs

(
min
κ̃E(θs)

1T
nκ̃E(θs)

)
. (37)

which has at least one solution. In cases where multiple solutions exist, we take the solution
that corresponds to the smallest θs. We have finally the couple (κopt

E , θopt).
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3.2.1 Example 1

In Example 1, the repayment is done in a constant way between the first and 6th year after
borrowing. We pay off nothing outside this period. The current spending density σg alternates
between positive values, corresponding to periods where income is less than spending and neg-
ative values, corresponding to periods where income is larger than spending. The optimal loan
density κopt

E and the optimal time to achieve the objective of the project θopt are given in Figure
1. Figure 2 shows that the constraints are satisfied. For this example we have taken:

Θ = 20, αE = 0.07, c = 9, A = 3, B = 1,
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Figure 1: Optimal loan κopt
E and the optimal time θopt obtained for given: repayment pattern

γ, objectives c and current spending σg.
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Figure 2: Checking if the constraints are satisfied for Example 1.

3.2.2 Example 2

In Example 2, the repayment is only made in an increasing way between the 2nd and 6th year
after borrowing. We pay off nothing outside this period. The current spending density σg
alternates between positive values, corresponding to periods where income is less than spending
and negative values, corresponding to periods where income is larger than spending. The
optimal loan density κopt

E and the optimal time to achieve the objective of the project θopt are
given in Figure 3. Figure 4 shows that the constraints are satisfied. For this example we have
taken:

Θ = 20, αE = 0.05, c = 10, A = 12, B = 5,
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4 Second optimization problem (O2)

4.1 Continuous-in-time financial model with saving

In this model we impose the repayment pattern γ, the current spending density σg, the loan
density κE , the interest rates αE and αW . The withdrawal density ρW and the saving density
κS must be chosen such that the current saving field KSD(t) remains non-negative. We then
write using (10) the following constraint :

KSD(0)eαW t +
∫ t

0

(
κS − ρW

)
(s)eαW (t−s)ds ≥ 0, ∀t ∈ [0,Θ], (38)

which can be written: ∫ t

0

(
ρW − κS

)
(s)e−αW sds ≤ KSD(0), ∀t ∈ [0,Θ]. (39)

However, the isolated spending density β(t) must be non negative. Using (16), we have the
following inequality:

(L[κE ])(t)− αE
∫ ∞
t

ρIR(s)ds− ρIR(t)− σg(t)− κS(t) + ρW (t) ≥ 0, ∀t ∈ [0,Θ]. (40)

From (39) and (40), the two constraints that must be satisfied:∫ t

0

(
κS − ρW

)
(s)e−αW sds+KSD(0) ≥ 0, ∀t ∈ [0,Θ], (41a)

(L[κE ])(t)− αE
∫ ∞
t

ρIR(s)ds− ρIR(t)− σg(t)− κS(t) + ρW (t) ≥ 0, ∀t ∈ [0,Θ]. (41b)

4.1.1 Example 1

In Figure 5 we show an example of a financial model with saving such that constraints (41) are
satisfied. In this example, the repayment is done in a constant way between the first and third
year after borrowing. We pay off nothing outside this period. The current spending density σg
alternates between positive values, corresponding to periods where income is less than spending
and negative values, corresponding to periods where income is larger than spending. We set the
saving density and the withdrawal density as shown Figure 5. For this example we have taken:

Θ = 10, αE = 0.07, αW = 0.03, ρIR = 0, KSD(0) = 0.

4.1.2 Example 2

In the Figure 6 we show an example of a financial model with saving which the constraints (41)
are not satisfied. In this example, the repayment is done in a constant way between the first
and third year after borrowing. We pay off nothing outside this period. We set the current
spending, the saving density and the withdrawal density as shown Figure 6. For this example
we have taken:

Θ = 10, αE = 0.07, αW = 0.04, ρIR = 0, KSD(0) = 0.
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Figure 5: Example of a continuous-in-time financial model with saving (the two constraints (41)
are satisfied).
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Figure 6: Example of a continuous-in-time financial model with saving (the two constraints
(41b) is not satisfied).
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4.2 Optimization problem (O2)

The second optimisation problem consists in finding the optimal variant from the loan density,
the saving density and the Withdrawal density obtained from a continuous-in-time financial
model with saving. For a given loan density κE , saving density κS and withdrawal density ρW
which satisfy or not constraints (41), we want to calculate the positive real numbers a, b et c,
such that replacing κE by aκE , κS by bκS and ρW by cρW in the initial model, the contraintes
(41) are verified. For that we introduce the following optimization problem:

(a, b, c) = argmin
a′,b′,c′∈R

{
a′

2 + b′
2 + c′

2
}
, (42)

or

a2 + b2 + c2 = min
a′,b′,c′∈R

{
a′

2 + b′
2 + c′

2
}
, (43)

under the constraints:∫ t

0

(
bκS − cρW

)
(s)e−αW sds+KSD(0) ≥ 0, ∀t ∈ [0,Θ], (44a)

(L[aκE ])(t)− αE
∫ ∞
t

ρIR(s)ds− ρIR(t)− bκS(t)− σg(t) + cρW (t) ≥ 0, ∀t ∈ [0,Θ], (44b)

a ≥ 0, b ≥ 0, c ≥ 0. (44c)

To solve this optimization problem with constraints, a quadratic programming method im-
plemented in Matlab is used via the function quadprog. We now apply this optimization problem
on the model already presented in Example 4.1.2. We obtain:

a = 0.978, b = 0.423, c = 1.

The result is shown in Figure 7. This means that among all the financial solutions close to
that originally constructed, we take the one that leads to minimize the overall amount bor-
rowed, placed and withdrawn. We can also minimize the amount borrowed only by writing the
optimization problem in the form:

a = argmin
a′∈R

{
a′

2
}
. (45)

We can also minimize the amount borrowed and placed by writing the following optimization
problem:

(a, b) = argmin
a′,b′∈R

{
a′

2 + b′
2
}
. (46)

In the Example 2, the contraint (41b) is not satisfied. However, it is possible, by modi-
fying κE , κS and ρW to get another model satisfying constraints (41), by applying the same
optimization method. We obtain:

a = 0.453, b = 0.423, c = 1.

The result is shown in Figure 8.
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Figure 7: Second optimisation problem (O2) applied to the model of Exemple 1.
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Figure 8: Second optimisation problem (O2) applied to the model of Exemple 2.
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